Haplotypes in the GC, CYP2R1 and CYP24A1 Genes and Biomarkers of Bone Mineral Metabolism in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Procedures
2.2.1. Biochemical Blood Analysis
2.2.2. Genotyping
2.3. Statistical Analyses
3. Results
3.1. Study Subjects’ Characteristics
3.2. Relationship between Genetic Variants and Mineral Metabolism Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADL | Activities of daily life |
AIC | Akaike Information Criterion |
BI | Barthel index |
BMI | Body mass index |
CGR | Clinical Group Risk |
CYP24A1 | Cytochrome P450 family 24 subfamily A member 1 |
CYP2R1 | Cytochrome P450 Family 2 Subfamily R Member 1 |
DBP | Vitamin D–binding protein |
GC | Vitamin D–binding protein gene |
1,25(OH)2D | 1,25-Dihydroxyvitamin D |
25 (OH)D | 25-Hydroxyvitamin D |
IOM | Institute of Medicine |
iPTH | Intact parathyroid hormone |
MMSE | Mini Mental State Examination |
MNA | Mini Nutritional Assessment |
SD | Standard deviation |
SEM | Standard error of the mean |
References
- Shea, M.K.; Benjamin, E.J.; Dupuis, J.; Massaro, J.M.; Jacques, P.F.; D’Agostino, R.B.; Ordovas, J.M.; O’Donnell, C.J.; Dawson-Hughes, B.; Vasan, R.S.; et al. Genetic and non-genetic correlates of vitamins K and D. Eur. J. Clin. Nutr. 2009, 63, 458–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, D.; De Lange, M.; Snieder, H.; MacGregor, A.J.; Swaminathan, R.; Thakker, R.V.; Spector, T.D. Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J. Bone Miner. Res. 2001, 16, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; Van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; et al. Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet 2010, 376, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Yu, K.; Stolzenberg-Solomon, R.; Claire Simon, K.; McCullough, M.L.; Gallicchio, L.; Jacobs, E.J.; Ascherio, A.; Helzlsouer, K.; Jacobs, K.B.; et al. Genome-wide association study of circulating vitamin D levels. Hum. Mol. Genet. 2010, 19, 2739–2745. [Google Scholar] [CrossRef] [PubMed]
- Marozik, P.; Rudenka, A.; Kobets, K.; Rudenka, E. Vitamin d status, bone mineral density and vdr gene polymorphism in a cohort of belarusian postmenopausal women. Nutrients 2021, 13, 837. [Google Scholar] [CrossRef] [PubMed]
- Wjst, M.; Altmüller, J.; Faus-Kessler, T.; Braig, C.; Bahnweg, M.; André, E. Asthma families show transmission disequilibrium of gene variants in the vitamin D metabolism and signalling pathway. Respir. Res. 2006, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Sharp, S.J.; Burgess, S.; Scott, R.A.; Imamura, F.; Langenberg, C.; Wareham, N.J.; Forouhi, N.G. Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: A mendelian randomisation study. Lancet Diabetes Endocrinol. 2015, 3, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, R.; Lips, P.; Bilezikian, J.P. Vitamin D supplementation and musculoskeletal health. Lancet Diabetes Endocrinol. 2019, 7, 85–86. [Google Scholar] [CrossRef] [Green Version]
