What Are the Effects of Vitamin A Oral Supplementation in the Prevention and Management of Viral Infections? A Systematic Review of Randomized Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Search Strategy
2.3. Data Collection and Synthesis
3. Results
3.1. Characteristics of the Included Studies by Virus Family
Virus Family | Author, Year | Country | Study Design | Population | VA Status at Baseline (Serum Retinol) * | VA Form and Dose | Frequency of VA Administration | Follow-Up Time | Risk of Bias |
---|---|---|---|---|---|---|---|---|---|
Retroviridae | Coutsoudis, 1995 [21] | South Africa | RCT | 28 HIV-1 infected children born from HIV-1 infected women | NA | OA of retinyl palmitate: <3 months: 50,000 IU 3–12 months: 100,000 IU ≥12 months: 200,000 IU | One dose at month 1, 3, 6, 9 and 12 | 97 months | SC |
Coutsoudis, 1997 [22] (#) | South Africa | RCT | 24 HIV-1 infected pregnant women | NA | OA of retinyl palmitate: 5000 IU and 200,000 IU | One dose every day and at delivery | 1 week after delivery | SC | |
Coutsoudis, 1999 [23] (#) | 661 HIV-1 infected pregnant women | 30.6% of women < 20 μg/dL | 3 months after delivery | SC | |||||
Kennedy, 2000 [27] (#) Kennedy-Oji, 2001 [24] (#) | 312 HIV-1 infected pregnant women | 66% of women < 30 μg/dL 37% of women < 20 μg/dL | SC SC | ||||||
Semba, 1998 [28] | United States | RCT | 120 HIV-1 infected drug users | 18.3% of patients < 1.05 μmol/L | OA of retinyl palmitate: 200,000 IU | One dose at baseline | 4 weeks | Low | |
Humphrey, 1999 [29] | United States | RCT | 41 HIV-1 infected women aged 18–45 years | 9.8% of women < 1.05 μmol/L | OA of retinyl palmitate: 300,000 IU | One dose at baseline | 4 weeks | SC | |
Baeten, 2002 [35] (§) | Kenya | RCT | 400 HIV-1 infected women aged 18–45 years | 58.5% of women < 30 μg/dL | OA of retinyl palmitate: 10,000 IU | One dose every day for 6 weeks | 6 weeks | SC | |
Baeten, 2004 [36] (§) | 376 women aged 18–45 years coinfected with HIV-1 and HSV-2 | 58.2% of women < 30 μg/dL | SC | ||||||
Villamor, 2002 (a) [30] (δ) | Tanzania | RCT | 1078 HIV-1 infected pregnant women | Mean value: 84–90 μmol/L | OA of retinyl palmitate: 5000 IU and 200,000 IU | One dose every day and at delivery | Until delivery | Low | |
Fawzi, 2004 (a) [33] (δ) | 1078 HIV-1 infected pregnant women | Mean value: 85–88 μmol/L | 72 months | Low | |||||
Fawzi, 2004 (b) [32] (δ) | 852 HIV-1 infected pregnant women | Mean value: 25.1–26.5 μg/dL | Until delivery | Low | |||||
Webb, 2009 [34] (δ) | 626 HIV-1 infected pregnant women | Mean value: 82–89 μmol/L | 12 months after delivery | Low | |||||
Villamor, 2002 (b) [31] | Tanzania | RCT | 47 HIV-1 infected children aged 6–60 months hospitalized for pneumonia | NA | OA of retinyl palmitate: <12 months: 100,000 IU ≥12 months: 200,000 IU | One dose on day 1, 2, at 4 and 8 months | 12 months | SC | |
Semba, 2005 [37] | Uganda | RCT | 181 HIV-1 infected children aged 15 months | Mean value: 56–58 μmol/L | OA of 60 mg of retinol equivalent | One dose every 3 months for 9 months | 21 months | Low | |
Humphrey, 2006 [25] | South Africa | RCT | 2,266 children born from HIV-1 infected women | Mean value: 94–1.01 μmol/L | OA of retinyl palmitate: 50,000 IU | One dose at delivery | 24 months | High | |
Zvandasara, 2006 [26] | South Africa | RCT | 4,495 HIV-1 infected women post-partum | 9.2% of women < 1.05 μmol/L | OA of retinyl palmitate: 400,000 IU | One dose at delivery | 24 months | SC | |
Caliciviridae | Long, 2007 [43] Long, 2011 [44] | Mexico | RCT | 127 healthy children aged 5–15 months | NA | OA of retinyl palmitate: <12 months: 20,000 IU ≥12 months: 45,000 IU | One dose every two months for 15 months | 15 months | SC SC |
Flaviviridae | Okita, 2014 [45] | Japan | RCT | 377 patients with hepatitis C virus-related hepatocellular carcinoma | NA | OA of peretinoin: 600 mg/day or 300 mg/day | One dose every day for 24 months | 48 months | Low |
Papillomaviridae | Georgala, 2004 [46] | Greece | RCT | 60 women aged 21–43 years with RCA of the cervix | NA | OA of isotretinoin: 0.5 mg/kg/day | One dose every day for 3 months | 3 months | High |
Olguin-Garcıa, 2014 [47] | Mexico | RCT | 31 patients with recalcitrant facial flat warts | NA | OA of isotreninoin: 30 mg/day | One dose every day for 3 months | 3 months | SC | |
Kaur, 2017 [48] | India | RCT | 40 patients with multiple plane warts | NA | OA of isotretinoin: 0.5 mg/kg/day TA of isotretinoin: 0.05% per day | One dose every day for 3 months or until lesion clearance | 4 months | High | |
Pneumoviridae | Pinnock, 1988 [42] | Australia | RCT | 206 children aged 2–7 years with past RSV infection during infancy | Mean value: 37–40.8 μg/dL | OA of retinyl palmitate: 2000 IU | One dose every week for 12 months | 12 months | High |
