Illustration of the Importance of Adjustment for within- and between-Person Variability in Dietary Intake Surveys for Assessment of Population Risk of Micronutrient Deficiency/Excess Using an Example Data Set
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Data Set
2.2. Dietary Intake Methodology
2.3. Application of the NCI Method in Estimation of Usual Intake of the Sample
2.3.1. Step 1: Input Day-1, Day-2 and Day-3 24-h Recall Intakes
2.3.2. Step 2: Calculate Balanced Repeated Replication Weights
2.3.3. Step 3: Fit the Model and Box-Cox Transform to Near Normality
2.3.4. Step 4: Simulate Usual Intakes Based on the Fitted Model
2.3.5. Step 5: Back-Transform to Original Scale
2.3.6. Step 6: Derive Percentiles and Proportions above/below Cut-Points
2.4. Statistics
3. Results
3.1. Minerals
3.2. Vitamins (Excluding B Vitamins)
3.3. B-Vitamins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labadarios, D.; Steyn, N.P.; Maunder, E.; MacIntryre, U.; Gericke, G.; Swart, R.; Huskisson, J.; Dannhauser, A.; Vorster, H.H.; Nesmvuni, A.E.; et al. The National Food Consumption Survey (NFCS): South Africa, 1999. Public Health Nutr. 2005, 8, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Senekal, M.; Nel, J.; Malczyk, S.; Drummond, L.; Steyn, N.P. Provincial Dietary Intake Study (PDIS): Micronutrient Intakes of Children in a Representative/Random Sample of 1- to <10-Year-Old Children in Two Economically Active and Urbanized Provinces in South Africa. Int. J. Environ. Res. Public Health 2020, 17, 5924. [Google Scholar] [CrossRef] [PubMed]
- Baye, K. Maximising benefits and minimising adverse effects of micronutrient interventions in low- and middle-income countries. Proc. Nutr. Soc. 2019, 78, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, Z.A.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S.; Webb, P.; Lartey, A.; Black, R.E.; The Lancet Nutrition Interventions Review Group; et al. Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet 2013, 382, 452–477. [Google Scholar] [CrossRef]
- Allen, L.; World Health Organization; Food and Agriculture Organization of the United Nations. Guidelines on Food Fortification with Micronutrients [Internet]; World Health Organization: Geneva, Switzerland; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Available online: http://catalog.hathitrust.org/api/volumes/oclc/152582146.html (accessed on 26 November 2021).
- National Cancer Institute; Division of Cancer Control & Population Sciences. Usual Dietary Intakes. 2020. Available online: https://epi.grants.cancer.gov/diet/usualintakes/#overvi (accessed on 8 October 2021).
- Willet, W. Chapter 3. Nature of Variation in Diet. In Nutritional Epidemiology, 3rd ed.; Willet, W., Ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Costa, M.d.M.; Takeyama, L.; Voci, S.M.; Slater, B.; Silva, M.V. Within- and between-person variations as determinant factors to calculate the number of observations to estimate usual dietary intake of adolescents. Rev. Bras. Epidemiol. 2008, 11, 541–548. [Google Scholar] [CrossRef]
- Piernas, C.; Wang, D.; Du, S.; Zhang, B.; Wang, Z.; Su, C.; Popkin, B.M. The double burden of under- and overnutrition and nutrient adequacy among Chinese preschool and school-aged children in 2009–2011. Eur. J. Clin. Nutr. 2015, 69, 1323–1329. [Google Scholar] [CrossRef] [Green Version]
- Dodd, K.W.; Guenther, P.M.; Freedman, L.S.; Subar, A.F.; Kipnis, V.; Midthune, D.; Tooze, J.A.; Krebs-Smith, S.M. Statistical methods for estimating usual intake of nutrients and foods: A review of the theory. J. Am. Diet. Assoc. 2006, 106, 1640–1650. [Google Scholar] [CrossRef]
- Tooze, J.A.; Kipnis, V.; Buckman, D.W.; Carroll, R.J.; Freedman, L.S.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Dodd, K.W. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The NCI method. Stat Med. 2010, 29, 2857–2868. [Google Scholar] [CrossRef] [Green Version]
- Basiotis, P.P.; Welsh, S.O.; Cronin, F.J.; Kelsay, J.L.; Mertz, W. Number of days of food intake records required to estimate individual and group nutrient intakes with defined confidence. J. Nutr. 1987, 117, 1638–1641. [Google Scholar] [CrossRef]
- Laureano, G.H.C.; Torman, V.B.L.; Crispim, S.P.; Dekkers, A.L.M.; Camey, S.A. Comparison of the ISU, NCI, MSM, and SPADE Methods for Estimating Usual Intake: A Simulation Study of Nutrients Consumed Daily. Nutrients 2016, 8, 166. [Google Scholar] [CrossRef]
- Gibson, R.S. Principles of Nutritional Assessment; Oxford University Press: Oxford, UK, 2005; 930p. [Google Scholar]
- Baranowski, T. Chapter 4. 24 Hour Recall and Diet Methods. In Nutritional Epidemiology, 3rd ed.; Willet, W., Ed.; Oxford University Press: Oxford, UK, 2012; 547p. [Google Scholar]
