The Effect of Palmitoylethanolamide on Pain Intensity, Central and Peripheral Sensitization, and Pain Modulation in Healthy Volunteers—A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design and Setting
2.2. Trial Participants
2.3. Randomization and Blinding
2.4. Study Medication
2.5. Interventions and Course of Study
2.6. Measurements
2.6.1. Wind-Up and Mechanical Pain Sensitivity
2.6.2. Repetitive Heat Pain
2.6.3. Assessment of the Heat Pain and Heat Detection Thresholds
2.6.4. Detection of Allodynia
2.6.5. Adverse Effects
2.7. Statistics
2.7.1. Sample Size Calculation
2.7.2. Statistical Analysis
3. Results
3.1. Effect of PEA on Repetitive Heat Pain
3.2. Effect of PEA on CPT, PPT, and CPM
3.3. Effect of PEA on Wind-Up Ratio
3.4. Effect of PEA on Allodynia (von Frey), MPS, HPT, and HDT
3.5. Pretreatment Baseline Data
3.6. Adverse Events
4. Discussion
4.1. Limitations
4.2. Clinical Application and Future Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagakura, Y. The need for fundamental reforms in the pain research field to develop innovative drugs. Expert Opin. Drug Discov. 2017, 12, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Cazacu, I.; Mogosan, C.; Loghin, F. Safety issues of current analgesics: An update. Clujul. Med. 2015, 88, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Klivinyi, C.; Bornemann-Cimenti, H. Pain medication and long QT syndrome. Korean J. Pain 2018, 31, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Lang-Illievich, K.; Bornemann-Cimenti, H. Opioid-induced constipation: A narrative review of therapeutic options in clinical management. Korean J. Pain 2019, 32, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Fleck, S.; Rumpold-Seitlinger, G.; Bornemann-Cimenti, H. Mechanisms and clinical relevance of the interaction between metamizole and acetylsalicylic acid-a review. Anasthesiol. Intensivmed. 2018, 59, 180–185. [Google Scholar]
- Costa, B.; Comelli, F.; Bettoni, I.; Colleoni, M.; Giagnoni, G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: Involvement of CB(1), TRPV1 and PPARgamma receptors and neurotrophic factors. Pain 2008, 139, 541–550. [Google Scholar] [CrossRef]
- Artukoglu, B.B.; Beyer, C.; Zuloff-Shani, A.; Brener, E.; Bloch, M.H. Efficacy of palmitoylethanolamide for pain: A meta-analysis. Pain Physician 2017, 20, 353–362. [Google Scholar]
- Lowin, T.; Apitz, M.; Anders, S.; Straub, R.H. Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner. Arthritis Res. 2015, 17, 321. [Google Scholar] [CrossRef] [Green Version]
- Ghonghadze, M.; Pachkoria, K.; Okujava, M.; Antelava, N.; Gongadze, N. Endocannabinoids Receptors mediated central and peripheral effects (review). Georgian Med. News 2020, 238, 137–143. [Google Scholar]
- Mazzari, S.; Canella, R.; Petrelli, L.; Marcolongo, G.; Leon, A. N-(2-hydroxyethyl)hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by down-modulating mast cell activation. Eur. J. Pharmacol. 1996, 300, 227–236. [Google Scholar] [CrossRef]
- Skaper, S.D.; Facci, L.; Barbierato, M.; Zusso, M.; Bruschetta, G.; Impellizzeri, D.; Cuzzocrea, S.; Giusti, P. N-Palmitoylethanolamine and Neuroinflammation: A Novel Therapeutic Strategy of Resolution. Mol. Neurobiol. 2015, 52, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsson, L.; Mattsson, S.; Fowler, C.J. Palmitoylethanolamide for the treatment of pain: Pharmacokinetics, safety and efficacy. Br. J. Clin. Pharmacol. 2016, 82, 932–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paladini, A.; Fusco, M.; Cenacchi, T.; Schievano, C.; Piroli, A.; Varrassi, G. Palmitoylethanolamide, a Special Food for Medical Purposes, in the Treatment of Chronic Pain: A Pooled Data Meta-analysis. Pain Physician 2016, 19, 11–24. [Google Scholar] [PubMed]