Breese, 1996 [40] | United States | RCT | 239 children aged 1 month-6 years hospitalized with RSV infection | Mean value: 21.5–22.5 μg/dL | OA of retinyl palmitate: 1–5 months: 50,000 IU 6–11 months: 100,000 IU ≥12 months: 200,000 IU | One dose at hospital admission | Until hospital discharge | SC | |
Dowell, 1996 [41] | Chile | RCT | 180 children aged 1 month-6 years hospitalized with RSV infection | Mean value: 23–24 μg/dL | OA of retinyl palmitate: 1–5 months: 50,000 IU 6–11 months: 100,000 IU ≥12 months: 200,000 IU | One dose at hospital admission | Until hospital discharge | SC | |
Quinlan, 1996 [49] | United States | RCT | 32 children aged 2 months-5 years hospitalized with RSV infection | ∼50% of children < 0.70 μmol/L | OA of retinyl palmitate: 100,000 IU | One dose at hospital admission | Until hospital discharge | High | |
Paramyxoviridae | Barclay, 1987 [50] | Tanzania | RCT | 180 children with severe measles admitted to hospital | 91% of children < 0.51 μmol/L | OA of retinyl palmitate: 200,000 IU | One dose at hospital admission and on day 2 | Until hospital discharge | Low |
Hussey, 1990 [56] | South Africa | RCT | 189 children with severe measles admitted to hospital | 92% of children < 0.70 μmol/L | OA of retinyl palmitate: 400,000 IU | Half dose at hospital admission and on day 2 | Until hospital discharge | Low | |
Rahmathullah, 1990 [57] | India | CRT | 15,419 children aged 6–60 months | 37.5% of children < 0.70 μmol/L | OA of retinyl palmitate: 8333 IU | One dose every week for 12 months | 12 months | Low | |
Coutsoudis, 1991 [51] Coutsoudis, 1992 [52] | South Africa | RCT | 60 children aged 4 months-2 years with severe measles admitted to hospital | 90% of children < 0.70 μmol/L | OA of retinyl palmitate: <12 months: 100,000 IU ≥12 months: 200,000 IU | One dose at hospital admission, on day 2, day 8 and day 42 | 6 months | Low Low | |
Ogaro, 1993 [53] | Kenya | RCT | 294 children aged < 5 years with severe measles admitted to hospital | 21% of children < 20 μg/dL | OA of retinyl palmitate: 1–5 months: 50,000 IU 6–11 months: 100,000 IU ≥12 months: 200,000 IU | One dose at hospital admission | Until hospital discharge | SC | |
Agarwal, 1995 [58] | India | CRT | 15,247 children aged < 6 years | NA | OA of retinyl palmitate: 1–6 months: 50,000 IU 7–72 months: 100,000 IU | One dose every 4 months for 12 months | 24 months | High | |
Rosales, 1996 [38] Rosales, 2002 [39] | Zambia | RCT | 196 children aged 5–17 years with acute measles not requiring hospitalization | 100% of children < 20 μg/dL | OA of retinol: 210 µmol retynil esters | One dose at baseline | 1 month | SC SC | |
Dollimore, 1997 [60] | Ghana | C-RCT | 25,443 healthy children aged >6 months | NA | OA of retinyl palmitate: <12 months: 100,000 IU ≥12 months: 200,000 IU | One dose every 4 months for 24 months | 24 months | Low | |
Benn, 2008 [54] Diness, 2011 [55] | Guinea-Bissau | RCT | 4345 healthy newborns | NA | OA of retinyl palmitate: 50,000 IU | One dose at birth | 12 months | SC SC | |
Awasthi, 2013 [59] | India | CRT | 1,000,000 children aged < 6 years | NA | OA of retinyl acetate: 200,000 IU | One dose every 6 months for 60 months | 60 months | SC |
3.2. Main Findings by Virus Family
3.2.1. Retroviridae
3.2.2. Caliciviridae
3.2.3. Flaviviridae
3.2.4. Papillomaviridae
Author, Year | Intervention | Management | Side Effects | ||
---|---|---|---|---|---|
Virological Response | Immunological Response | Clinical Response/Others | |||
Coutsoudis, 1995 [21] | Group I: VA Group II: placebo | NA | NA | Significant lower diarrhea incidence in Group I Non-significant difference in diarrhea duration, respiratory infections, rash, and mean weight gain Non-significant difference in overall morbidity | NA |
Coutsoudis, 1997 [22] (#) | Group I: VA Group II: placebo | Non-significant difference in HIV-1 plasma viral load | NA | NA | NA |
Coutsoudis, 1999 [23] (#) | NA | NA | Significant lower incidence of preterm births in Group I Non-significant difference in mean birth weight | NA | |
Kennedy, 2000 [27] (#) Kennedy-Oji, 2001 [24] (#) | NA | Non-significant difference in CD4 cell count | Non-significant difference in hemoglobin concentration Non-significant difference in the frequency of HIV-related symptoms Non-significant difference in maternal weight gain Significant higher retention of post-partum weight gain in Group I | NA | |
Semba, 1998 [28] | Group I: VA Group II: placebo | Non-significant difference in HIV-1 plasma viral load | Non-significant difference in CD4 cell count | NA | NA |
Humphrey, 1999 [29] | Group I: VA Group II: placebo | Non-significant difference in HIV-1 plasma viral load (as mean, median and change) at each time point | Non-significant difference in median percentage of CD4 cells and of CD8 cells that are CD38+ at each time point | NA | Non-significant difference |