- Herrick, K.A.; Rossen, L.M.; Parsons, R.; Dodd, K.W. Estimating Usual Dietary Intake from National Health and Nutrition Examination Survey Data Using the National Cancer Institute Method. Vital Health Stat. 2018, 2, 1–63. [Google Scholar]
- Knüppel, S.; Norman, K.; Boeing, H. Is a Single 24-hour Dietary Recall per Person Sufficient to Estimate the Population Distribution of Usual Dietary Intake? J. Nutr. 2019, 149, 1491–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nleya, N.; Thompson, L. Survey Methodology in Violence-prone Khayelitsha, Cape Town, South Africa. IDS Bull. 2009, 40, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, F.d.S.; Sichieri, R.; Junger, W.L. Assessing usual dietary intake in complex sample design surveys: The National Dietary Survey. Rev. Saude Publica 2013, 47 (Suppl. 1), 171S–176S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nusser, S.M.; Carriquiry, A.L.; Dodd, K.W.; Fuller, W.A. A Semiparametric Transformation Approach to Estimating Usual Daily Intake Distributions. J. Am. Stat. Assoc. 1996, 91, 1440–1449. [Google Scholar] [CrossRef]
- Haubrock, J.; Nöthlings, U.; Volatier, J.-L.; Dekkers, A.; Ocké, M.; Harttig, U.; Illner, A.K.; Knüppel, S.; Andersen, L.F.; Boeing, H.; et al. Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J. Nutr. 2011, 141, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Dekkers, A.L.M.; Verkaik-Kloosterman, J.; van Rossum, C.T.M.; Ocké, M.C. SPADE, a new statistical program to estimate habitual dietary intake from multiple food sources and dietary supplements. J. Nutr. 2014, 144, 2083–2091. [Google Scholar] [CrossRef] [Green Version]
- Souverein, O.W.; Dekkers, A.L.; Geelen, A.; Haubrock, J.; de Vries, J.H.; Ocké, M.C.; Harttig, U.; Boeing, H.; Van’T Veer, P. Comparing four methods to estimate usual intake distributions. Eur. J. Clin. Nutr. 2011, 65 (Suppl. 1), S92–S101. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.L.; de Castro, M.A.; Crispim, S.P.; Fisberg, R.M.; Isasi, C.R.; Mossavar-Rahmani, Y.; Van Horn, L.; Carnethon, M.R.; Daviglus, M.L.; Perreira, K.M.; et al. Comparing Methods from the National Cancer Institute vs Multiple Source Method for Estimating Usual Intake of Nutrients in the Hispanic Community Health Study/Study of Latino Youth. J. Acad. Nutr. Diet. 2021, 121, 59–73.e16. [Google Scholar] [CrossRef]
- Steyn, N.P.; Nel, J.H.; Malczyk, S.; Drummond, L.; Senekal, M. Provincial Dietary Intake Study (PDIS): Energy and macronutrient intakes of children in a representative/random sample of 1–<10-year-old children in two economically active and urbanized provinces in South Africa. Int. J. Environ. Res. Public Health 2020, 17, 1717. [Google Scholar]
- StatsSA. Statistics South Africa, Mid-Year Population Estimates 2020; StatsSA: Pretoria, South Africa, 2021. [Google Scholar]
- ICF International. Demographic and Health Survey Sampling and Household Listing Manual: Measure DHS; Inner City Fund (ICF) International: Calverton, MD, USA, 2012. [Google Scholar]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, R.D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN Study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Van Graan, A.E.; Chetty, J.M.; Links, M.R. Food Composition Tables for South Africa, 5th ed.; South African Medical Research Council: Cape Town, South Africa, 2017. [Google Scholar]
- Davis, K.A.; Gonzalez, A.; Loukine, L.; Qiao, C.; Sadeghpour, A.; Vigneault, M.; Wang, K.C.; Ibañez, D. Early Experience Analyzing Dietary Intake Data from the Canadian Community Health Survey-Nutrition Using the National Cancer Institute (NCI) Method. Nutrients 2019, 11, 1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Bureau of Statistics. Chapter—Data Quality [Internet]. c=AU; o=Commonwealth of Australia; ou=Australian Bureau of Statistics. 2015. Available online: https://www.abs.gov.au/AUSSTATS/[email protected]/Lookup/4363.0.55.001Chapter651042011-13 (accessed on 29 November 2021).
- Luo, H.; Dodd, K.W.; Arnold, C.D.; Engle-Stone, R. A new statistical method for estimating usual intakes of nearly-daily consumed foods and nutrients through use of only one 24-hour dietary recall. J. Nutr. 2019, 149, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Korn, E.L.; Graubard, B.I. Analysis of Health Surveys; John Wiley & Sons: Hoboken, NJ, USA, 2011; 408p. [Google Scholar]
- Judkins, D. Fay’s method for variance estimation. J. Off. Stat. 1990, 6, 223–239. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. 2021. Available online: https://www.nap.edu/read/11537/chapter/1#iii (accessed on 30 November 2021).
- US Department of Health and Human Services. Software for Measurement Error in Nutrition Research. 2021. Available online: https://prevention.cancer.gov/research-groups/biometry/measurement-error-impact/software-measurement-error (accessed on 30 November 2021).