- Bhattoa, H.P.; Konstantynowicz, J.; Laszcz, N.; Wojcik, M.; Pludowski, P. Vitamin D: Musculoskeletal health. Rev. Endocr. Metab. Disord. 2017, 18, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Manson, J.A.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Bhattoa, H.P. Laboratory investigation of Vitamin D metabolites and bone metabolism markers. Electron. J. Int. Fed. Clin. Chem. Lab. Med. 2018, 29, 103–104. [Google Scholar]
- El-Hajj Fuleihan, G.; Bouillon, R.; Clarke, B.; Chakhtoura, M.; Cooper, C.; McClung, M.; Singh, R.J. Serum 25-Hydroxyvitamin D Levels: Variability, Knowledge Gaps, and the Concept of a Desirable Range. J. Bone Miner. Res. 2015, 30, 1119–1133. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.S. Secondary Hyperparathyroidism and Bone Turnover in Elderly Blacks and Whites. J. Clin. Endocrinol. Metab. 2001, 86, 3801–3804. [Google Scholar] [CrossRef] [PubMed]
- Pludowski, P.; Holick, M.F.; Pilz, S.; Wagner, C.L.; Hollis, B.W.; Grant, W.B.; Shoenfeld, Y.; Lerchbaum, E.; Llewellyn, D.J.; Kienreich, K.; et al. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality—A review of recent evidence. Autoimmun. Rev. 2013, 12, 976–989. [Google Scholar] [CrossRef]
- Cheng, J.B.; Motola, D.L.; Mangelsdorf, D.J.; Russell, D.W. De-orphanization of Cytochrome P450 2R1. J. Biol. Chem. 2003, 278, 38084–38093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.B.; Levine, M.A.; Bell, N.H.; Mangelsdorf, D.J.; Russell, D.W. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc. Natl. Acad. Sci. USA 2004, 101, 7711–7715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakaki, T.; Sawada, N.; Komai, K.; Shiozawa, S.; Yamada, S.; Yamamoto, K.; Ohyama, Y.; Inouye, K. Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24. Eur. J. Biochem. 2000, 267, 6158–6165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nissen, J.; Rasmussen, L.B.; Ravn-Haren, G.; Wreford Andersen, E.; Hansen, B.; Andersen, R.; Mejborn, H.; Madsen, K.H.; Vogel, U. Common variants in CYP2R1 and GC genes predict vitamin D concentrations in healthy Danish children. PLoS ONE 2014, 9, e89907. [Google Scholar] [CrossRef] [Green Version]
- Slater, N.A.; Rager, M.L.; Havrda, D.E.; Harralson, A.F. Genetic Variation in CYP2R1 and GC Genes Associated with Vitamin D Deficiency Status. J. Pharm. Pract. 2017, 30, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Thacher, T.D.; Levine, M.A. CYP2R1 mutations causing vitamin D-deficiency rickets. J. Steroid Biochem. Mol. Biol. 2017, 173, 333–336. [Google Scholar] [CrossRef]
- Molin, A.; Baudoin, R.; Kaufmann, M.; Souberbielle, J.C.; Ryckewaert, A.; Vantyghem, M.C.; Eckart, P.; Bacchetta, J.; Deschenes, G.; Kesler-Roussey, G.; et al. CYP24A1 mutations in a cohort of hypercalcemic patients: Evidence for a recessive trait. J. Clin. Endocrinol. Metab. 2015, 100, E1343–E1352. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin. Proc. 2006, 81, 353–373. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, O.M.; Farwell, W.R.; Kermah, D.; Taylor, E.N. Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and Nutrition Examination Survey. Osteoporos. Int. 2010, 22, 1745–1753. [Google Scholar] [CrossRef] [Green Version]