- Maihofner, C.; Nickel, F.T.; Seifert, F. Neuropathic pain and neuroplasticity in functional imaging studies. Schmerz 2010, 24, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.L.; Kehlet, H. Secondary hyperalgesia to heat stimuli after burn injury in man. Pain 1998, 76, 377–384. [Google Scholar] [CrossRef]
- Treede, R.D.; Meyer, R.A.; Raja, S.N.; Campbell, J.N. Peripheral and central mechanisms of cutaneous hyperalgesia. Prog. Neurobiol. 1992, 38, 397–421. [Google Scholar] [CrossRef]
- Horn-Hofmann, C.; Kunz, M.; Madden, M.; Schnabel, E.L.; Lautenbacher, S. Interactive effects of conditioned pain modulation and temporal summation of pain-the role of stimulus modality. Pain 2018, 159, 2641–2648. [Google Scholar] [CrossRef]
- Herrero, J.F.; Laird, J.M.; López-García, J.A. Wind-up of spinal cord neurones and pain sensation: Much ado about something? Prog. Neurobiol. 2000, 61, 169–203. [Google Scholar] [CrossRef]
- Fernandes, C.; Pidal-Miranda, M.; Samartin-Veiga, N.; Carrillo-de-la-Peña, M.T. Conditioned pain modulation as a biomarker of chronic pain: A systematic review of its concurrent validity. Pain 2019, 160, 2679–2690. [Google Scholar] [CrossRef]
- Jurgens, T.P.; Sawatzki, A.; Henrich, F.; Magerl, W.; May, A. An improved model of heat-induced hyperalgesia--repetitive phasic heat pain causing primary hyperalgesia to heat and secondary hyperalgesia to pinprick and light touch. PLoS ONE 2014, 9, e99507. [Google Scholar] [CrossRef] [Green Version]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. Trials 2010, 11, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nir, R.-R.; Yarnitsky, D. Conditioned pain modulation. Curr. Opin. Support. Palliat. Care 2015, 9, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Arendt-Nielsen, L.; Yarnitsky, D. Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. J. Pain 2009, 10, 556–572. [Google Scholar] [CrossRef]
- Granovsky, Y. Conditioned pain modulation: A predictor for development and treatment of neuropathic pain. Curr. Pain Headache Rep. 2013, 17, 361. [Google Scholar] [CrossRef] [PubMed]
- Rolke, R.; Baron, R.; Maier, C.; Tolle, T.R.; Treede, R.D.; Beyer, A.; Binder, A.; Birbaumer, N.; Birklein, F.; Botefur, I.C.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Standardized protocol and reference values. Pain 2006, 123, 231–243. [Google Scholar] [CrossRef]
- Wan, R.; Wang, Y.; Feng, B.; Jiang, X.; Xu, Y.; Zhang, Z.; Liu, Y.; Wang, Y. Effect of High-definition Transcranial Direct Current Stimulation on Conditioned Pain Modulation in Healthy Adults: A Crossover Randomized Controlled Trial. Neuroscience 2021, 479, 60–69. [Google Scholar] [CrossRef]
- Nahman-Averbuch, H.; Martucci, K.T.; Granovsky, Y.; Weissman-Fogel, I.; Yarnitsky, D.; Coghill, R.C. Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information. Pain 2014, 155, 2491–2501. [Google Scholar] [CrossRef] [Green Version]
