Effect of MED-02 Containing Two Probiotic Strains, Limosilactobacillus fermentum MG4231 and MG4244, on Body Fat Reduction in Overweight or Obese Subjects: A Randomized, Multicenter, Double-Blind, Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Treatment Materials
2.2. Subjects
2.3. Assessment of Daily Energy Intake and Physical Activity
2.4. Clinical Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Subjects
3.2. Effect of MED-02 on Body Fat Mass and Percentage
3.3. Effect of MED-02 on Body Weight and BMI
3.4. Effect of MED-02 on Abdominal Fat Area
3.5. Effect of MED-02 on the Anthropometric Parameters and the Plasma Levels of Lipid Metabolism Markers and Adipokines
3.6. Assessment of the Safety of MED-02
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD. Health at a Glance 2015; OECD Publishing: Paris, France, 2015. [Google Scholar]
- WHO. Obesity and Overweight. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 9 June 2021).
- Weiss, F.; Barbuti, M.; Carignani, G.; Calderone, A.; Santini, F.; Maremmani, I.; Perugi, G. Psychiatric aspects of obesity: A narrative review of pathophysiology and psychopathology. J. Clin. Med. 2020, 9, 2344. [Google Scholar]
- Kim, T.J.; von dem Knesebeck, O. Income and obesity: What is the direction of the relationship? A systematic review and meta-analysis. BMJ Open 2018, 8, e019862. [Google Scholar] [PubMed]
- Khandekar, M.J.; Cohen, P.; Spiegelman, B.M. Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer 2011, 11, 886–895. [Google Scholar] [PubMed]
- Ryder, J.R.; Fox, C.K.; Kelly, A.S. Treatment options for severe obesity in the pediatric population: Current limitations and future opportunities. Obesity 2018, 26, 951–960. [Google Scholar] [PubMed]
- Singh, A.K.; Singh, R. Pharmacotherapy in obesity: A systematic review and meta-analysis of randomized controlled trials of anti-obesity drugs. Expert Rev. Clin. Pharmacol. 2020, 13, 53–64. [Google Scholar] [PubMed]
- WHO. Report on Joint FAO/WHO Guidelines for the Evaluation of Probiotics in Food. Available online: http://fanus.com.ar/posgrado/10-09-25/fao%20probiotics.pdf (accessed on 3 August 2022).
- Ejtahed, H.-S.; Angoorani, P.; Soroush, A.-R.; Atlasi, R.; Hasani-Ranjbar, S.; Mortazavian, A.M.; Larijani, B. Probiotics supplementation for the obesity management; A systematic review of animal studies and clinical trials. J. Funct. Foods 2019, 52, 228–242. [Google Scholar]
- Álvarez-Arraño, V.; Martín-Peláez, S. Effects of probiotics and synbiotics on weight loss in subjects with overweight or obesity: A systematic review. Nutrients 2021, 13, 3627. [Google Scholar]
- da Silva Pontes, K.S.; Guedes, M.R.; da Cunha, M.R.; de Souza Mattos, S.; Silva, M.I.B.; Neves, M.F.; Marques, B.C.A.A.; Klein, M.R.S.T. Effects of probiotics on body adiposity and cardiovascular risk markers in individuals with overweight and obesity: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2021, 40, 4915–4931. [Google Scholar]
- Omar, J.M.; Chan, Y.-M.; Jones, M.L.; Prakash, S.; Jones, P.J. Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. J. Funct. Foods 2013, 5, 116–123. [Google Scholar]