- Bikle, D.D. Vitamin D: Newer concepts of its metabolism and function at the basic and clinical level. J. Endocr. Soc. 2020, 4, bvz038. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, J.; Constans, J. Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum. Genet. 1993, 92, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Ponda, M.P.; McGee, D.; Breslow, J.L. Vitamin D-binding protein levels do not influence the effect of vitamin D repletion on serum PTH and calcium: Data from a randomized, controlled trial. J. Clin. Endocrinol. Metab. 2014, 99, 2494–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saarnio, E.; Pekkinen, M.; Itkonen, S.T.; Kemi, V.; Karp, H.; Kärkkäinen, M.; Mäkitie, O.; Lamberg-Allardt, C. Serum parathyroid hormone is related to genetic variation in vitamin D binding protein with respect to total, free, and bioavailable 25-hydroxyvitamin D in middle-aged Caucasians—A cross-sectional study. BMC Nutr. 2016, 2, 46. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Food and Nutrition Board. In Dietary Reference Intakes: Recommended Dietary Allowances and Adequate Intakes of Vitamins and Elements; National Academies Press: Washington, DC, USA, 2011; ISBN 9780323340755. [Google Scholar]
- Björk, A.; Mellström, D.; Ohlsson, C.; Karlsson, M.; Mallmin, H.; Johansson, G.; Ljunggren, Ö.; Kindmark, A. Haplotypes in the CYP2R1 gene are associated with levels of 25(OH)D and bone mineral density, but not with other markers of bone metabolism (MrOS Sweden). PLoS ONE 2018, 13, e0209268. [Google Scholar] [CrossRef] [Green Version]
- Dastani, Z.; Li, R.; Richards, B. Genetic regulation of vitamin D levels. Calcif. Tissue Int. 2013, 92, 106–117. [Google Scholar] [CrossRef]
- Wade, D.T.; Collin, C. The barthel ADL index: A standard measure of physical disability? Disabil. Rehabil. 1988, 10, 64–67. [Google Scholar] [CrossRef]
- Ryg, J.; Engberg, H.; Mariadas, P.; Pedersen, S.G.H.; Jorgensen, M.G.; Vinding, K.L.; Andersen-Ranberg, K. Barthel index at hospital admission is associated with mortality in geriatric patients: A danish nationwide population-based cohort study. Clin. Epidemiol. 2018, 10, 1789–1800. [Google Scholar] [CrossRef] [Green Version]
- Verde, Z.; Giaquinta, A.; Sainz, C.M.; Ondina, M.D.; Araque, A.F. Bone mineral metabolism status, quality of life, and muscle strength in older people. Nutrients 2019, 11, 2748. [Google Scholar] [CrossRef] [Green Version]
- González, J.R.; Armengol, L.; Solé, X.; Guinó, E.; Mercader, J.M.; Estivill, X.; Moreno, V. SNPassoc: An R package to perform whole genome association studies. Bioinformatics 2007, 23, 654–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinnwell, J.P.; Schaid, D.J. haplo.stats: Statistical Analysis of Haplotypes with Traits and Covariates When Linkage Phase Is Ambiguous. R Package Version 1.8.6. 2020. Available online: https//CRAN.R-project.org/package=haplo.stats (accessed on 15 September 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistics Computing: Vienna, Austria, 2020. [Google Scholar]