Baeten, 2002 [35] (§) | Group I: VA Group II: placebo | Non-significant difference in median vaginal and plasma HIV-1 viral load | Non-significant difference in CD4 and CD8 cell count | NA | NA |
Baten, 2004 [36] (§) | Group I: VA Group II: placebo Only women with CD4 >200 cells/mm3: Subgroup I: VA Subgroup II: placebo | Non-significant difference in the detection of genital HSV DNA or mean HSV DNA load between Group I and Group II and between Subgroup I and Subgroup II | NA | Non-significant difference in genital ulceration between Group I and II | NA |
Villamor, 2002 (a) [30] (δ) | Group I: VA + BC Group II: MVI without VA Group III: MVI with VA+ BC Group IV: placebo | NA | NA | Non-significant difference in maternal weight gain outcomes overall or during the third trimester Significant lower risk of low total weight gain in Group I + III vs. Group II | NA |
Fawzi, 2004 (a) [33] (δ) | NA | NA | Non-significant difference in progression to stage 4 or death from AIDS-related causes between Group I and IV Non-significant difference in risk of thrush, oral ulcers, painful tongue or mouth, and fatigue between Group I and IV Non-significant difference in risk of other oral or gastrointestinal manifestations between Group I and IV | NA | |
Fawzi, 2004 (b) [32] (δ) | Non-significant difference in HIV-1 plasma or genital viral load | Non-significant difference in IL-1b level | NA | NA | |
Webb, 2009 [34] (δ) | NA | NA | Significant higher concentration of breast milk retinol, b-carotene, and a-carotene in Group I vs. IV | NA | |
Villamor, 2002 (b) [31] | Group I: VA Group II: placebo | NA | NA | Significant greater height gain in Group I | NA |
Semba, 2005 [37] | Group I: VA Group II: placebo | NA | NA | Significant lower mortality in Group I Non-significant difference in the prevalence of diarrhea, cough fever, ear discharge, blood in stool, need for hospitalization | NA |
Humphrey, 2006 [25] | Group I: VA Group II: placebo | NA | NA | Significant higher infection-or-death rates in Group I at 12 months Non-significant difference in mortality rate at 24 months | NA |
Zvandasara, 2006 [26] | Group I: VA Group II: placebo | NA | NA | Non-significant difference in overall and cause-specific mortality Non-significant difference in the overall number of sick clinic visits Significant lower number of cause-specific clinic visits for malaria, vaginal infection, pelvic inflammatory diseases, and cracked or bleeding nipples Non-significant difference in need for hospitalization | NA |
Author, Year | Intervention | Prevention | Management | Side Effects | ||
---|---|---|---|---|---|---|
Virological Response | Immunological Response | Clinical Response/Others | ||||
Caliciviridae | ||||||
Long, 2007 [43] Long, 2011 [44] | Group I: VA Group II: placebo | Non-significant difference in incidence of NoV-GI infections Significant lower incidence in NoV-GII infections in Group I | Significant higher duration of NoV-GI and NoV-GII shedding in Group I | Significant higher fecal TNF-α and IL-4 concentration in Group I during NoV-GI infections Significant lower fecal MCP-1 and TNF-α concentration in Group I during NoV-GII infections | Significant lower incidence of all NoV-associated diarrheal disease and diarrhea associated with GI and GII infections in Group I Non-significant difference in the incidence of NoV-associated fever | NA |
Flaviviridae | ||||||
Okita, 2014 [45] | Group I: VA (600 mg) Group II: VA (300 mg) Group III: placebo | NA | NA | NA | Significant higher RFS in Group I vs. III Non-significant difference in RFS in Group II vs. III | Mild, moderate, or serious side effects in relation to VA dosage |
Papillomaviridae | ||||||
Georgala, 2004 [46] | Group I: VA Group II: placebo | NA | NA | NA | Significant higher clearance of cervical lesions in Group I | Mild or moderate side effects in Group I |
Olguin-Garcıa, 2014 [47] | Group I: VA Group II: placebo | NA | NA | NA | Significant higher clearance of facial lesions in Group I | Mild or moderate side effects in Group I |
Kaur, 2017 [48] | Group I: VA Group II: topical VA 0.05% in gel | NA | NA | NA | Significant greater clearance of lesions (number and timing) in Group I | Mild or moderate side effects in both groups |
Pneumoviridae | ||||||
Pinnock, 1988 [42] | Group I: VA Group II: placebo | Non-significant difference in number of episodes and duration of respiratory illness | NA | NA | NA | NA |
Breese, 1996 [40] | Group I: VA Group II: placebo | NA | NA | NA | Non-significant difference in oxygen requirement, need for steroids, ribavirin, ICU care or mechanical ventilation Significant longer hospital stay and lower proportion of patients discharged within 48 h in Group I | Non-significant difference in side effects occurrence |