- Molina-Tijeras, J.A.; Diez-Echave, P.; Vezza, T.; Hidalgo-García, L.; Ruiz-Malagón, A.J.; Rodríguez-Sojo, M.J.; Romero, M.; Robles-Vera, I.; Garcia, F.; Plaza-Diaz, J. Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis. Pharmacol. Res. 2021, 167, 105471. [Google Scholar]
- Cheng, Y.-C.; Liu, J.-R. Effect of Lactobacillus rhamnosus GG on energy metabolism, leptin resistance, and gut microbiota in mice with diet-induced obesity. Nutrients 2020, 12, 2557. [Google Scholar]
- Jung, S.; Lee, Y.J.; Kim, M.; Kim, M.; Kwak, J.H.; Lee, J.-W.; Ahn, Y.-T.; Sim, J.-H.; Lee, J.H. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduced body adiposity and Lp-PLA2 activity in overweight subjects. J. Funct. Foods 2015, 19, 744–752. [Google Scholar]
- Kim, S.; Choi, S.-I.; Jang, M.; Jeong, Y.; Kang, C.-H.; Kim, G.-H. Anti-adipogenic effect of Lactobacillus fermentum MG4231 and MG4244 through AMPK pathway in 3T3-L1 preadipocytes. Food Sci. Biotechnol. 2020, 29, 1541–1551. [Google Scholar] [PubMed]
- Kim, S.; Choi, S.-I.; Jang, M.; Jeong, Y.-A.; Kang, C.-H.; Kim, G.-H. Combination of Limosilactobacillus fermentum MG4231 and MG4244 attenuates lipid accumulation in high-fat diet-fed obese mice. Benef. Microbes 2021, 12, 479–491. [Google Scholar] [PubMed]
- Lim, S.; Moon, J.H.; Shin, C.M.; Jeong, D.; Kim, B. Effect of lactobacillus sakei, a probiotic derived from kimchi, on body fat in koreans with obesity: A randomized controlled study. Endocrinol. Metab. 2020, 35, 425–434. [Google Scholar]
- Minami, J.; Iwabuchi, N.; Tanaka, M.; Yamauchi, K.; Xiao, J.-z.; Abe, F.; Sakane, N. Effects of Bifidobacterium breve B-3 on body fat reductions in pre-obese adults: A randomized, double-blind, placebo-controlled trial. Biosci. Microbiota Food Health 2018, 37, 67–75. [Google Scholar]
- Pinart, M.; Dötsch, A.; Schlicht, K.; Laudes, M.; Bouwman, J.; Forslund, S.K.; Pischon, T.; Nimptsch, K. Gut microbiome composition in obese and non-obese persons: A systematic review and meta-analysis. Nutrients 2021, 14, 12. [Google Scholar]
- Schütz, F.; Figueiredo-Braga, M.; Barata, P.; Cruz-Martins, N. Obesity and gut microbiome: Review of potential role of probiotics. Porto Biomed. J. 2021, 6, e111. [Google Scholar] [PubMed]
- Armougom, F.; Henry, M.; Vialettes, B.; Raccah, D.; Raoult, D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS ONE 2009, 4, e7125. [Google Scholar]
- Santacruz, A.; Collado, M.C.; Garcia-Valdes, L.; Segura, M.; Martin-Lagos, J.; Anjos, T.; Martí-Romero, M.; Lopez, R.; Florido, J.; Campoy, C. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 2010, 104, 83–92. [Google Scholar] [PubMed]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.-M.; Kennedy, S. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef] [PubMed]
Variable | MED-02 (n = 38) | Placebo (n = 37) | p-Value |
---|---|---|---|
Sex (M/F) | 21/17 | 24/13 | 0.396 C |
Age | 43.34 ± 9.94 | 44.59 ± 9.77 | 0.584 T |
Drinker (Y/N) | 24/14 | 24/13 | 0.924 F |
Smoker (Y/N) | 6/32 | 9/28 | 0.848 F |
Physical activity (MET-min/week) | 4647.65 ± 4767.41 | 4980.59 ± 5468.15 | 0.980 W |
Energy intake (kcal/day) | 1482.51 ± 431.51 | 1610.41 ± 473.68 | 0.225 T |
Carbohydrate (g) % of energy intake | 201.22 ± 69.43 55.39 ±11.46 | 211.13 ± 72.80 54.37 ± 10.75 | 0.548 T 0.870 T |