Age 1–<3 Years n = 333 | Age 3–<6 Years n = 514 | Age 6–<10 Years n = 479 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Nutrient | Usual Intake | Day-1 Intake | % Diff | Usual Intake | Day-1 Intake | % Diff | Usual Intake | Day-1 Intake | % Diff | |
Calcium (mg/day) | Mean (SE) | 423.3 (45.3) | 424.5 (19.1) | −0.3 | 350.9 (6.4) | 348.5 (19.2) | 0.7 | 351.8 (13.6) | 352.2 (13.5) | −0.1 |
Median (SE) | 378.0 (39.2) | 339.0 (19.9) | 11.5 *** | 329.2 (4.4) | 288.3 (22.9) | 14.2 *** | 331.3 (15.0) | 299.9 (15.0) | 10.5 *** | |
Iron (mg/day) | Mean (SE) | 7.8 (0.5) | 7.7 (0.3) | 1.3 | 8.9 (0.1) | 8.9 (0.3) | 0.0 | 10.6 (0.1) | 10.6 (0.2) | 0.0 |
Median (SE) | 7.3 (0.4) | 7.2 (0.3) | 1.4 ** | 8.8 (0.1) | 8.6 (0.3) | 2.3 ** | 10.3 (0.1) | 9.7 (0.2) | 6.2 ** | |
Zinc (mg/day) | Mean (SE) | 6.5 (0.4) | 6.4 (0.2) | 1.6 | 7.3 (0.1) | 7.3 (0.2) | 0.0 | 8.5 (0.2) | 8.5 (0.2) | 0.0 |
Median (SE) | 6.2 (0.4) | 6.0 (0.2) | 3.3 * | 7.1 (0.1) | 6.8 (0.3) | 4.4 ** | 8.3 (0.1) | 7.9 (0.2) | 5.1 * |
Nutrient (Box-Cox TP) | Age: 1–<3 Years | Age: 3–<6 Years | Age: 6–<10 Years | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Var_e | Var_u | Ratio | CV (%) | Var_e | Var_u | Ratio | CV (%) | Var_e | Var_u | Ratio | CV (%) | |
Calcium (λ = 0.24) | 7.12 | 4.48 | 1.58 | 10.7 | 7.30 | 1.13 | 6.46 | 1.8 | 4.67 | 2.51 | 1.86 | 3.9 |
Iron (λ = 0.18) | 0.24 | 0.24 | 1.00 | 7.1 | 0.28 | 0.08 | 3.50 | 1.4 | 0.22 | 0.13 | 1.69 | 1.1 |
Zinc (λ = 0.20) | 0.28 | 0.19 | 1.47 | 6.9 | 0.31 | 0.11 | 2.82 | 2.0 | 0.29 | 0.13 | 2.23 | 1.8 |
Day-1 Intake | Usual Intake | Difference 1 for % < EAR and (% > UL) | ||||
---|---|---|---|---|---|---|
Age Group | % < EAR (95% CI) | % > UL (95% CI) | % < EAR (95% CI) | % > UL (95% CI) | ||
Calcium (mg/day) EAR-UL: 1–3 years = 500–2500 mg; 4–8 years = 800–2500 mg; 9–<10 years = 1100–3000 mg | 1–<3 years (n = 333) | 66.2 (59.9–72.6) | 0.0 (-) | 70.2 (51.1–89.3) | 0.0 (-) | 4.0% (0.0%) |
3–<6 years (n = 514) | 87.3 (83.3–91.2) | 0.0 (-) | 94.8 (91.5–98.2) | 0.0 (-) | 7.5% (0.0%) | |
6–<10 years (n = 479) | 95.9 (93.5–98.2) | 0.0 (-) | 99.4 (98.3–100.0) | 0.0 (-) | 3.5% (0.0%) | |
Iron (mg/day) EAR-UL: 1–3 years = 3–40 mg; 4–8 years = 4.1–40 mg; Male:9–<10 years = 5.9–40 mg; Female:9–<10 years = 5.7–40 mg | 1–<3 years (n = 333) | 3.4 (1.0–5.7) | 0.0 (-) | 1.0 (0.0–3.2) | 0.0 (-) | −2.4% (0.0%) |
3–<6 years (n = 514) | 2.7 (1.0–4.3) | 0.0 (-) | 0.01 (0.0–0.1) | 0.0 (-) | −2.7% (0.0%) | |
6–<10 years (n = 479) | 2.5 (0.9–4.2) | 0.0 (-) | 0.3 (0.0–0.8) | 0.0 (-) | −2.2% (0.0%) | |
Zinc (mg/day) EAR-UL: 1–3 years = 2.2–7 mg; 4–8 years = 4–12 mg; 9–10 years = 7–23 mg | 1–<3 years (n = 333) | 1.6 (0.0–3.4) | 35.0 (28.8–41.2) | 0.1 (0.0–0.5) | 35.3 (13.5–57.1) | −1.5% (0.3%) |
3–<6 years (n = 514) | 8.9 (6.2–11.7) | 21.6 (16.9–26.3) | 0.5 (0.0–1.6) | 20.9 (17.2–24.6) | −8.4% (−0.7%) | |
6–<10 years (n = 479) | 12.4 (8.8–15.9) | 13.2 (9.7–16.8) | 4.9 (2.7–7.0) | 4.7 (0.0–9.5) | −7.5% (−8.5%) |
Mineral | Age Group (Years) | Foods Contributing to Nutrient Intake (% Eaters, % Contribution to Total Nutrient Intake) |
---|---|---|