Dowell, 1996 [41] | Group I: VA Group II: placebo | NA | NA | NA | Non-significant difference in duration of hospitalization, oxygen requirement and time to resolve hypoxemia Significant more rapid resolution of tachypnea and shorter duration of hospitalization in Group I among children with severe hypoxemia at admission | None |
Quinlan, 1996 [49] | Group I: VA Group II: placebo | NA | NA | NA | Non-significant difference in daily severity score, hospital stay, need for ICU care or oxygen requirement | None |
3.2.5. Pneumoviridae
3.2.6. Paramyxoviridae
Author, Year | Intervention | Prevention | Management | Side Effects | |
---|---|---|---|---|---|
Immunological Response | Clinical Response/Others | ||||
Barclay, 1987 [50] | Group I: VA Group II: placebo | NA | NA | Significant lower mortality in Group I | NA |
Hussey, 1990 [56] | Group I: VA Group II: placebo | NA | NA | Significant lower mortality in Group I Significant lower duration of pneumonia and diarrhea in Group I Significant lower measles croup occurrence in Group I Non-significant difference in airway intervention, herpes stomatitis occurrence, and need for intensive care | None |
Rahmathullah, 1990 [57] | Group I: VA + VE Group II: VE | Non-significant difference in measles-specific mortality | NA | NA | NA |
Coutsoudis, 1991 [51] Coutsoudis, 1992 [52] | Group I: placebo Group II: VA | NA | Significant higher measles IgG antibodies in Group II at day 8 and 42 Non-significant difference in IL-2 and complement values at day 2, day 8 and day 42 | Significant lower duration of pneumonia or recovery time in Group II at day 8 Significant lower IMS in Group II at day 8 Non-significant difference in duration of diarrhea or fever at day 8 Significant lower IMS in Group II at day 42 Significant higher weight gain in Group II at day 42 Significant lower IMS in Group II at 6 months Non-significant difference in weight gain at 6 months | NA |
Ogaro, 1993 [53] | Group I: VA + VE Group II: VE | NA | NA | Non-significant difference in overall occurrence of diarrhea, laryngotracheobronchitis, or pneumonia Significant lower occurrence of severe diarrhea in Group I Significant lower occurrence of otitis media in Group I Significant lower duration of diarrhea in Group I for those who had already it on admission Non-significant difference in mortality | NA |
Agarwal, 1995 [58] | Group I: VA + VE Group II: VE | Non-significant difference in measles-specific mortality | NA | NA | NA |
Rosales, 1996 [38] Rosales, 2002 [39] | Marginally VA-deficient children: Group I: VA Group II: placebo VA-sufficient children: Group III: VA Group IV: placebo | NA | Non-significant difference in serum CRP concentration | Significant lower risk of developing pneumonia in Group I + III Significant lower risk of relapsing in Group I + III Significant lower pneumonia occurrence in Group I vs. II Non-significant difference in pneumonia occurrence between Group III and IV | NA |
Dollimore, 1997 [60] | Group I: VA Group II: placebo | Non-significant difference in measles occurrence Non-significant difference in measles-specific mortality | NA | NA | NA |
Benn, 2008 [54] Diness, 2011 [55] | Group I: VA Group II: placebo | Non-significant difference in measles occurrence Non-significant difference in need for hospitalization or mortality for measles-related complications | NA | NA | NA |
Awasthi, 2013 [59] | Group I: VA Group II: albendazole Group III: VA + albendazole Group IV: placebo | Non-significant difference in measles-specific mortality | NA | NA | NA |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodman, S. Vitamin A and retinoids in health and disease. N. Engl. J. Med. 1984, 310, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Tang, G. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am. J. Clin. Nutr. 2010, 91, 1468–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ambrosio, D.N.; Clugston, R.D.; Blaner, W.S. Vitamin A metabolism: An update. Nutrients 2011, 3, 63–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villamor, E.; Fawzi, W.W. Effects of Vitamin A Supplementation on Immune Responses and Correlation with Clinical Outcomes. Clin. Microbiol. Rev. 2005, 18, 446–464. [Google Scholar] [CrossRef] [Green Version]
- Semba, R.D.; Caiaffa, W.T.; Graham, N.M.H.; Cohn, S.; Vlahov, D. Vitamin a deficiency and wasting as predictors of mortality in human immunodeficiency virus-infected injection drug users. J. Infect. Dis. 1995, 171, 1196–1202. [Google Scholar] [CrossRef]
- Green, H.N.; Mellanby, E. Vitamin A as an anti-infective agent. Br. Med. J. 1928, 2, 691–696. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.C.; Stephensen, C.B. Vitamin A and retinoids in antiviral responses. FASEB J. 1996, 10, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Timoneda, J.; Rodríguez-Fernández, L.; Zaragozá, R.; Marín, M.P.; Cabezuelo, M.T.; Torres, L.; Viña, J.R.; Barber, T. Vitamin A Deficiency and the Lung. Nutrients. 2018, 10, 1132. [Google Scholar] [CrossRef] [Green Version]