- Klivinyi, C.; Rumpold-Seitlinger, G.; Dorn, C.; Sampl, L.; Sivro, N.; Lang-Illievich, K.; Fleck, S.; Farzi, S.; Bornemann-Cimenti, H. Perioperative use of physostigmine to reduce opioid consumption and peri-incisional hyperalgesia: A randomised controlled trial. Br. J. Anaesth. 2021, 126, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Lang-Illievich, K.; Winter, R.; Rumpold-Seitlinger, G.; Schicho, K.; Dorn, C.; Klivinyi, C.; Bornemann-Cimenti, H. The Effect of Low-Level Light Therapy on Capsaicin-Induced Peripheral and Central Sensitization in Healthy Volunteers: A Double-Blinded, Randomized, Sham-Controlled Trial. Pain Ther. 2020, 9, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Bornemann-Cimenti, H.; Wejbora, M.; Michaeli, K.; Edler, A.; Sandner-Kiesling, A. The effects of minimal-dose versus low-dose S-ketamine on opioid consumption, hyperalgesia, and postoperative delirium: A triple-blinded, randomized, active- and placebo-controlled clinical trial. Minerva Anestesiol. 2016, 82, 1069–1076. [Google Scholar]
- Khalid, S.; Tubbs, R.S. Neuroanatomy and Neuropsychology of Pain. Cureus 2017, 9, e1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, K.; Dubner, R. Interactions between the immune and nervous systems in pain. Nat. Med. 2010, 16, 1267–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voscopoulos, C.; Lema, M. When does acute pain become chronic? Br. J. Anaesth. 2010, 105 (Suppl. 1), i69–i85. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, C.M.; Sakata, R.K.; Issy, A.M.; Gerola, L.R.; Salomão, R. Cytokines and pain. Rev. Bras. Anestesiol. 2011, 61, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Alhouayek, M.; Muccioli, G.G. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov. Today 2014, 19, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Manion, J.; Waller, M.A.; Clark, T.; Massingham, J.N.; Neely, G.G. Developing Modern Pain Therapies. Front. Neurosci. 2019, 13, 1370. [Google Scholar] [CrossRef] [PubMed]
- Vollert, J.; Magerl, W.; Baron, R.; Binder, A.; Enax-Krumova, E.K.; Geisslinger, G.; Gierthmühlen, J.; Henrich, F.; Hüllemann, P.; Klein, T.; et al. Pathophysiological mechanisms of neuropathic pain: Comparison of sensory phenotypes in patients and human surrogate pain models. Pain 2018, 159, 1090–1102. [Google Scholar] [CrossRef]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef]
- Magerl, W.; Fuchs, P.N.; Meyer, R.A.; Treede, R.-D. Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain 2001, 124, 1754–1764. [Google Scholar] [CrossRef]
- Ji, R.-R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef]
- Luongo, L.; Guida, F.; Boccella, S.; Bellini, G.; Gatta, L.; Rossi, F.; de Novellis, V.; Maione, S. Palmitoylethanolamide reduces formalin-induced neuropathic-like behaviour through spinal glial/microglial phenotypical changes in mice. CNS Neurol. Disord. Drug Targets 2013, 12, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, P.; Soldovieri, M.V.; Russo, C.; Taglialatela, M. Activation and desensitization of TRPV1 channels in sensory neurons by the PPARα agonist palmitoylethanolamide. Br. J. Pharmacol. 2013, 168, 1430–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucharczyk, M.W.; Valiente, D.; Bannister, K. Developments in Understanding Diffuse Noxious Inhibitory Controls: Pharmacological Evidence from Pre-Clinical Research. J. Pain. Res. 2021, 14, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- Sarlani, E.; Greenspan, J.D. Gender differences in temporal summation of mechanically evoked pain. Pain 2002, 97, 163–169. [Google Scholar] [CrossRef]
- Gutierrez, T.; Nackley, A.G.; Neely, M.H.; Freeman, K.G.; Edwards, G.L.; Hohmann, A.G. Effects of neurotoxic destruction of descending noradrenergic pathways on cannabinoid antinociception in models of acute and tonic nociception. Brain Res. 2003, 987, 176–185. [Google Scholar] [CrossRef]