Protein (g) % of energy intake | 64.73 ± 23.11 17.11 ± 4.33 | 67.01 ± 24.29 16.42 ± 3.47 | 0.678 T 0.394 T |
Fat (g) % of energy intake | 44.04 ± 19.57 23.75 ± 8.69 | 49.55 ± 17.36 24.32 ± 5.88 | 0.201 T 0.233 T |
Fiber (g) | 15.46 ± 5.89 | 15.89 ± 5.44 | 0.740 T |
Variable | MED-02 (n = 38) | p- Value a | Placebo (n = 37) | p- Value a | p- Value b | ||||
---|---|---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | Change (12 Weeks–Baseline) | Baseline | 12 Weeks | Change (12 Weeks–Baseline) | ||||
Anthropometric parameters | |||||||||
BMI (kg/m2) | 27.27 ± 1.91 | 26.57 ± 2.05 | −0.70 ± 0.73 | <0.001 | 28.15 ± 1.99 | 27.71 ± 1.98 | −0.44 ± 0.60 | <0.001 | 0.064 |
Waist (cm) | 90.08 ± 7.93 | 87.78 ± 7.50 | −2.30 ± 2.29 | <0.001 | 92.42 ± 7.45 | 90.38 ± 7.35 | −2.04 ± 2.43 | <0.001 | 0.594 |
Hip (cm) | 101.63 ± 4.63 | 99.45 ± 4.22 | −2.18 ± 1.83 | <0.001 | 102.68 ± 4.89 | 101.22 ± 4.98 | −1.46 ± 1.95 | <0.001 | 0.290 |
Waist-to-hip ratio | 0.89 ± 0.06 | 0.88 ± 0.05 | −0.00 ± 0.02 | 0.176 | 0.90 ± 0.05 | 0.89 ± 0.05 | −0.01 ± 0.02 | 0.015 | 0.750 |
DEXA measurement | |||||||||
Lean body mass (g) | 47,111.29 ± 8935.15 | 46,708.24 ± 8574.14 | −403.05 ± 1313.36 | 0.066 | 48,670.22 ± 8625.62 | 48,210.81 ± 8725.14 | −459.41 ± 1117.33 | 0.017 | 0.590 |
CT measurement | |||||||||
Visceral fat area (cm2) | 112.59 ± 48.49 | 101.16 ± 40.72 | −11.43 ± 24.25 | 0.006 | 132.64 ± 55.79 | 126.86 ± 53.79 | −5.78 ± 25.06 | 0.169 | 0.304 |
Subcutaneous fat area (cm2) | 219.44 ± 66.68 | 211.14 ± 66.32 | −8.29 ± 31.09 | 0.109 | 222.93 ± 61.56 | 212.26 ± 66.88 | −10.67 ± 33.29 | 0.059 | 0.538 |
Total abdominal fat area (cm2) | 332.03 ± 86.32 | 312.30 ± 85.89 | −19.73 ± 38.66 | 0.003 | 355.57 ± 84.34 | 339.12 ± 88.29 | −16.45 ± 36.86 | 0.010 | 0.873 |
Visceral-to-subcutaneous fat ratio | 0.55 ± 0.30 | 0.51 ± 0.23 | −0.04 ± 0.16 | 0.117 | 0.64 ± 0.31 | 0.65 ± 0.31 | 0.01 ± 0.16 | 0.760 | 0.149 |
Blood chemistry | |||||||||
Total cholesterol (mg/dL) | 200.00 ± 29.89 | 197.79 ± 31.92 | −2.21 ± 19.60 | 0.491 | 201.89 ± 30.17 | 204.45 ± 31.10 | 2.55 ± 22.30 | 0.490 | 0.254 |
HDL-cholesterol (mg/dL) | 56.16 ± 12.61 | 54.82 ± 11.03 | −1.34 ± 7.02 | 0.246 | 54.51 ± 11.96 | 53.97 ± 10.71 | −0.54 ± 6.04 | 0.589 | 0.989 |
LDL-cholesterol (mg/dL) | 125.79 ± 25.09 | 125.37 ± 29.06 | −0.42 ± 17.77 | 0.885 | 126.95 ± 25.73 | 129.22 ± 22.86 | 2.27 ± 18.46 | 0.459 | 0.375 |
Triglyceride (mg/dL) | 132.68 ± 89.59 | 118.39 ± 58.60 | −14.29 ± 51.88 | 0.098 | 156.57 ± 99.33 | 147.08 ± 78.09 | −9.49 ± 80.63 | 0.479 | 0.862 |
hs-CRP | 0.15 ± 0.27 | 0.10 ± 0.10 | −0.05 ± 0.28 | 0.283 | 0.15 ± 0.22 | 0.14 ± 0.14 | −0.01 ± 0.18 | 0.740 | 0.611 |
Adiponectin (µg/mL) | 11.27 ± 7.37 | 9.38 ± 4.97 | −1.89 ± 4.43 | 0.012 | 9.06 ± 5.16 | 7.81 ± 3.98 | −1.25 ± 2.48 | 0.004 | 0.561 |
Leptin (ng/mL) | 13.07 ± 7.80 | 13.32 ± 8.31 | 0.25 ± 5.95 | 0.796 | 13.55 ± 8.03 | 14.47 ± 7.77 | 0.92 ± 4.48 | 0.221 | 0.500 |
Variable | MED-02 (n = 50) | Placebo (n = 50) | p-Value | ||
---|---|---|---|---|---|
Baseline | 12 Weeks | Baseline | 12 Weeks | ||
AST (IU/L) | 22.40 ± 5.74 | 21.33 ± 5.72 | 26.06 ± 8.03 | 26.04 ± 14.86 | 0.439 W |