- Glasziou, P.P.; Mackerras, D.E.M. Vitamin A supplementation in infectious diseases: A meta-analysis. Br. Med. J. 1993, 306, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.K.; Hou, W.S. Retinoic acid modulates interferon-γ production by hepatic natural killer T cells via phosphatase 2A and the extracellular signal-regulated kinase pathway. J. Interf. Cytokine Res. 2015, 35, 200–212. [Google Scholar] [CrossRef] [Green Version]
- De Paolo, R.W.; Abadie, V.; Tang, F.; Fehlner-Peach, H.; Hall, J.A.; Wang, W.; Marietta, E.V.; Kasarda, D.D.; Waldmann, T.A.; Murray, J.A.; et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 2011, 471, 220–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semba, R.D.; de Pee, S.; Sun, K.; Campbell, A.A.; Bloem, M.W.; Raju, V.K. Low intake of vitamin A-rich foods among children, aged 12–35 months, in India: Association with malnutrition, anemia, and missed child survival interventions. Nutrition 2010, 26, 958–962. [Google Scholar] [CrossRef] [PubMed]
- Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef] [Green Version]
- Batista, K.S.; Cintra, V.M.; Lucena, P.A.F.; Manhães-De-Castro, R.; Toscano, A.E.; Costa, L.P.; Queiroz, M.E.B.S.; De Andrade, S.M.; Guzman-Quevedo, O.; Aquino, J.D.S. The role of vitamin B12i n viral infections: A comprehensive review of its relationship with the muscle-gut-brain axis and implications for SARS-CoV-2 infection. Nutr. Rev. 2022, 80, 561–578. [Google Scholar] [CrossRef]
- Colunga Biancatelli, R.M.L.; Berrill, M.; Marik, P.E. The antiviral properties of vitamin C. Expert Rev. Anti. Infect. Ther. 2020, 18, 99–101. [Google Scholar] [CrossRef]
- Stroehlein, J.K.; Wallqvist, J.; Iannizzi, C.; Mikolajewska, A.; Metzendorf, M.I.; Benstoem, C.; Meybohm, P.; Becker, M.; Skoetz, N.; Stegemann, M.; et al. Vitamin D supplementation for the treatment of COVID-19: A living systematic review. Cochrane Database Syst. Rev. 2021, 5, CD015043. [Google Scholar] [CrossRef]
- Sinopoli, A.; Isonne, C.; Santoro, M.M.; Baccolini, V. The effects of orally administered lactoferrin in the prevention and management of viral infections: A systematic review. Rev. Med. Virol. 2022, 32, e2261. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 (Updated February 2021); Cochrane: Chichester, UK, 2021. [Google Scholar]
- Coutsoudis, A.; Bobat, R.A.; Coovadia, H.M.; Kuhn, L.; Tsai, W.Y.; Stein, Z.A. The effects of vitamin A supplementation on the morbidity of children born to HIV-infected women. Am. J. Public Health 1995, 85, 1076–1081. [Google Scholar] [CrossRef] [Green Version]
- Coutsoudis, A.; Moodley, D.; Pillay, K.; Harrigan, R.; Stone, C.; Moodley, J.; Coovadia, H.M. Effects of Vitamin A supplementation on viral load in HIV-1-infected pregnant women. J. Acquir. immune Defic. Syndr. Hum. Retrovirology 1997, 15, 86–87. [Google Scholar] [CrossRef]
- Coutsoudis, A.; Pillay, K.; Spooner, E.; Kuhn, L.; Coovadia, H.M. Randomized trial testing the effect of vitamin A supplementation on pregnancy outcomes and early mother-to-child HIV-1 transmission in Durban, South Africa. Aids 1999, 13, 1517–1524. [Google Scholar] [CrossRef] [PubMed]
- Kennedy-Oji, C.; Coutsoudis, A.; Kuhn, L.; Pillay, K.; Mburu, A.; Stein, Z.; Coovadia, H. Effects of vitamin A supplementation during pregnancy and early lactation on body weight of South African HIV-infected women. J. Health Popul. Nutr. 2001, 19, 167–176. [Google Scholar] [PubMed]
- Humphrey, M.J.H.; Iliff, P.J.; Marinda, E.T.; Mutasa, K.; Moulton, L.H.; Chidawanyika, H.; Ward, B.J.; Nathoo, K.J.; Malaba, L.C.; Zijenah, L.S. Effects of a single large dose of vitamin A, given during the postpartum period to HIV-positive women and their infants, on child HIV infection, HIV-free survival, and mortality. J. Infect. Dis. 2006, 193, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Zvandasara, P.; Hargrove, J.W.; Ntozini, R.; Chidawanyika, H.; Mutasa, K.; Iliff, P.J.; Moulton, L.H.; Mzengeza, F.; Malaba, L.C.; Ward, B.J.; et al. Mortality and morbidity among postpartum HIV-positive and HIV-negative women in Zimbabwe: Risk factors, causes, and impact of single-dose postpartum vitamin A supplementation. J. Acquir. Immune Defic. Syndr. 2006, 43, 107–116. [Google Scholar] [CrossRef]
- Kennedy, C.M.; Coutsoudis, A.; Kuhn, L.; Pillay, K.; Mburu, A.; Stein, Z.; Coovadia, H. Randomized controlled trial assessing the effect of vitamin A supplementation on maternal morbidity during pregnancy and postpartum among HIV-infected women. J. Acquir. Immune Defic. Syndr. 2000, 24, 37–44. [Google Scholar] [CrossRef]