- Wigginton, J.E.; Cutler, D.J.; Abecasis, G.R. A note on exact tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 2005, 76, 887–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Lopez, E.; Brück, P.; Jansen, T.; Herwig, J.; Badenhoop, K. CYP2R1 (vitamin D 25-hydroxylase) gene is associated with susceptibility to type 1 diabetes and vitamin D levels in Germans. Diabetes. Metab. Res. Rev. 2007, 23, 631–636. [Google Scholar] [CrossRef]
- Shinkyo, R.; Sakaki, T.; Kamakura, M.; Ohta, M.; Inouye, K. Metabolism of vitamin D by human microsomal CYP2R1. Biochem. Biophys. Res. Commun. 2004, 324, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.R.; MacNee, W.; Agusti, A.; Anzueto, A.; Berg, B.; Buist, A.S.; Calverley, P.M.A.; Chavannes, N.; Dillard, T.; Fahy, B.; et al. Standards for the diagnosis and treatment of patients with COPD: A summary of the ATS/ERS position paper. Eur. Respir. J. 2004, 23, 932–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, T.; Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; O’Reilly, P.F.; Aschard, H.; Hsu, Y.H.; Richards, J.B.; Dupuis, J.; Ingelsson, E.; Karasik, D.; Pilz, S.; Berry, D.; et al. Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat. Commun. 2018, 9, 260. [Google Scholar] [CrossRef]
- Sai, A.J.; Walters, R.W.; Fang, X.; Gallagher, J.C. Relationship between vitamin D, parathyroid hormone, and bone health. J. Clin. Endocrinol. Metab. 2011, 96, E436–E446. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, T.O.; Zhang, J.H.; Parra, E.; Ellis, B.K.; Simpson, C.; Lee, W.M.; Balko, J.; Fu, L.; Wong, B.Y.L.; Cole, D.E.C. Vitamin D binding protein is a key determinant of 25-hydroxyvitamin D levels in infants and toddlers. J. Bone Miner. Res. 2013, 28, 213–221. [Google Scholar] [CrossRef]
- Powe, C.E.; Ricciardi, C.; Berg, A.H.; Erdenesanaa, D.; Collerone, G.; Ankers, E.; Wenger, J.; Karumanchi, S.A.; Thadhani, R.; Bhan, I. Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J. Bone Miner. Res. 2011, 26, 1609–1616. [Google Scholar] [CrossRef]
- Powe, C.E.; Evans, M.K.; Wenger, J.; Zonderman, A.B.; Berg, A.H.; Nalls, M.; Tamez, H.; Zhang, D.; Bhan, I.; Karumanchi, S.A.; et al. Vitamin D–Binding Protein and Vitamin D Status of Black Americans and White Americans. N. Engl. J. Med. 2013, 369, 1991–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasniqi, E.; Boshnjaku, A.; Wagner, K.H.; Wessner, B. Association between polymorphisms in vitamin d pathway-related genes, vitamin d status, muscle mass and function: A systematic review. Nutrients 2021, 13, 3109. [Google Scholar] [CrossRef] [PubMed]
- Peris, P.; Filella, X.; Monegal, A.; Guañabens, N.; Foj, L.; Bonet, M.; Boquet, D.; Casado, E.; Cerdá, D.; Erra, A.; et al. Comparison of total, free and bioavailable 25-OH vitamin D determinations to evaluate its biological activity in healthy adults: The LabOscat study. Osteoporos. Int. 2017, 260, 2457–2464. [Google Scholar] [CrossRef]