Calcium | Age 1–<3 | Whole milk (44%, 24%), BMS (14%, 17%), Maize porridge (79%, 12%), Maas/sour milk (17%, 10%), Yoghurt (18%, 6%) |
Age 3–<6 | Whole milk (49%, 24%), Maize porridge (74%, 15%), Maas/sour milk (11%, 8%), Yoghurt (14%, 7%), Pilchards/sardines (8%, 6%) | |
Age 6–<10 | Whole milk (48%, 22%), Pilchards/sardines (13%, 11%), Maize porridge (72%, 10%), Cheese (11%, 6%), Dairy fruit mix (11%, 5%) | |
Iron * | Age 1–<3 | Maize porridge (79%, 30%), BMS (14%, 10%), High fiber cereals (20%, 7%), White bread (25%, 5%), Brown bread (22%, 4%) |
Age 3–<6 | Maize porridge (74%, 26%), White bread (38%, 10%), Brown bread (32%, 8%), High fiber cereals (22%, 7%), Organ meat (9%, 4%) | |
Age 6–<10 | Maize porridge (72%, 21%), White bread (50%, 15%), Brown bread (32%, 10%), Low fiber cereals (14%, 5%), High fiber cereals (13%, 4%) | |
Zinc * | Age 1–<3 | Maize porridge (79%, 32%), BMS (14%, 10%), Chicken (41%, 6%), Beef (11%, 6%), Whole milk (44%, 5%) |
Age 3–<6 | Maize porridge (74%, 29%), Brown bread (32%, 11%), Beef (13%, 8%), Chicken (49%, 7%), White bread (38%, 7%) | |
Age 6–<10 | Maize porridge (72%, 24%), Brown bread (32%, 13%), White bread (50%, 11%), Beef (16%, 9%), Chicken (45%, 6%) |
Age 1–<3 Years n = 333 | Age 3–<6 Years n = 514 | Age 6–<10 Years n = 479 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Nutrient | Usual Intake | Day-1 Intake | % Diff | Usual intake | Day-1 intake | % Diff | Usual Intake | Day-1 Intake | % Diff | |
Vitamin A (ug/day) | Mean (SE) | 574.2 (67.5) | 592.8 (41.5) | −3.1 | 607.0 (23.6) | 639.2 (50.2) | −5.0 | 623.8 (61.7) | 694.3 (58.8) | −10.2 |
Median (SE) | 529.5 (54.3) | 367.6 (22.2) | 44.0 *** | 580.5 (47.8) | 400.7 (19.9) | 44.9 *** | 550.3 (31.7) | 433.2 (23.7) | 27.0 *** | |
Vitamin C (mg/day) | Mean (SE) | 47.6 (2.9) | 46.6 (3.4) | 2.2 | 39.4 (1.5) | 40.8 (3.4) | −3.4 | 42.4 (2.9) | 43.6 (3.8) | −2.8 |
Median (SE) | 40.2 (2.6) | 32.7 (4.0) | 22.9 *** | 36.6 (1.4) | 23.6 (2.0) | 55.1 *** | 37.2 (2.0) | 27.3 (1.7) | 36.3 *** | |
Vitamin D (ug/day) | Mean (SE) | 2.8 (0.3) | 2.9 (0.3) | −3.4 | 2.4 (0.1) | 2.4 (0.2) | 0.0 | 3.3 (0.1) | 3.2 (0.2) | 3.1 |
Median (SE) | 2.2 (0.3) | 1.1 (0.1) | 100.0 *** | 2.3 (0.1) | 1.2 (0.1) | 91.7 *** | 2.9 (0.2) | 2.0 (0.2) | 45.0 *** | |
Vitamin E (mg/day) | Mean (SE) | 8.1 (0.3) | 7.9 (0.5) | 2.5 | 8.2 (0.2) | 8.2 (0.4) | 0.0 | 11.1 (0.4) | 11.0 (0.5) | 0.9 |
Median (SE) | 7.3 (0.3) | 6.2 (0.3) | 17.7 *** | 7.5 (0.4) | 6.0 (0.3) | 25.0 *** | 10.1 (0.5) | 8.2 (0.4) | 23.2 *** |
Nutrient (Box-Cox TP) | Age: 1–<3 Years | Age: 3–<6 Years | Age: 6–<10 Years | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Var_e | Var_u | Ratio | CV(%) | Var_e | Var_u | Ratio | CV(%) | Var_e | Var_u | Ratio | CV(%) | |
Vitamin A (λ = 0.00) | 0.48 | 0.15 | 3.20 | 11.8 | 0.67 | 0.07 | 9.57 | 3.9 | 0.45 | 0.24 | 1.88 | 9.9 |
Vitamin C (λ = 0.29) | 5.93 | 4.31 | 1.38 | 6.0 | 7.3 | 0.98 | 7.45 | 3.8 | 5.59 | 2.68 | 2.09 | 6.7 |
Vitamin D (λ = 0.26) | 1.82 | 1.11 | 1.64 | 11.5 | 2.71 | 0.01 | 271.00 | 5.1 | 2.14 | 0.67 | 3.19 | 4.2 |
Vitamin E (λ = 0.14) | 0.93 | 0.32 | 2.91 | 3.5 | 0.78 | 0.36 | 2.17 | 2.9 | 0.77 | 0.44 | 1.75 | 3.4 |