- Semba, R.D.; Lyles, C.M.; Margolick, J.B.; Caiaffa, W.T.; Farzadegan, H.; Cohn, S.; Vlahov, D. Vitamin A supplementation and human immunodeficiency virus load in injection drug users. J. Infect. Dis. 1998, 177, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, J.H.; Quinn, T.; Fine, D.; Lederman, H.; Yamini-Roodsari, S.; Wu, L.S.F.; Moeller, S.; Ruff, A.J. Short-Term effects of a large-dose Vitamin A supplementation on viral load and immune response in HIV-infected women. J. Acquir. Immune Defic. Syndr. Hum. Retrovirology 1998, 20, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Villamor, E.; Msamanga, G.; Spiegelman, D.; Antelman, E.; Peterson, K.; Hunter, D.J.; Fawzi, W.W. Effect of multivitamin and vitamin A supplements on weight gain during pregnancy among HIV-1-infected women. Am. J. Clin. Nutr. 2002, 76, 1082–1090. [Google Scholar] [CrossRef] [Green Version]
- Villamor, E.; Mbise, R.; Spiegelman, D.; Hertzmark, E.; Fataki, M.; Peterson, K.; Ndossi, G.; Fawzi, W.W. Vitamin A Supplements Ameliorate the Adverse Effect of HIV-1, Malaria, and Diarrheal Infections on Child Growth. Pediatrics 2002, 109, e6. [Google Scholar] [CrossRef] [Green Version]
- Fawzi, W.W.; Msamanga, G.; Antelman, G.; Xu, C.; Hertzmark, E.; Spiegelman, D.; Hunter, D.; Anderson, D. Effect of prenatal vitamin supplementation on lower-genital levels of HIV type 1 and interleukin type 1β at 36 weeks of gestation. Clin. Infect. Dis. 2004, 38, 716–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawzi, W.W.; Msamanga, G.I.; Spiegelman, D.; Wei, R.; Kapiga, S.; Villamor, E.; Mwakagile, D.; Mugusi, F.; Hertzmark, E.; Essex, M.; et al. A Randomized Trial of Multivitamin Supplements and HIV Disease Progression and Mortality. N. Engl. J. Med. 2004, 351, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.L.; Aboud, S.; Furtado, J.; Murrin, C.; Campos, H.; Fawzi, W.W.; Villamor, E. Effect of vitamin supplementation on breast milk concentrations of retinol, carotenoids and tocopherols in HIV-infected Tanzanian women. Eur. J. Clin. Nutr. 2009, 63, 332–339. [Google Scholar] [CrossRef]
- Baeten, J.M.; McClelland, R.S.; Overbaugh, J.; Richardson, B.A.; Emery, S.; Lavreys, L.; Mandaliya, K.; Bankson, D.D.; Ndinya-Achola, J.O.; Bwayo, J.J.; et al. Vitamin A supplementation and human immunodeficiency virus type 1 shedding in women: Results of a randomized clinical trial. J. Infect. Dis. 2002, 185, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Baeten, J.M.; McClelland, R.S.; Corey, L.; Overbaugh, J.; Lavreys, L.; Richardson, B.A.; Wald, A.; Mandaliya, K.; Bwayo, J.J.; Kreiss, J.K. Vitamin A supplementation and genital shedding of herpes simplex virus among HIV-1-infected women: A randomized clinical trial. J. Infect. Dis. 2004, 189, 1466–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semba, R.D.; Ndugwa, C.; Perry, R.T.; Clark, T.D.; Jackson, J.B.; Melikian, G.; Tielsch, J.; Mmiro, F. Effect of periodic vitamin A supplementation on mortality and morbidity of human immunodeficiency virus-infected children in Uganda: A controlled clinical trial. Nutrition 2005, 21, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Rosales, F.J.; Kjohede, C.; Goodman, S. Efficacy of a single oral dose of 200,000 IU of oil-soluble Vitamin A in measles-associated morbidity. Am. J. Epidemiol. 1996, 143, 406–408. [Google Scholar] [CrossRef] [PubMed]
- Rosales, F.J. Vitamin A supplementation of vitamin A deficient measles patients lowers the risk of measles-related pneumonia in Zambian children. J. Nutr. 2002, 132, 3700–3703. [Google Scholar] [CrossRef] [Green Version]
- Breese, J.S.; Fischer, M.; Dowell, S.F.; Johnston, B.D.; Biggs, V.M.; Levine, R.S.; Lingappa, J.R.; Keyserling, H.L.; Petersen, H. Vitamin A therapy for children with respiratory syncytial virus infection: A multicenter trial in the United States. Pediatr. Infect. Dis. J. 1996, 15, 777–782. [Google Scholar] [CrossRef]
- Dowell, S.F.; Papic, Z.; Bresee, J.S.; Larranaga, C.; Mendez, M.; Sowell, A.L.; Gary, H.E.; Anderson, L.J.; Avendano, L.F. Treatment of respiratory syncytial virus infection with vitamin A: A randomized, placebo-controlled trial in Santiago, Chile. Pediatr. Infect. Dis. J. 1996, 15, 782–786. [Google Scholar] [CrossRef]
- Pinnock, C.B.; Douglas, R.M.; Martin, A.J.; Badcock, N.R. Vitamin A status of children with a history of respiratory syncytial virus infection in infancy. J. Paediatr. Child Health 1988, 24, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Long, K.Z.; García, C.; Santos, J.I.; Rosado, J.L.; Hertzmark, E.; DuPont, H.L.; Ko, G.P. Vitamin A supplementation has divergent effects on norovirus infections and clinical symptoms among Mexican children. J. Infect. Dis. 2007, 196, 978–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, K.Z.; Garcia, C.; Ko, G.P.; Santos, J.I.; Mamun, A.A.; Rosado, J.L.; DuPont, H.L.; Nathakumar, N. Vitamin A modifies the intestinal chemokine and cytokine responses to norovirus infection in mexican children. J. Nutr. 2011, 141, 957–963. [Google Scholar] [CrossRef]