- Dastani, Z.; Berger, C.; Langsetmo, L.; Fu, L.; Wong, B.Y.L.; Malik, S.; Goltzman, D.; Cole, D.E.; Richards, J.B. In healthy adults, biological activity of vitamin d, as assessed by serum pth, is largely independent of DBP concentrations. J. Bone Miner. Res. 2014, 29, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, J.B.; Lai, J.; Lizaola, B.; Kane, L.; Markova, S.; Weyland, P.; Terrault, N.A.; Stotland, N.; Bikle, D. A comparison of measured and calculated free 25(OH) vitamin D levels in clinical populations. J. Clin. Endocrinol. Metab. 2014, 99, 1631–1637. [Google Scholar] [CrossRef]
- Denburg, M.R.; Hoofnagle, A.N.; Sayed, S.; Gupta, J.; De Boer, I.H.; Appel, L.J.; Durazo-Arvizu, R.; Whitehead, K.; Feldman, H.I.; Leonard, M.B. Comparison of Two ELISA Methods and Mass Spectrometry for Measurement of Vitamin D-Binding Protein: Implications for the Assessment of Bioavailable Vitamin D Concentrations Across Genotypes. J. Bone Miner. Res. 2016, 31, 1128–1136. [Google Scholar] [CrossRef] [Green Version]
- Little, J.; Higgins, J.P.T.; Ioannidis, J.P.A.; Moher, D.; Gagnon, F.; Von Elm, E.; Khoury, M.J.; Cohen, B.; Davey-Smith, G.; Grimshaw, J.; et al. STrengthening the REporting of genetic association studies (STREGA)—An extension of the STROBE statement. Genet. Epidemiol. 2009, 33, 581–598. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall N = 273 | Men n = 129 | Women n = 144 | p-Value |
---|---|---|---|---|
Age (years) | 76.13 (7.09) | 76.63 (7.30) | 75.65 (6.93) | 0.254 |
BMI (kg/m2) | 27.61 (3.93) | 27.48 (3.68) | 27.70 (4.15) | 0.639 |
Current smokers (%) | 5.10 | 5.40 | 5.30 | 0.526 |
Vitamin D supplement (%) | 14.80 | 12.90 | 16.10 | 0.276 |
Sun exposure (%) | 64.40 | 66.90 | 61.60 | 0.217 |
Barthel Index (points) | 84.23 (13.68) | 84.35 (13.27) | 84.01 (14.12) | 0.835 |
MNA (points) | 13.89 (1.82) | 13.88 (1.80) | 13.86 (1.84) | 0.930 |
25(OH)D (ng/mL) | 18.40 (8.89) | 18.15 (8.31) | 18.62 (9.36) | 0.665 |
iPTH (ng/L) | 66.84 (31.96) | 64.44 (27.38) | 67.51 (29.77) | 0.385 |
Total calcium (mg/dL) | 9.47 (0.36) | 9.40 (0.30) | 9.52 (0.37) | 0.005 |
Phosphorus (mg/dL) | 3.25 (0.50) | 3.05 (0.43) | 3.42 (0.49) | <0.001 |
Creatinine (mg/dL) | 0.93 (0.25) | 1.04 (0.23) | 0.82 (0.19) | <0.001 |
Albumin (g/dL) | 4.42 (0.25) | 4.45 (0.25) | 4.39 (0.25) | 0.05 |
Age | BMI | Barthel INDEX | MNA | Creatinine | 25(OH)D | Total Calcium | Phosphorus | Albumin | iPTH | |
---|---|---|---|---|---|---|---|---|---|---|
age | 1 - | −0.085 0.156 | −0.263 <0.001 | −0.057 0.345 | 0.268 <0.001 | −0.114 0.062 | −0.001 0.989 | −0.101 0.099 | −0.274 <0.001 | 0.240 <0.001 |
BMI | 1 - | 0.064 0.288 | 0.068 0.255 | 0.043 0.482 | 0.058 0.341 | 0.016 0.799 | −0.021 0.735 | 0.086 0.159 | −0.010 0.868 | |
Barthel Index | 1 - | 0.020 0.744 | −0.096 0.114 | −0.062 0.312 | 0.096 0.118 | −0.085 0.166 | 0.094 0.196 | −0.064 0.298 | ||
MNA | 1 - | −0.001 0.989 | 0.054 0.380 | −0.081 0.187 | −0.126 0.039 | 0.037 0.548 | −0.039 0.531 | |||
creatinine | 1 - | −0.026 0.667 | −0.031 0.616 | −0.185 0.002 | −0.054 0.375 | 0.222 <0.001 | ||||
25(OH)D | 1 - | 0.037 0.548 | 0.133 0.029 | 0.065 0.298 | −0.203 0.001 | |||||
total calcium | 1 - | 0.052 0.393 | 0.471 <0.001 | −0.035 0.575 | ||||||