Day-1 Intake | Usual Intake | Difference 1 for % < EAR & (% < UL) | ||||
---|---|---|---|---|---|---|
% < EAR | % > UL | % < EAR | % > UL | |||
Vitamin A (ug/day) EAR-UL: 1–3 years = 210–600 ug; 4–8 years = 275–900 ug; Male: 9–<10 years = 445–1700 ug; Female: 9–<10 years = 420–1700 ug | 1–<3 years (n = 333) | 16.1 (11.5–20.7) | 27.8 (22.3–33.3) | 1.2 (0.0–4.1) | 37.5 (10.3–64.7) | 14.9% (9.7%) |
3–<6 years (n = 514) | 24.5 (19.7–29.4) | 18.7 (13.6–23.9) | 0.4 (0.0–4.2) | 21.5 (16.1–27.0) | 24.1% (2.8%) | |
6–<10 years (n = 479) | 29.3 (24.9–33.8) | 12.1 (8.4–15.8) | 12.0 (6.9–17.0) | 13.7 (0.0–27.4) | 17.3% (1.6%) | |
Vitamin C (mg/day) EAR-UL: 1–3 years = 13–400 mg; 4–8 years = 22–650 mg; 9–<10 years = 39–1200 mg | 1–<3 years (n = 333) | 21.3 (14.8–27.8) | 0.0 (-) | 7.4 (3.0–11.8) | 0.0 (-) | 13.9% (0.0%) |
3–<6 years (n = 514) | 39.1 (33.0–45.2) | 0.0 (-) | 9.0 (0.0–20.0) | 0.0 (-) | 30.1% (0.0%) | |
6–<10 years (n = 479) | 40.3 (34.4–46.2) | 0.0 (-) | 25.3 (11.8–38.8) | 0.0 (-) | 15.0% (0.0%) | |
Vitamin D (ug/day) EAR-UL: 1–3 years = 10–63 ug; 4–8 years = 10–75 ug; 9–<10 years = 10–100 ug | 1–<3 years (n = 333) | 94.3 (90.8–97.8) | 0.0 (-) | 98.2 (96.9–99.4) | 0.0 (-) | 3.9% (0.0%) |
3–<6 years (n = 514) | 96.5 (94.3–98.7) | 0.0 (-) | 100.0 (-) | 0.0 (-) | 3.5% (0.0%) | |
6–<10 years (n = 479) | 93.8 (91.0–96.5) | 0.0 (-) | 99.3 (98.3–100.0) | 0.0 (-) | 5.5% (0.0%) | |
Vitamin E (mg/day) EAR-UL: 1–3 years = 5–90 mg; 4–8 years = 6–135 mg; 9–<10 years = 9–270 mg | 1–<3 years (n = 333) | 36.2 (29.5–43.0) | 0.0 (-) | 18.2 (7.9–28.4) | 0.0 (-) | −18.0% (0.0%) |
3–<6 years (n = 514) | 46.6 (41.7–51.5) | 0.0 (-) | 26.9 (10.2–43.5) | 0.0 (-) | −19.7% (0.0%) | |
6–<10 years (n = 479) | 35.2 (29.9–40.5) | 0.0 (-) | 18.8 (8.5–29.2) | 0.0 (-) | 16.4% (0.0%) |
Vitamin | Age Group (Years) | Foods Contributing to Nutrient Intake (% Eaters, % Contribution to Total Nutrient Intake) |
---|---|---|
Vitamin A * | Age 1–<3 | Maize porridge (79%, 27%), Vegetables-carotene (other) (9%, 14%), Organ meat (5%, 11%), BMS (14%, 10%), Whole milk (44%, 7%) |
Age 3–<6 | Organ meat (9%, 32%), Maize porridge (74%, 22%), Vegetables-carotene (other) (10%, 12%), Whole milk (49%, 5%), PUM fat (28%, 4%) | |
Age6–<10 | Organ meat (9%, 27%), Maize porridge (72%, 22%), Vegetables-carotene (other) (9%, 10%), White bread (50%, 7%), PUM fat (35%, 7%) | |
Vitamin C | Age 1–<3 | Fruit fresh vitamin C rich (12%, 15%), BMS (14%, 15%), Potato/sweet potato (33%, 14%), Fruit juice (6%, 14%), Vegetables- vitamin C rich (24%, 8%) |
Age 3–<6 | Fruit juice (7%, 18%), Potato/sweet potato (31%, 16%), Fruit fresh vitamin C (8%, 16%), Vegetables-vitamin C rich (28%, 12%), Maize porridge (74%, 9%) | |
Age 6–<10 | Fruit juice (7%, 23%), Fruit fresh-vitamin C rich (9%, 17%), Potato/sweet potato (33%, 15%), Vegetables-vitamin C rich (31%, 13%), Maize porridge (72%, 5%) | |
Vitamin D | Age 1–<3 | BMS (14%, 30%), eggs (14%, 25%), Pilchards/sardines (6%, 16%), PUM fat (21%, 5%), Whole milk (44%, 3%) |
Age 3–<6 | Eggs (11%, 26%), Pilchards/sardines (8%, 25%), PUM fat (28%, 12%), Dairy fruit mix (13%, 5%), Chicken (49%, 4%) | |