- Okita, K.; Izumi, N.; Matsui, O.; Tanaka, K.; Kaneko, S.; Moriwaki, H.; Ikeda, K.; Osaki, Y.; Numata, K.; Nakachi, K.; et al. Peretinoin after curative therapy of hepatitis C-related hepatocellular carcinoma: A randomized double-blind placebo-controlled study. J. Gastroenterol. 2015, 50, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Georgala, S.; Katoulis, A.C.; Georgala, C.; Bozi, E.; Mortakis, A. Oral isotretinoin in the treatment of recalcitrant condylomata acuminata of the cervix: A randomised placebo controlled trial. Sex. Transm. Infect. 2004, 80, 216–218. [Google Scholar] [CrossRef] [Green Version]
- Olguin-García, M.G.; Cruz, F.J.S.; Peralta-Pedrero, M.L.; Morales-Sánchez, M.A. A double-blind, randomized, placebo-controlled trial of oral isotretinoin in the treatment of recalcitrant facial flat warts. J. Dermatolog. Treat. 2015, 26, 78–82. [Google Scholar] [CrossRef]
- Kaur, G.J.; Brar, B.K.; Kumar, S.; Brar, S.K.; Singh, B. Evaluation of the efficacy and safety of oral isotretinoin versus topical isotretinoin in the treatment of plane warts: A randomized open trial. Int. J. Dermatol. 2017, 56, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, K.; Hayani, K.C. Vitamin A and Respiratory Syncytial Virus Infection-Serum Levels and Supplementation Trial. Arch. Pediatr. Adolesc. Med. 1996, 150, 25–30. [Google Scholar] [CrossRef]
- Barclay, A.J.G.; Foster, A.; Sommer, A. Vitamin A supplements and mortality related to measles: A randomised clinical trial. Br. Med. J. (Clin. Res. Ed.) 1987, 294, 294–296. [Google Scholar] [CrossRef] [Green Version]
- Coutsoudis, A.; Broughton, M.; Coovadia, H.M. Vitamin A supplementation reduces measles morbidity in young African children: A randomized, placebo-controlled, double-blind trial. Am. J. Clin. Nutr. 1991, 54, 890–895. [Google Scholar] [CrossRef]
- Coutsoudis, A.; Kiepiela, P.; Coovadia, H.M.; Broughton, M. Vitamin A supplementation enhances specific IgG antibody levels and total lymphocyte numbers while improving morbidity in measles. Pediatr. Infect. Dis. J. 1992, 11, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Ogaro, F.O.; Orinda, V.A.; Onyango, F.E.; Black, R.E. Effect of Vitamin A on diarrhoeal and respiratory complications of measles. Trop. Geogr. Med. 1993, 45, 283–286. [Google Scholar] [PubMed]
- Benn, C.S.; Diness, B.R.; Roth, A.; Nante, E.; Fisker, A.B.; Lisse, I.M.; Yazdanbakhsh, M.; Whittle, H.; Rodrigues, A.; Aaby, P. Effect of 50,000 IU vitamin A given with BCG vaccine on mortality in infants in Guinea-Bissau: Randomised placebo controlled trial. BMJ 2008, 336, 1416–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diness, B.R.; Martins, C.L.; Balé, C.; Garly, M.L.; Ravn, H.; Rodrigues, A.; Whittle, H.; Aaby, P.; Benn, C.S. The effect of high-dose vitamin A supplementation at birth on measles incidence during the first 12 months of life in boys and girls: An unplanned study within a randomised trial. Br. J. Nutr. 2011, 105, 1819–1822. [Google Scholar] [CrossRef] [Green Version]
- Hussey, G.D.; Klein, M. A randomized, controlled trial of vitamin A in children with severe mea-sles. N. Engl. J. Med. 1990, 323, 160–164. [Google Scholar] [CrossRef]
- Rahmathullah, R.; Underwood, B.; Thulasiraj, R.; Milton, R.C.; Ramaswamy, K.; Rahmathullah, R.; Babu, G. Reduced mortality among children on Southern India receiving a small weekly dose of Vitamin, A. N. Engl. J. Med. 1990, 323, 1120–1123. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Pandey, C.M.; Agarwal, K.N. Vitamin a administration and preschool child mortality. Nutr. Res. 1995, 15, 669–680. [Google Scholar] [CrossRef]
- Awasthi, S.; Peto, R.; Read, S.; Clark, S.; Pande, V.; Bundy, D. Vitamin A supplementation every 6 months with retinol in 1 million pre-school children in north India: DEVTA, a cluster-randomised trial. Lancet 2013, 381, 1469–1477. [Google Scholar] [CrossRef] [Green Version]
- Dollimore, N.; Cutts, F.; Binka, F.N.; Ross, D.A.; Morris, S.S.; Smith, P.G. Measles incidence, case fatality, and delayed mortality in children with or without vitamin A supplementation in rural Ghana. Am. J. Epidemiol. 1997, 146, 646–654. [Google Scholar] [CrossRef]
- Siddiqui, M.; Manansala, J.S.; Abdulrahman, H.A.; Nasrallah, G.K.; Smatti, M.K.; Younes, N.; Althani, A.A.; Yassine, H.M. Immune modulatory effects of vitamin D on viral infections. Nutrients 2020, 12, 2879. [Google Scholar] [CrossRef]