phosphorus | 1 - | −0.007 0.910 | −0.090 0.144 | |||||||
albumin | 1 - | −0.209 0.001 | ||||||||
iPTH | 1 - |
Gene Variant | Alleles | Major Allele Frequency (%) | p, HWE |
---|---|---|---|
rs4588 | G/T | 71.8 | 0.052 |
rs2282679 | T/G | 71.4 | 0.139 |
rs10741657 | G/A | 66.8 | 0.171 |
rs6013897 | T/A | 81.9 | 0.216 |
Crude Model, p | Age, p-Adjusted | Gender, p-Adjusted | ||||||
---|---|---|---|---|---|---|---|---|
Variable | SNP | Codominant | Dominant | Recessive | Codominant | Dominant | Recessive | Codominant |
25(OH)D | rs4588 | 0.115 | 0.195 | 0.090 | 0.206 | 0.206 | 0.129 | 0.357 |
rs2282679 | 0.124 | 0.198 | 0.063 | 0.162 | 0.210 | 0.087 | 0.365 | |
rs10741657 | 0.441 | 0.238 | 0.374 | 0.490 | 0.291 | 0.366 | 0.025 | |
rs6013897 | 0.782 | 0.636 | 0.522 | 0.660 | 0.526 | 0.412 | 0.160 | |
albumin | rs4588 | 0.156 | 0.938 | 0.059 | 0.359 | 0.883 | 0.156 | 0.285 |
rs2282679 | 0.223 | 0.789 | 0.084 | 0.417 | 0.733 | 0.185 | 0.230 | |
rs10741657 | 0.382 | 0.570 | 0.329 | 0.252 | 0.452 | 0.268 | 0.346 | |
rs6013897 | 0.341 | 0.500 | 0.147 | 0.550 | 0.682 | 0.275 | 0.803 | |
iPTH | rs4588 | 0.773 | 0.719 | 0.604 | 0.845 | 0.603 | 0.902 | 0.026 |
rs2282679 | 0.781 | 0.611 | 0.734 | 0.780 | 0.496 | 0.996 | 0.025 | |
rs10741657 | 0.851 | 0.586 | 0.727 | 0.919 | 0.771 | 0.706 | 0.501 | |
rs6013897 | 0.902 | 0.740 | 0.846 | 0.754 | 0.455 | 0.759 | 0.823 | |
total calcium | rs4588 | 0.242 | 0.586 | 0.093 | 0.233 | 0.528 | 0.091 | 0.750 |
rs2282679 | 0.610 | 0.707 | 0.324 | 0.600 | 0.644 | 0.323 | 0.627 | |
rs10741657 | 0.704 | 0.489 | 0.847 | 0.753 | 0.555 | 0.823 | 0.488 | |
rs6013897 | 0.783 | 0.936 | 0.493 | 0.767 | 0.878 | 0.469 | 0.750 | |
phosphorus | rs4588 | 0.081 | 0.028 | 0.927 | 0.070 | 0.027 | 0.933 | 0.626 |
rs2282679 | 0.077 | 0.033 | 0.832 | 0.065 | 0.032 | 0.716 | 0.197 | |
rs10741657 | 0.305 | 0.131 | 0.800 | 0.339 | 0.147 | 0.780 | 0.267 | |
rs6013897 | 0.168 | 0.985 | 0.074 | 0.133 | 0.933 | 0.053 | 0.626 | |
creatinine | rs4588 | 0.070 | 0.071 | 0.339 | 0.020 | 0.054 | 0.136 | 0.009 |
rs2282679 | 0.069 | 0.067 | 0.372 | 0.024 | 0.052 | 0.177 | 0.009 | |
rs10741657 | 0.104 | 0.090 | 0.560 | 0.139 | 0.109 | 0.607 | 0.587 | |
rs6013897 | 0.231 | 0.184 | 0.148 | 0.391 | 0.269 | 0.265 | 0.541 |
Haplotype | rs4588 | rs2282679 | rs10741657 | rs6013897 | Frequency, % |
---|---|---|---|---|---|
1 | G | T | A | A | 4.38 |
2 | G | T | A | T | 19.25 |
3 | G | T | G | A | 9.99 |
4 | T | G | A | A | 2.05 |
5 | T | G | A | T | 7.41 |
6 | T | G | G | A | 1.77 |
7 | T | G | G | T | 16.90 |
rare | * | * | * | * | 0.74 |
base | G | T | G | T | 37.65 |
25(OH)D | iPTH | Phosphorus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model * | Haplotype | Coef | SEM | p val | AIC | Coef | SEM | p val | AIC | Coef | SEM | p val | AIC |
crude | (Intercept) | 19.444 | 1.370 | 0.000 | 1958.4 | 70.793 | 4.454 | 0.000 | 2629.7 | 3.411 | 0.070 | 0.000 | 386.94 |
1 | 1.333 | 2.698 | 0.622 | 4.601 | 7.661 | 0.549 | −0.043 | 0.124 | 0.729 | ||||
2 | 0.238 | 1.565 | 0.879 | −5.217 | 4.378 | 0.235 | −0.088 | 0.073 | 0.230 | ||||