Age 6–<10 | Pilchards/sardines (13%, 32%), Eggs (12%, 23%), PUM fat (35%, 13%), Fat cakes (7%, 4%), Cereal low fiber (14%, 4%) | |
Vitamin E | Age 1–<3 | PU fat/oil (12%, 15%), Maize porridge (79%, 11%), BMS (14%, 11%), Salty snacks (44%, 8%), PUM fat (21%, 7%) |
Age 3–<6 | PU fat/oil (14%, 17%), PUM fat (28%, 13%), Maize porridge (74%, 11%), Salty snacks (48%, 9%), Vegetables- vitamin C (28%, 6%) | |
Age 6–<10 | PU fat/oil (18%, 18%), PUM fat (35%, 17%), Salty snacks (54%, 9%), Maize porridge (72%, 7%), Fat cakes (7%, 7%) |
Age 1–<3 Years n = 333 | Age 3–<6 Years n = 514 | Age 6–<10 Years n = 479 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Nutrient | Usual Intake | Day-1 Intake | % Diff | Usual Intake | Day-1 Intake | % Diff | Usual Intake | Day-1 Intake | % Diff | |
Thiamine (mg/day) | Mean (SE) | 1.0 (0.03) | 1.0 (0.04) | 0.0 | 1.0 (0.01) | 1.0 (0.03) | 0.0 | 1.2 (0.03) | 1.2 (0.02) | 0.0 |
Median (SE) | 0.9 (0.01) | 0.9 (0.04) | 0.0 | 1.0 (0.02) | 0.9 (0.03) | 11.1 *** | 1.1 (0.03) | 1.1 (0.04) | 0.0 * | |
Niacin (mgNE/day) | Mean (SE) | 11.5 (0.4) | 11.5 (0.4) | 0.0 | 14.2 (0.2) | 14.2 (0.4) | 0.0 | 17.2 (0.4) | 17.3 (0.4) | −0.6 |
Median (SE) | 11.3 (0.3) | 10.6 (0.4) | 6.6 ** | 13.8 (0.2) | 13.2 (0.4) | 4.6 ** | 16.8 (0.4) | 16.7 (0.5) | 0.6 * | |
Riboflavin (mg/day) | Mean (SE) | 0.9 (0.1) | 0.9 (0.04) | 0.0 | 0.9 (0.02) | 0.9 (0.03) | 0.0 | 1.0 (0.03) | 1.0 (0.04) | 0.0 |
Median (SE) | 0.8 (0.1) | 0.8 (0.04) | 0.0 ** | 0.9 (0.02) | 0.8 (0.05) | 12.5 *** | 0.9 (0.02) | 0.9 (0.04) | 0.0 *** | |
Vitamin B6 (mg/day) | Mean (SE) | 1.4 (0.05) | 1.4 (0.05) | 0.0 | 1.8 (0.01) | 1.8 (0.04) | 0.0 | 2.5 (0.04) | 2.5 (0.1) | 0.0 |
Median (SE) | 1.3 (0.04) | 1.2 (0.1) | 8.3 * | 1.8 (0.02) | 1.7 (0.05) | 5.9 *** | 2.4 (0.04) | 2.2 (0.1) | 9.1 ** | |
Vitamin B12 (ug/day) | Mean (SE) | 2.2 (0.1) | 2.3 (0.3) | −4.4 | 2.9 (0.1) | 3.3 (0.4) | −12.1 | 4.3 (0.4) | 4.7 (0.6) | −8.5 |
Median (SE) | 1.7 (0.5) | 1.1 (0.1) | 54.6 *** | 2.9 (0.2) | 1.3 (0.1) | 123.1 *** | 3.5 (0.3) | 1.7 (0.1) | 105.8 *** | |
Folate (ug/day) | Mean (SE) | 225.4 (12.7) | 225.0 (12.1) | 0.2 | 253.2 (4.0) | 253.2 (11.6) | 0.0 | 282.1 (7.5) | 284.6 (7.9) | −0.9 |
Median (SE) | 210.1 (10.5) | 200.0 (9.8) | 5.1 ** | 238.7 (9.9) | 202.3 (11.8) | 18.0 *** | 266.0 (5.5) | 242.9 (5.5) | 9.5 ** |
Nutrient (Box-Cox TP) | Age: 1–<3 Years | Age: 3–<6 Years | Age: 6–<10 Years | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Var_e | Var_u | Ratio | CV (%) | Var_e | Var_u | Ratio | CV (%) | Var_e | Var_u | Ratio | CV (%) | |
Thiamine (λ = 0.26) | 0.11 | 0.11 | 1.00 | 2.9 | 0.12 | 0.07 | 1.71 | 1.3 | 0.10 | 0.08 | 1.25 | 2.9 |
Niacin (λ = 0.34) | 1.06 | 0.19 | 5.58 | 3.2 | 0.76 | 0.44 | 1.73 | 1.7 | 0.85 | 0.54 | 1.57 | 2.2 |
Riboflavin (λ = 0.18) | 0.22 | 0.16 | 1.38 | 9.8 | 0.24 | 0.06 | 4.00 | 2.7 | 0.17 | 0.15 | 1.13 | 2.7 |
Vitamin B6 (λ = 0.20) | 0.21 | 0.06 | 3.50 | 3.4 | 0.25 | 0.06 | 4.17 | 0.8 | 0.23 | 0.13 | 1.77 | 1.5 |
Vitamin B12 (λ = 0.13) | 1.27 | 0.62 | 2.05 | 5.9 | 2.48 | 0.03 | 2.67 | 4.2 | 2.01 | 0.71 | 2.83 | 9.0 |
Folate (λ = 0.07) | 0.44 | 0.28 | 1.57 | 5.7 | 0.52 | 0.23 | 2.26 | 1.6 | 0.38 | 0.23 | 1.65 | 2.7 |