- Mayo-Wilson, E.; Imdad, A.; Herzer, K.; Yakoob, M.Y.; Bhutta, Z.A. Vitamin A supplements for preventing mortality, illness, and blindness in children aged under 5: Systematic review and meta-analysis. BMJ 2011, 343, d5094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, M.M.; Silva, M.A.; Garcia, P.P.C.; da Silva, L.S.; da Costaz, G.D.; Araújo, R.M.A.; Cotta, R.M.M. Efect of vitamin A suplementation: A systematic review. Cienc. Saude Coletiva 2019, 24, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Wiysonge, C.S.; Ndze, V.N.; Kongnyuy, E.J.; Shey, M.S. Vitamin A supplements for reducing mother-to-child HIV transmission. Cochrane Database Syst. Rev. 2017, 9, CD003648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imdad, A.; Mayo-Wilson, E.; Herzer, K.; Bhutta, Z.A. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst. Rev. 2017, 3, CD003648. [Google Scholar] [CrossRef]
- Kebede, T.; Dayu, M.; Girma, A. The Burden of HIV Infection among Pregnant Women Attending Antenatal Care in Jimma University Specialized Hospital in Ethiopia: A Retrospective Observational Study. Interdiscip. Perspect. Infect. Dis. 2022, 2022, 34837. [Google Scholar] [CrossRef]
- Choudhary, M.C.; Mellors, J.W. The transformation of HIV therapy: One pill once a day. Antivir. Ther. 2022, 27, 13596535211062396. [Google Scholar] [CrossRef]
- Oliveira, L.D.M.; Teixeira, F.M.E.; Sato, M.N. Impact of Retinoic Acid on Immune Cells and Inflammatory Diseases. Mediators Inflamm. 2018, 2018, 30671. [Google Scholar] [CrossRef] [Green Version]
- Kuvibidila, S.R.; Gardner, R.; Velez, M.; Warrier, R. Clinical observations, plasma retinol concentrations, and in vitro lymphocyte functions in children with sickle cell disease. Ochsner J. 2018, 18, 308–317. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Progress in Reducing Global Measles Deaths, 1999–2004. MMWR Morb. Mortal. Wkly. Rep. 2006, 55, 247–249. [Google Scholar]
- Sato, R.; Haraguchi, M. Effect of measles prevalence and vaccination coverage on other disease burden: Evidence of measles immune amnesia in 46 African countries. Hum. Vaccines Immunother. 2021, 17, 5361–5366. [Google Scholar] [CrossRef]
- Adamo, G.; Baccolini, V.; Massimi, A.; Barbato, D.; Cocchiara, R.; Paolo, C.D.; Mele, A.; Cianfanelli, S.; Angelozzi, A.; Castellani, F.; et al. Towards elimination of measles and rubella in Italy: Progress and challenges. PLoS ONE 2019, 14, e0226513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baccolini, V.; Sindoni, A.; Adamo, G.; Rosso, A.; Massimi, A.; Bella, A.; Filia, A.; Magurano, F.; Marzuillo, C.; Villari, P.; et al. Measles among healthcare workers in Italy: Is it time to act? Hum. Vaccines Immunother. 2020, 16, 2618–2627. [Google Scholar] [CrossRef] [Green Version]
- Shet, A.; Carr, K.; Danovaro-Holliday, M.C.; Sodha, S.V.; Prosperi, C.; Wunderlich, J.; Wonodi, C.; Reynolds, H.W.; Mirza, I.; Gacic-Dobo, M.; et al. Impact of the SARS-CoV-2 pandemic on routine immunisation services: Evidence of disruption and recovery from 170 countries and territories. Lancet Glob. Health 2022, 10, e186–e194. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Update: Respiratory Syncytial Virus Activity-United States, 1996-97 Season. MMWR Morb. Mortal. Wkly. Rep. 1996, 45, 1053–1055. [Google Scholar]
- Zheng, Z.; Pitzer, V.E.; Shapiro, E.D.; Bont, L.J.; Weinberger, D.M. Estimation of the Timing and Intensity of Reemergence of Respiratory Syncytial Virus following the COVID-19 Pandemic in the US. JAMA Netw. Open 2021, 4, e2141779. [Google Scholar] [CrossRef]
- Bruni, L.; Saura-Lázaro, A.; Montoliu, A.; Brotons, M.; Alemany, L.; Diallo, M.S.; Afsar, O.Z.; LaMontagne, D.S.; Mosina, L.; Contreras, M.; et al. HPV vaccination introduction worldwide and WHO and UNICEF estimates of national HPV immunization coverage 2010–2019. Prev. Med. 2021, 144, 106399. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinopoli, A.; Caminada, S.; Isonne, C.; Santoro, M.M.; Baccolini, V. What Are the Effects of Vitamin A Oral Supplementation in the Prevention and Management of Viral Infections? A Systematic Review of Randomized Clinical Trials. Nutrients 2022, 14, 4081. https://doi.org/10.3390/nu14194081
Sinopoli A, Caminada S, Isonne C, Santoro MM, Baccolini V. What Are the Effects of Vitamin A Oral Supplementation in the Prevention and Management of Viral Infections? A Systematic Review of Randomized Clinical Trials. Nutrients. 2022; 14(19):4081. https://doi.org/10.3390/nu14194081
Chicago/Turabian StyleSinopoli, Alessandra, Susanna Caminada, Claudia Isonne, Maria Mercedes Santoro, and Valentina Baccolini. 2022. "What Are the Effects of Vitamin A Oral Supplementation in the Prevention and Management of Viral Infections? A Systematic Review of Randomized Clinical Trials" Nutrients 14, no. 19: 4081. https://doi.org/10.3390/nu14194081
APA StyleSinopoli, A., Caminada, S., Isonne, C., Santoro, M. M., & Baccolini, V. (2022). What Are the Effects of Vitamin A Oral Supplementation in the Prevention and Management of Viral Infections? A Systematic Review of Randomized Clinical Trials. Nutrients, 14(19), 4081. https://doi.org/10.3390/nu14194081