3 | −1.329 | 1.668 | 0.426 | −4.881 | 5.290 | 0.357 | −0.176 | 0.084 | 0.036 | ||||
4 | −1.659 | 4.214 | 0.694 | 12.562 | 1.839 | <0.001 | 0.117 | 0.195 | 0.549 | ||||
5 | −0.561 | 1.832 | 0.760 | −7.492 | 6.036 | 0.216 | 0.001 | 0.098 | 0.992 | ||||
6 | −4.705 | 3.525 | 0.183 | −10.130 | 11.455 | 0.377 | −0.108 | 0.206 | 0.600 | ||||
7 | −1.885 | 1.482 | 0.204 | −0.881 | 4.848 | 0.856 | −0.269 | 0.079 | 0.001 | ||||
rare | −1.258 | 3.716 | 0.735 | −6.199 | 13.300 | 0.642 | 0.137 | 0.202 | 0.497 | ||||
age | (Intercept) | 30.138 | 6.097 | 0.000 | 1950.8 | −10.539 | 2.369 | 0.000 | 2602.8 | 3.884 | 0.337 | 0.000 | 386.94 |
1 | 0.492 | 3.573 | 0.890 | 8.836 | 8.060 | 0.274 | −0.067 | 0.127 | 0.598 | ||||
2 | 0.443 | 1.851 | 0.811 | −5.123 | 4.210 | 0.225 | −0.081 | 0.073 | 0.269 | ||||
3 | −1.282 | 1.870 | 0.493 | −3.378 | 4.979 | 0.498 | −0.177 | 0.084 | 0.035 | ||||
4 | −0.841 | 4.941 | 0.865 | 8.526 | 14.595 | 0.560 | 0.137 | 0.192 | 0.475 | ||||
5 | −0.725 | 1.906 | 0.704 | −6.881 | 6.028 | 0.255 | −0.004 | 0.099 | 0.971 | ||||
6 | −5.013 | 3.504 | 0.154 | −7.392 | 11.458 | 0.519 | −0.117 | 0.206 | 0.571 | ||||
7 | −1.651 | 1.529 | 0.281 | −1.818 | 4.688 | 0.699 | −0.263 | 0.080 | 0.001 | ||||
rare | −1.824 | 3.726 | 0.625 | −1.328 | 12.664 | 0.917 | 0.113 | 0.203 | 0.579 | ||||
gender | (Intercept) | 20.802 | 1.889 | 0.000 | 1957.000 | 66.061 | 3.844 | 0.000 | 2638.2 | 3.237 | 0.102 | 0.000 | 346.16 |
1 | 0.203 | 4.344 | 0.963 | 5.089 | 3.191 | 0.112 | −0.183 | 0.254 | 0.471 | ||||
2 | 6.464 | 2.438 | 0.009 | 7.490 | 6.365 | 0.240 | 0.069 | 0.133 | 0.602 | ||||
3 | 4.649 | 3.005 | 0.123 | 3.050 | 7.398 | 0.680 | 0.068 | 0.159 | 0.670 | ||||
4 | 12.269 | 6.176 | 0.048 | −33.469 | 7.713 | <0.001 | −0.238 | 0.319 | 0.457 | ||||
5 | −1.534 | 3.536 | 0.665 | −8.434 | 10.721 | 0.432 | 0.565 | 0.181 | 0.002 | ||||
6 | 0.820 | 6.807 | 0.904 | −16.115 | 5.500 | 0.004 | 0.475 | 0.418 | 0.257 | ||||
7 | 0.826 | 2.730 | 0.762 | −11.411 | 6.850 | 0.097 | −0.028 | 0.147 | 0.850 | ||||
rare | 0.359 | 9.825 | 0.971 | −30.353 | 6.777 | <0.001 | −0.053 | 0.497 | 0.915 |
Albumin | Total Calcium | Creatinine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model * | Haplotype | Coef | SEM | p val | AIC | Coef | SEM | p val | AIC | Coef | SEM | p val | AIC |
crude | (Intercept) | 4.401 | 0.037 | 0.000 | 40.69 | 9.472 | 0.054 | 0.000 | 229.86 | 0.956 | 0.036 | 0.000 | 25.11 |
1 | 0.074 | 0.064 | 0.249 | 0.024 | 0.090 | 0.790 | −0.024 | 0.061 | 0.693 | ||||
2 | 0.019 | 0.037 | 0.619 | 0.005 | 0.055 | 0.925 | −0.052 | 0.035 | 0.141 | ||||
3 | 0.043 | 0.044 | 0.331 | 0.039 | 0.062 | 0.529 | −0.047 | 0.040 | 0.243 | ||||
4 | −0.095 | 0.096 | 0.320 | −0.135 | 0.140 | 0.335 | −0.102 | 0.096 | 0.287 | ||||
5 | −0.012 | 0.052 | 0.811 | −0.029 | 0.076 | 0.707 | 0.051 | 0.054 | 0.344 | ||||
6 | 0.047 | 0.117 | 0.688 | −0.028 | 0.164 | 0.864 | −0.075 | 0.110 | 0.495 | ||||
7 | 0.003 | 0.042 | 0.947 | −0.013 | 0.062 | 0.839 | 0.006 | 0.040 | 0.873 | ||||
rare | 0.049 | 0.106 | 0.648 | 0.171 | 0.152 | 0.260 | −0.036 | 0.103 | 0.724 | ||||
