Genetic Variants in One-Carbon Metabolism and Their Effects on DHA Biomarkers in Pregnant Women: A Post-Hoc Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Genotyping and Analytical Measurements
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Study Outcomes
3.2.1. PEMT rs4646343
3.2.2. MTHFD1 rs2236225
3.2.3. PEMT rs7946
3.2.4. BHMT rs3733890
3.2.5. MTHFR rs11081133
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wainwright, P.E. Dietary essential fatty acids and brain function: A developmental perspective on mechanisms. Proc. Nutr. Soc. 2002, 61, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Innis, S.M. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008, 1237, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Nevins, J.E.H.; Donovan, S.M.; Snetselaar, L.; Dewey, K.G.; Novotny, R.; Stang, J.; Taveras, E.M.; Kleinman, R.E.; Bailey, R.L.; Ramkripa, R.; et al. Omega-3 Fatty Acid Dietary Supplements Consumed During Pregnancy and Lactation and Child Neurodevelopment: A Systematic Review. J. Nutr. 2021, 151, 3483–3494. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Cetin, I.; Brenna, J.T. Perinatal Lipid Intake Working Group, Child Health Foundation, Diabetic Pregnancy Study Group, European Association of Perinatal Medicine, European Society for Clinical Nutrition and Metabolism, European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition, International Federation of Placenta Associations, International Society for Study of Fatty Acids and Lipids. Dietary fat intakes for pregnant and lactating women. Br. J. Nutr. 2007, 98, 873–877. [Google Scholar] [PubMed]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. 2018, 11, CD003402. [Google Scholar] [CrossRef] [PubMed]
- DeLong, C.J.; Shen, Y.J.; Thomas, M.J.; Cui, Z. Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J. Biol. Chem. 1999, 274, 29683–29688. [Google Scholar] [CrossRef] [PubMed]
- West, A.A.; Yan, J.; Jiang, X.; Perry, C.A.; Innis, S.M.; Caudill, M.A. Choline intake influences phosphatidylcholine DHA enrichment in nonpregnant women but not in pregnant women in the third trimester. Am. J. Clin. Nutr. 2013, 97, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Klatt, K.C.; McDougall, M.Q.; Malysheva, O.V.; Taesuwan, S.; Devapatla, S.; Vidavalur, R.; Bender, E.; Jackson, C.H.; Harris, W.S.; Nevins, J.E.H.; et al. Prenatal choline supplementation improves biomarkers of maternal docosahexaenoic acid status: A randomized controlled trial. Am. J. Clin. Nutr. 2022, 116, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Ganz, A.B.; Cohen, V.V.; Swersky, C.C.; Stover, J.; Vitiello, G.A.; Lovesky, J.; Chuang, J.C.; Shields, K.; Fomin, V.G.; Lopez, Y.S.; et al. Genetic variation in choline-metabolizing enzymes alters choline metabolism in young women consuming choline intakes meeting current recommendations. Int. J. Mol. Sci. 2017, 18, 252. [Google Scholar] [CrossRef] [PubMed]