ALT (IU/L) | 21.14 ± 11.48 | 19.74 ± 11.62 | 31.06 ± 21.28 | 30.53 ± 19.76 | 0.930 W |
ALP (IU/L) | 62.28 ± 12.72 | 71.48 ± 16.36 | 62.13 ± 12.48 | 72.23 ± 16.06 | 0.603 |
γ-GTP | 26.06 ± 27.66 | 20.91 ± 14.80 | 32.82 ± 27.96 | 32.40 ± 27.73 | 0.464 W |
Glucose (mg/dL) | 102.48 ± 10.03 | 100.93 ± 8.87 | 101.76 ± 8.69 | 100.47 ± 9.66 | 0.976 |
Total bilirubin (mg/dL) | 0.77 ± 0.38 | 0.76 ± 0.28 | 0.74 ± 0.36 | 0.77 ± 0.34 | 0.360 |
Creatinine (mg/dL) | 0.76 ± 0.16 | 0.77 ± 0.17 | 0.80 ± 0.18 | 0.82 ± 0.20 | 0.445 |
BUN (mg/dL) | 13.96 ± 4.24 | 13.18 ± 2.96 * | 13.74 ± 3.86 | 13.34 ± 3.01 | 0.797 W |
Uric acid (mg/dL) | 5.69 ± 1.20 | 5.62 ± 1.26 | 6.23 ± 1.52 | 6.29 ± 1.68 | 0.576 |
RBC (106/µL) | 4.80 ± 0.47 | 4.78 ± 0.47 | 5.02 ± 0.54 | 4.99 ± 0.56 | 0.648 W |
Hb (g/dL) | 14.31 ± 1.49 | 14.18 ± 1.50 | 14.73 ± 1.65 | 14.80 ± 1.54 | 0.529 |
Hct (%) | 42.97 ± 3.74 | 42.63 ± 3.99 | 44.16 ± 4.12 | 44.17 ± 4.19 | 0.737 |
WBC (103/µL) | 6.11 ± 1.57 | 6.04 ± 1.30 | 6.46 ± 1.41 | 6.38 ± 1.27 | 0.727 W |
Platelet (103/µL) | 264.00 ± 43.73 | 263.80 ± 42.63 | 273.28 ± 52.20 | 272.66 ± 54.58 | 0.560 |
Neutrophil (%) | 54.81 ± 8.99 | 53.94 ± 7.78 | 54.69 ± 8.65 | 53.15 ± 8.21 | 0.990 |
Lymphocyte (%) | 35.00 ± 7.99 | 35.81 ± 7.22 | 35.36 ± 8.06 | 37.02 ± 7.62 | 0.768 |
Monocyte (%) | 6.75 ± 1.64 | 6.90 ± 1.46 | 6.90 ± 1.60 | 7.00 ± 1.54 | 0.895 |
Systolic blood pressure (mmHg) | 132.38 ± 12.26 | 128.35 ± 7.88 * | 135.00 ± 11.42 | 129.79 ± 12.06 * | 0.687 |
Diastolic blood pressure (mmHg) | 81.58 ± 8.02 | 79.63 ± 6.56 | 82.56 ± 7.38 | 80.19 ± 8.66 | 0.814 |
Pulse (times/min) | 78.42 ± 9.50 | 74.20 ± 9.51 * | 78.76 ± 11.66 | 76.49 ± 10.64 | 0.482 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.G.; Yang, Y.J.; Yoon, Y.S.; Lee, E.S.; Lee, J.H.; Jeong, Y.; Kang, C.H. Effect of MED-02 Containing Two Probiotic Strains, Limosilactobacillus fermentum MG4231 and MG4244, on Body Fat Reduction in Overweight or Obese Subjects: A Randomized, Multicenter, Double-Blind, Placebo-Controlled Study. Nutrients 2022, 14, 3583. https://doi.org/10.3390/nu14173583
Cho YG, Yang YJ, Yoon YS, Lee ES, Lee JH, Jeong Y, Kang CH. Effect of MED-02 Containing Two Probiotic Strains, Limosilactobacillus fermentum MG4231 and MG4244, on Body Fat Reduction in Overweight or Obese Subjects: A Randomized, Multicenter, Double-Blind, Placebo-Controlled Study. Nutrients. 2022; 14(17):3583. https://doi.org/10.3390/nu14173583
Chicago/Turabian StyleCho, Young Gyu, Yun Jun Yang, Yeong Sook Yoon, Eon Sook Lee, Jun Hyung Lee, Yulah Jeong, and Chang Ho Kang. 2022. "Effect of MED-02 Containing Two Probiotic Strains, Limosilactobacillus fermentum MG4231 and MG4244, on Body Fat Reduction in Overweight or Obese Subjects: A Randomized, Multicenter, Double-Blind, Placebo-Controlled Study" Nutrients 14, no. 17: 3583. https://doi.org/10.3390/nu14173583
APA StyleCho, Y. G., Yang, Y. J., Yoon, Y. S., Lee, E. S., Lee, J. H., Jeong, Y., & Kang, C. H. (2022). Effect of MED-02 Containing Two Probiotic Strains, Limosilactobacillus fermentum MG4231 and MG4244, on Body Fat Reduction in Overweight or Obese Subjects: A Randomized, Multicenter, Double-Blind, Placebo-Controlled Study. Nutrients, 14(17), 3583. https://doi.org/10.3390/nu14173583