age | (Intercept) | 5.127 | 0.170 | 0.000 | 24.59 | 9.374 | 0.249 | 0.000 | 229.54 | 0.009 | 0.002 | 0.000 | 9.54 |
1 | 0.045 | 0.063 | 0.480 | 0.027 | 0.091 | 0.762 | 0.007 | 0.060 | 0.906 | ||||
2 | 0.024 | 0.038 | 0.524 | 0.006 | 0.055 | 0.906 | −0.052 | 0.034 | 0.122 | ||||
3 | 0.041 | 0.044 | 0.356 | 0.042 | 0.062 | 0.500 | −0.039 | 0.040 | 0.325 | ||||
4 | −0.071 | 0.097 | 0.463 | −0.139 | 0.137 | 0.314 | −0.131 | 0.093 | 0.163 | ||||
5 | −0.016 | 0,052 | 0.756 | −0.023 | 0.075 | 0.760 | 0.051 | 0.051 | 0.321 | ||||
6 | 0.012 | 0.127 | 0.925 | −0.015 | 0.162 | 0.924 | −0.061 | 0.109 | 0.576 | ||||
7 | 0.012 | 0.045 | 0.782 | −0.020 | 0.062 | 0.747 | 0.007 | 0.039 | 0.863 | ||||
rare | 0.010 | 0.103 | 0.921 | 0.179 | 0.152 | 0.240 | 0.001 | 0.101 | 0.992 | ||||
gender | (Intercept) | 4.430 | 0.057 | 0.000 | 40.66 | 9.381 | 0.078 | 0.000 | 232.83 | 1.079 | 0.047 | 0.000 | −37.29 |
1 | −0.237 | 0.121 | 0.052 | −0.281 | 0.170 | 0.100 | −0.012 | 0.103 | 0.909 | ||||
2 | −0.003 | 0.071 | 0.969 | −0.031 | 0.106 | 0.768 | 0.061 | 0.059 | 0.299 | ||||
3 | 0.023 | 0.087 | 0.788 | 0.007 | 0.120 | 0.954 | 0.059 | 0.071 | 0.409 | ||||
4 | 0.420 | 0.250 | 0.093 | 0.154 | 0.346 | 0.657 | −0.019 | 0.163 | 0.907 | ||||
5 | −0.045 | 0.099 | 0.652 | 0.030 | 0.147 | 0.837 | −0.214 | 0.086 | 0.014 | ||||
6 | 0.212 | 0.224 | 0.346 | 0.112 | 0.312 | 0.720 | −0.055 | 0.195 | 0.777 | ||||
7 | 0.031 | 0.086 | 0.719 | −0.054 | 0.120 | 0.650 | −0.049 | 0.067 | 0.458 | ||||
rare | −0.253 | 0.283 | 0.371 | 0.282 | 0.402 | 0.484 | 0.266 | 0.243 | 0.274 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Araque, A.; Giaquinta-Aranda, A.; Moreno-Sainz, C.; Martínez-Martínez, M.C.; Velasco-González, V.; Sainz-Gil, M.; Martín-Arias, L.H.; Carretero-Molinero, S.; García-Hidalgo, M.; Verde, Z. Haplotypes in the GC, CYP2R1 and CYP24A1 Genes and Biomarkers of Bone Mineral Metabolism in Older Adults. Nutrients 2022, 14, 259. https://doi.org/10.3390/nu14020259
Fernández-Araque A, Giaquinta-Aranda A, Moreno-Sainz C, Martínez-Martínez MC, Velasco-González V, Sainz-Gil M, Martín-Arias LH, Carretero-Molinero S, García-Hidalgo M, Verde Z. Haplotypes in the GC, CYP2R1 and CYP24A1 Genes and Biomarkers of Bone Mineral Metabolism in Older Adults. Nutrients. 2022; 14(2):259. https://doi.org/10.3390/nu14020259
Chicago/Turabian StyleFernández-Araque, Ana, Andrea Giaquinta-Aranda, Carmelo Moreno-Sainz, María Cruz Martínez-Martínez, Verónica Velasco-González, María Sainz-Gil, Luis H. Martín-Arias, Silvia Carretero-Molinero, Miguel García-Hidalgo, and Zoraida Verde. 2022. "Haplotypes in the GC, CYP2R1 and CYP24A1 Genes and Biomarkers of Bone Mineral Metabolism in Older Adults" Nutrients 14, no. 2: 259. https://doi.org/10.3390/nu14020259
APA StyleFernández-Araque, A., Giaquinta-Aranda, A., Moreno-Sainz, C., Martínez-Martínez, M. C., Velasco-González, V., Sainz-Gil, M., Martín-Arias, L. H., Carretero-Molinero, S., García-Hidalgo, M., & Verde, Z. (2022). Haplotypes in the GC, CYP2R1 and CYP24A1 Genes and Biomarkers of Bone Mineral Metabolism in Older Adults. Nutrients, 14(2), 259. https://doi.org/10.3390/nu14020259