- Guinotte, C.L.; Burns, M.G.; Axume, J.A.; Hata, H.; Urrutia, T.F.; Alamilla, A.; McCabe, D.; Singgih, A.; Cogger, E.A.; Caudill, M.A. Methylenetetrahydrofolate reductase 677C-->T variant modulates folate status response to controlled folate intakes in young women. J. Nutr. 2003, 133, 1272–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, A.B.; Shields, K.; Fomin, V.G.; Lopez, Y.S.; Mohan, S.; Lovesky, J.; Chuang, J.C.; Ganti, A.; Carrier, B.; Yan, J.; et al. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. FASEB 2016, 30, 3321–3333. [Google Scholar] [CrossRef] [PubMed]
- Caudill, M.A.; Klatt, K.C. Folate, choline, vitamin B12 and vitamin B6. In Biochemical, Physiological, & Molecular Aspects of Human Nutrition, 4th ed.; Elsevier Saunders: St. Louis, MO, USA, 2018; pp. 614–658. [Google Scholar]
- Chalil, A.; Kitson, A.P.; Aristizabal Henao, J.J.; Marks, K.A.; Elzinga, J.L.; Lamontagne-Kam, D.M.; Chalil, D.; Badoud, F.; Mutch, D.M.; Stark, K.D. PEMT, Δ6 desaturase, and palmitoyldocosahexaenoyl phosphatidylcholine are increased in rats during pregnancy. J. Lipid Res. 2018, 59, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Watkins, S.M.; Zhu, X.; Zeisel, S.H. Phosphatidylethanolamine-N-methyltransferase activity and dietary choline regulate liver-plasma lipid flux and essential fatty acid metabolism in mice. J. Nutr. 2003, 133, 3386–3391. [Google Scholar] [CrossRef] [PubMed]
- Resseguie, M.; Song, J.; Niculescu, M.D.; da Costa, K.A.; Randall, T.A.; Zeisel, S.H. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. FASEB J. 2007, 21, 2622–2632. [Google Scholar] [CrossRef] [PubMed]
- Resseguie, M.; da Costa, K.A.; Galanko, J.A.; Patel, M.; Davis, I.J.; Zeisel, S.H. Aberrant estrogen regulation of PEMT results in choline deficiency-association liver dysfunction. J. Biol. Chem. 2011, 286, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.E.; Rohlicek, C.V.; Andelfinger, G.U.; Michaud, J.; Bigras, J.L.; Richter, A.; Mackenzie, R.E.; Rozen, R. The MTHFD1 p.Arg653Gln variant alters enzyme function and increases risk for congenital heart defects. Hum. Mutat. 2009, 30, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Field, M.S.; Shields, K.S.; Abarinov, E.V.; Malysheva, O.V.; Allen, R.H.; Stabler, S.P.; Ash, J.A.; Strupp, B.J.; Stover, P.J.; Caudill, M.A. Reduced MTHFD1 activity in male mice perturbs folate- and choline-dependent one-carbon metabolism as well as transsulfuration. J. Nutr. 2012, 143, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, R.; Bascuñán, K.A.; Barrera, C.; Sandoval, J.; Puigrredon, C.; Valenzuela, R. Reduced n − 3 and n − 6 PUFA (DHA and AA) Concentrations in Breast Milk and Erythrocytes Phospholipids during Pregnancy and Lactation in Women with Obesity. Int. J. Environ. Res. Public Health 2022, 19, 1930. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, D.; Muñoz, Y.; Ortiz, M.; Maliqueo, M.; Chouinard-Watkins, R.; Valenzuela, R. Impact of Maternal Obesity on the Metabolism and Bioavailability of Polyunsaturated Fatty Acids during Pregnancy and Breastfeeding. Nutrients 2020, 13, 19. [Google Scholar] [CrossRef] [PubMed]
Genotype | Control | Intervention |
---|---|---|
PEMT rs4646343 (Maternal) | ||
Non-variant | 5 | 4 |
Variant | 10 | 11 |
PEMT rs4646343 (Newborn) | ||
Non-variant | 6 | 5 |
Variant | 9 | 8 |
PEMT rs7946 (Maternal) | ||
Non-variant | 5 | 8 |
Variant | 10 | 7 |
PEMT rs7946 (Newborn) 2 | ||