Day-1 Intake | Usual Intake | Difference 1 in % < EAR & % > UL | ||||
---|---|---|---|---|---|---|
% < EAR | % > UL | % < EAR | % > UL | |||
Thiamine (mg/day)EAR: 1–3 years = 0.4 mg; 4–8 years = 0.5 mg; 9–<10 years = 0.7 mg; No UL | 1–<3 years (n = 333) | 4.8 (1.5–8.0) | - | 1.6 (0.0–4.8) | - | 3.2% |
3–<6 years (n = 514) | 6.9 (4.0–9.7) | 0.7 (0.0–2.7) | 6.2% | |||
6–<10 years (n = 479) | 4.8 (2.0–7.6) | 1.3 (0.0–3.1) | 3.5% | |||
Niacin (mgNE/day) EAR-UL: 1–3 years = 5–10 mgNE; 4–8 years = 6–15 mgNE; 9–<10 years = 9–20 mgNE | 1–<3 years (n = 333) | 10.7 (6.6–14.9) | 56.0 (49.5–62.4) | 0.1 (0.0–0.9) | 0.0 (-) | 10.6% (−56.0%) |
3–<6 years (n = 514) | 5.9 (3.3–8.5) | 51.2 (46.5–55.9) | 0.3 (0.0–1.0) | 0.0 (-) | 5.6% (−51.2%) | |
6–<10 years (n = 479) | 5.4 (3.1–7.7) | 56.8 (51.7–61.8) | 0.5 (0.2–0.8) | 0.0 (-) | 4.9% (−56.8%) | |
Riboflavin (mg/day) EAR: 1–3 years = 0.4 mg; 4–8 years = 0.5 mg; 9–<10 years = 0.8 mg; No UL | 1–<3 years (n = 333) | 17.4 (11.2–23.7) | 5.6 (0.0–12.6) | 11.8% | ||
3–<6 years (n = 514) | 19.5 (14.3–24.7) | 2.3 (0.0–8.1) | 17.2% | |||
6–<10 years (n = 479) | 23.4 (18.5–28.2) | 11.4 (4.9–18.0) | 12.0% | |||
Vitamin B6 (mg/day) EAR-UL: 1–3 years = 0.4–30 mg; 4–8 years = 0.5–40 mg; 9–<10 years = 0.8–60 mg | 1–<3 years (n = 333) | 2.5 (0.7–4.3) | 0.0 (-) | 0.0 (-) | 0.0 (-) | 2.5% (0.0%) |
3–<6 years (n = 514) | 2.6 (0.9–4.3) | 0.0 (-) | 0.0 (-) | 0.0 (-) | 2.6% (0.0%) | |
6–<10 years (n = 479) | 0.8 (0.0–1.6) | 0.0 (-) | 0.0 (-) | 0.0 (-) | 0.8% (0.0%) | |
Vitamin B12 (ug/day) EAR: 1–3 years = 0.7 ug; 4–8 years = 1.0 ug; 9–<10 years = 1.5 ug; No UL | 1–<3 years (n = 333) | 34.4 (27.0–41.8) | 14.3 (0.0–56.4) | 20.1% | ||
3–<6 years (n = 514) | 36.7 (30.9–42.4) | 0.0 (-) | 36.7% | |||
6–<10 years (n = 479) | 35.0 (29.6–40.3) | 5.4 (0.0–13.2) | 29.6% | |||
Folate (ug/day) EAR-UL: 1–3 years = 120–300 ug; 4–8 years = 160–400 ug; 9–<10 years = 250–600 ug | 1–<3 years (n = 333) | 22.9 (16.6–29.3) | 20.8 (15.5–26.0) | 9.6 (0.0–22.1) | 18.6 (6.1–31.2) | 13.3% (−2.4%) |
3–<6 years (n = 514) | 26.5 (21.1–31.9) | 21.6 (16.1–27.1) | 10.3 (0.0–22.2) | 14.6 (9.2–19.9) | 16.2% (−7.0%) | |
6–<10 years (n = 479) | 27.8 (23.4–32.2) | 16.2 (11.5–20.9) | 15.5 (12.4–18.6) | 11.1 (6.4–15.9) | 12.3% (−4.4%) |
Vitamin | Age Group (Years) | Foods Contributing to Nutrient Intake (% Eaters, % Contribution to Total Nutrient Intake) |
---|---|---|
Thiamine * | Age 1–<3 | Maize porridge (79%, 42%), BMS (14%, 9%), High fiber cereal (20%, 6%), Potato/sweet potato (33%, 4%), Brown bread (22%, 4%) |
Age 3–<6 | Maize porridge (74%, 39%), Brown bread (32%, 8%), High fiber cereal (22%, 7%), White bread (38%, 7%), Potato/sweet potato (31%, 4%) | |
Age 6–<10 | Maize porridge (72%, 35%), White bread (50%, 11%), Brown bread (32%, 10%), Low fiber cereal (14%, 5%), Processed meat (32%, 4%) | |
Niacin * | Age 1–<3 | Maize porridge (79%, 26%), Chicken (41%, 20%), High fiber cereal (20%, 7%), Brown bread (22%, 6%), White bread (25%, 5%) |
Age 3–<6 | Chicken (49%, 20%), Maize porridge (74%, 20%), Brown bread (32%, 10%), White bread (38%, 10%), High fiber cereal (22%, 7%) | |