- Romero, T.R.; Resende, L.C.; Guzzo, L.S.; Duarte, I.D. CB1 and CB2 cannabinoid receptor agonists induce peripheral antinociception by activation of the endogenous noradrenergic system. Anesth. Analg. 2013, 116, 463–472. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, A.; Martínez-Lorenzana, G.; Rodríguez-Jiménez, J.; Rojas-Piloni, G.; Condés-Lara, M. Intracisternal injection of palmitoylethanolamide inhibits the peripheral nociceptive evoked responses of dorsal horn wide dynamic range neurons. J. Neural. Transm. 2015, 122, 369–374. [Google Scholar] [CrossRef]
- Ossipov, M.H.; Morimura, K.; Porreca, F. Descending pain modulation and chronification of pain. Curr. Opin. Support Palliat Care 2014, 8, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Clayton, P.; Subah, S.; Venkatesh, R.; Hill, M.; Bogoda, N. Palmitoylethanolamide: A Potential Alternative to Cannabidiol. J. Diet. Suppl. 2021, 1–26. [Google Scholar] [CrossRef]
Sex (f/m) | 8/6 |
Age (years) | 40 ± 15 |
Weight (kg) | 75.5 ± 11.6 |
Height (cm) | 177 ± 11 |
BMI (kg/m²) | 23.9 ± 2.1 |
Compliance of PEA intake | 99.4% |
Compliance of placebo intake | 98.1% |
Parameter | PEA | Placebo | p | Effect Size |
---|---|---|---|---|
PPT (kg) | 7.7 ± 1.5 | 7.1 ± 1.5 | 0.0013 | 0.86 |
CPT (s) | 65 ± 30 | 54 ± 27 | 0.0023 | 0.82 |
CPM (%) | 118 ± 12 | 110 ± 4 | 0.017 | 0.64 |
MPS (0–100) | 23 ± 14 | 35 ± 14 | 0.0092 | 0.70 |
WUR | 1.3 ± 0.3 | 1.5 ± 0.3 | 0.043 | 0.54 |
HPT (°C) | 42.5 ± 1.4 | 41.4 ± 1.9 | 0.014 | 0.66 |
HDT (°C) | 34.2 ± 2.3 | 34.05 ± 2.4 | 0.97 | 0.008 |
RHP | 41 ± 11 | 52 ± 13 | 0.048 | 0.53 |
Distance of allodynia (cm) | 1.6 ± 0.6 | 2.1 ± 0.8 | 0.0011 | 0.88 |
Parameter | Baseline 1 | Baseline 2 | p | Effect Size |
---|---|---|---|---|
PPT (kg) | 7.0 ± 1.5 | 7.0 ± 1.5 | 0.78 | 0.08 |
CPT (s) | 54 ± 26 | 53 ± 24 | 0.31 | 0.27 |
CPM (%) | 114 ± 9 | 112 ± 5 | 0.26 | 0.30 |
MPS (0–100) | 40 ± 14 | 38 ± 14 | 0.51 | 0.18 |
WUR | 1.5 ± 0.4 | 1.6 ± 0.4 | 0.22 | 0.33 |
HPT (°C) | 44.4 ± 1.9 | 43.7 ± 1.6 | 0.23 | 0.32 |
HDT (°C) | 34.6 ± 2.2 | 35.0 ± 2.3 | 0.47 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang-Illievich, K.; Klivinyi, C.; Rumpold-Seitlinger, G.; Dorn, C.; Bornemann-Cimenti, H. The Effect of Palmitoylethanolamide on Pain Intensity, Central and Peripheral Sensitization, and Pain Modulation in Healthy Volunteers—A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial. Nutrients 2022, 14, 4084. https://doi.org/10.3390/nu14194084
Lang-Illievich K, Klivinyi C, Rumpold-Seitlinger G, Dorn C, Bornemann-Cimenti H. The Effect of Palmitoylethanolamide on Pain Intensity, Central and Peripheral Sensitization, and Pain Modulation in Healthy Volunteers—A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial. Nutrients. 2022; 14(19):4084. https://doi.org/10.3390/nu14194084
Chicago/Turabian StyleLang-Illievich, Kordula, Christoph Klivinyi, Gudrun Rumpold-Seitlinger, Christian Dorn, and Helmar Bornemann-Cimenti. 2022. "The Effect of Palmitoylethanolamide on Pain Intensity, Central and Peripheral Sensitization, and Pain Modulation in Healthy Volunteers—A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial" Nutrients 14, no. 19: 4084. https://doi.org/10.3390/nu14194084
APA StyleLang-Illievich, K., Klivinyi, C., Rumpold-Seitlinger, G., Dorn, C., & Bornemann-Cimenti, H. (2022). The Effect of Palmitoylethanolamide on Pain Intensity, Central and Peripheral Sensitization, and Pain Modulation in Healthy Volunteers—A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial. Nutrients, 14(19), 4084. https://doi.org/10.3390/nu14194084