Non-variant | 6 | 6 |
Variant | 8 | 7 |
BHMT rs3733890 (Maternal) | ||
Non-variant | 7 | 9 |
Variant | 8 | 6 |
BHMT rs3733890 (Newborn) | ||
Non-variant | 8 | 8 |
Variant | 7 | 5 |
MTHFD1 rs2236225 (Maternal) | ||
Non-variant | 4 | 3 |
Variant | 11 | 12 |
MTHFD1 rs2236225 (Newborn) | ||
Non-variant | 7 | 4 |
Variant | 8 | 9 |
MTHFR rs11081133 (Maternal) | ||
Non-variant | 9 | 9 |
Variant | 6 | 6 |
MTHFR rs11081133 (Newborn) 2 | ||
Non-variant | 8 | 5 |
Variant | 7 | 7 |
PEMT rs4646343 | PEMT rs7946 | BHMT rs3733890 | MTHFD1 rs2236225 | MTHFR rs11081133 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Non- Variant (n = 9) | Variant (n = 21) | Non- Variant (n = 13) | Variant (n = 17) | Non- Variant (n = 7) | Variant (n = 23) | Non- Variant (n = 13) | Variant (n = 17) | Non- Variant (n = 7) | Variant (n = 23) | |
Intervention | ||||||||||
Control | 5 | 10 | 5 | 10 | 4 | 11 | 5 | 10 | 4 | 11 |
Intervention | 4 | 11 | 8 | 7 | 3 | 12 | 8 | 7 | 3 | 12 |
Age, y [mean (SD)] | 31.6 (2.9) | 31.9 (5.2) | 33.9 (3.0) | 33.9 (3.0) | 31.4 (4.0) | 31.8 (4.0) | 31.0 (4.3) | 32.3 (3.6) | 31.4 (4.0) | 31.8 (4.0) |
Maternal Race | ||||||||||
White | 8 | 20 | 12 | 16 | 7 | 21 | 12 | 16 | 7 | 21 |
Non-White | 1 | 1 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 2 |
Maternal Ethnicity | ||||||||||
Non-Hispanic | 7 | 21 | 12 | 16 | 6 | 22 | 12 | 16 | 6 | 22 |
Hispanic | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Pre-Pregnancy BMI [mean (SD)] | 23.6 (3.7) | 23.9 (3.4) | 23.3 (2.7) | 23.3 (2.7) | 23.9 (2.7) | 23.6 (3.8) | 23.2 (3.2) | 24.1 (3.7) | 23.9 (2.7) | 23.6 (3.8) |
Gestational Age, week [mean (SD)] | 13.1 (2.5) | 13.8 (1.9) | 14.1 (1.8) | 14.1 (1.8) | 13.6 (1.4) | 13.3 (2.5) | 12.5 (2.8) | 14.0 (1.6) | 13.6 (1.4) | 13.3 (2.5) |
Baseline RBC-DHA, % fatty acids [mean (SD)] | 5.9 (0.9) | 6.2 (1.0) | 6.1 (1.1) | 6.1 (1.1) | 5.6 (1.1) | 6.1 (0.8) | 5.9 (0.7) | 6.1 (1.0) | 5.6 (1.1) | 6.1 (0.8) |
Baseline plasma DHA, μg/mL [mean (SD)] | 88 (20) | 90 (30) | 91 (33) | 91 (33) | 78 (9) | 92 (26) | 82 (13) | 94 (29) | 78 (9) | 92 (26) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loinard-González, A.P.; Malysheva, O.V.; Klatt, K.C.; Caudill, M.A. Genetic Variants in One-Carbon Metabolism and Their Effects on DHA Biomarkers in Pregnant Women: A Post-Hoc Analysis. Nutrients 2022, 14, 3801. https://doi.org/10.3390/nu14183801
Loinard-González AP, Malysheva OV, Klatt KC, Caudill MA. Genetic Variants in One-Carbon Metabolism and Their Effects on DHA Biomarkers in Pregnant Women: A Post-Hoc Analysis. Nutrients. 2022; 14(18):3801. https://doi.org/10.3390/nu14183801
Chicago/Turabian StyleLoinard-González, Aura (Alex) P., Olga V. Malysheva, Kevin C. Klatt, and Marie A. Caudill. 2022. "Genetic Variants in One-Carbon Metabolism and Their Effects on DHA Biomarkers in Pregnant Women: A Post-Hoc Analysis" Nutrients 14, no. 18: 3801. https://doi.org/10.3390/nu14183801
APA StyleLoinard-González, A. P., Malysheva, O. V., Klatt, K. C., & Caudill, M. A. (2022). Genetic Variants in One-Carbon Metabolism and Their Effects on DHA Biomarkers in Pregnant Women: A Post-Hoc Analysis. Nutrients, 14(18), 3801. https://doi.org/10.3390/nu14183801