Age 6–<10 | Maize porridge (72%, 17%), Chicken (45%, 17%), White bread (50%, 15%), Brown bread (32%, 12%), Pilchards/sardines (13%, 6%) | |
Riboflavin * | Age 1–<3 | Maize porridge (79%, 17%), BMS (14%, 14%), Whole milk (44%, 14%), High fiber cereal (20%, 9%), Maas/sour milk (17%, 4%) |
Age 3–<6 | Maize porridge (74%, 17%), Whole milk (49%, 12%), High fiber cereal (22%, 10%), Organ meat (9%, 10%), Chicken (49%, 5%) | |
Age 6–<10 | Maize porridge (72%, 15%), Whole milk (48%, 10%), Organ meat (9%, 8%), Low fiber cereal (14%, 8%), High fiber cereal (13%, 6%) | |
Vitamin B6 * | Age 1–<2 | Maize porridge (79%, 33%), White bread (25%, 12%), Brown bread (22%, 12%), Potato/sweet potato (33%, 6%), BMS (14%, 5%) |
Age 3–<6 | Maize porridge (74%, 24%), White bread (38%, 22%), Brown bread (32%, 20%), Potato/sweet potato (31%, 6%), Chicken (49%, 3%) | |
Age 6–<10 | White bread (50%, 31%), Brown bread (32%, 21%), Maize porridge (72%, 18%), Potato/sweet potato (33%, 5%), Low fiber cereal (14%, 3%) | |
Vitamin B12 | Age 1–<2 | Pilchards/sardines (6%, 32%), Whole milk (44%, 15%), Organ meat (5%, 11%), Eggs (14%, 6%), Beef (11%, 6%) |
Age 3–<6 | Organ meat (9%, 42%), Pilchards/sardines (8%, 24%), Whole milk (49%, 8%), Beef (13%, 6%), Eggs (11%, 3%) | |
Age 6–<10 | Pilchards/sardines (13%, 36%), Organ meat (9%, 30%), Beef (16%, 8%), Whole milk (48%, 6%), Eggs (12%, 3%) | |
Folate * | Age 1–<2 | Maize porridge (79%, 56%), BMS (14%, 5%), Brown bread (22%, 5%), Organ meat (5%, 5%), White bread (25%, 4%) |
Age 3–<6 | Maize porridge (74%, 48%), Organ meat (9%, 9%), Brown bread (32%, 9%), White bread (38%, 7%), Low fiber cereal (10%, 3%) | |
Age 6–<10 | Maize porridge (72%, 43%), White bread (50%, 12%), Brown bread (32%, 11%), Organ meat (9%, 7%), Low fiber cereal (14%, 4%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nel, J.H.; Steyn, N.P.; Senekal, M. Illustration of the Importance of Adjustment for within- and between-Person Variability in Dietary Intake Surveys for Assessment of Population Risk of Micronutrient Deficiency/Excess Using an Example Data Set. Nutrients 2022, 14, 285. https://doi.org/10.3390/nu14020285
Nel JH, Steyn NP, Senekal M. Illustration of the Importance of Adjustment for within- and between-Person Variability in Dietary Intake Surveys for Assessment of Population Risk of Micronutrient Deficiency/Excess Using an Example Data Set. Nutrients. 2022; 14(2):285. https://doi.org/10.3390/nu14020285
Chicago/Turabian StyleNel, Johanna H., Nelia P. Steyn, and Marjanne Senekal. 2022. "Illustration of the Importance of Adjustment for within- and between-Person Variability in Dietary Intake Surveys for Assessment of Population Risk of Micronutrient Deficiency/Excess Using an Example Data Set" Nutrients 14, no. 2: 285. https://doi.org/10.3390/nu14020285
APA StyleNel, J. H., Steyn, N. P., & Senekal, M. (2022). Illustration of the Importance of Adjustment for within- and between-Person Variability in Dietary Intake Surveys for Assessment of Population Risk of Micronutrient Deficiency/Excess Using an Example Data Set. Nutrients, 14(2), 285. https://doi.org/10.3390/nu14020285