Bone Mineral Density Changes in Long-Term Kidney Transplant Recipients: A Real-Life Cohort Study of Native Vitamin D Supplementation
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Study Population
3.2. First DEXA Assessment
3.3. Follow-Up DEXA Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taweesedt, P.T.; Disthabanchong, S. Mineral and bone disorder after kidney transplantation. World J. Transplant. 2015, 5, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.J.; Kim, H.; Yang, J. Bone disease in post-transplant patients. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 452–458. [Google Scholar] [CrossRef]
- Altman, A.; Sprague, S.M. Mineral and Bone Disease in Kidney Transplant Recipients. Curr. Osteoporos. Rep. 2018, 16, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Courbebaisse, M.; Thervet, E.; Souberbielle, J.C.; Zuber, J.; Eladari, D.; Martinez, F.; Bruneel, M.-F.M.; Urena, P.; Legendre, C.; Friedlander, G.; et al. Effects of vitamin D supplementation on the calcium–phosphate balance in renal transplant patients. Kidney Int. 2009, 75, 646–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney Int. 2017, 92, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Obi, Y.; Ichimaru, N.; Sakaguchi, Y.; Iwadoh, K.; Ishii, D.; Sakai, K.; Iwami, D.; Harada, H.; Sumida, K.; Sekine, A.; et al. CANDLE-KIT Trial Investigators. Correcting anemia and native vitamin D supplementation in kidney transplant recipients: A multicenter, 2 × 2 factorial, open-label, randomized clinical trial. Transpl Int. 2021, 34, 1212–1225. [Google Scholar] [CrossRef]
- Sarno, G.; Nappi, R.; Altieri, B.; Tirabassi, G.; Muscogiuri, E.; Salvio, G.; Paschou, S.A.; Ferrara, A.; Russo, E.; Vicedomini, D.; et al. Current evidence on vitamin D deficiency and kidney transplant: What’s new? Rev. Endocr. Metab. Disord. 2017, 18, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Mainra, R.; Elder, G.J. Individualized therapy to prevent bone mineral density loss after kidney and kidney-pancreas transplantation. Clin. J. Am. Soc. Nephrol. 2010, 5, 117–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, A.; García, S.; Gćmez, A.; González, A.; Barrios, Y.; Concepción, M.T.; Hernández, D.; García, J.J.; Checa, M.D.; Lorenzo, V.; et al. Treatment with intermittent calcitriol and calcium reduces bone loss after renal transplantation. Kidney Int. 2004, 65, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, E.; Rojas-Rivera, J.; Polanco, N.; Morales, E.; Morales, J.M.; Egido, J.; Amado, A.; Praga, M. Effects of Oral Paricalcitol on Secondary Hyperparathyroidism and Proteinuria of Kidney Transplant Patients. Transplantation 2013, 95, e49–e52. [Google Scholar] [CrossRef]
- Bouquegneau, A.; Salam, S.; Delanaye, P.; Eastell, R.; Khwaja, A. Bone Disease after Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2016, 11, 1282–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Sáez, M.J.; Prieto-Alhambra, D.; Díez-Pérez, A.; Pascual, J. Advances in the evaluation of bone health in kidney transplant patients. Nefrología (Engl. Ed.) 2018, 38, 27–33. [Google Scholar] [CrossRef] [PubMed]
- National Kidney Fundation. K/DOQI Clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003, 42, S1–S201. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2009, 113, S1–S130. [Google Scholar]
- Nuti, R.; Brandi, M.L.; Checchia, G.; Di Munno, O.; Dominguez, L.; Falaschi, P.; Fiore, C.E.; Iolascon, G.; Maggi, S.; Michieli, R.; et al. Guidelines for the management of osteoporosis and fragility fractures. Intern. Emerg. Med. 2019, 14, 85–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new predic-tion equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Leffondre, K.; Boucquemont, J.; Tripepi, G.; Stel, V.S.; Heinze, G.; Dunkler, D. Analysis of risk factors associated with renal function trajectory over time: A comparison of different statistical approaches. Nephrol. Dial. Transplant. 2014, 30, 1237–1243. [Google Scholar] [CrossRef] [Green Version]
- De Laet, C.; Kanis, J.A.; Odén, A.; Johanson, H.; Johnell, O.; Delmas, P.; Eisman, J.A.; Kroger, H.; Fujiwara, S.; Garnero, P.; et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos. Int. 2005, 16, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Lewiecki, E.M.; Lane, N.E. Common mistakes in the clinical use of bone mineral density testing. Nat. Clin. Pr. Rheumatol. 2008, 4, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Marcén, R.; Caballero, C.; Uriol, O.; Fernández, A.; Villafruela, J.J.; Pascual, J.; Martins, J.; Rodriguez, N.; Burgos, F.J.; Ortuño, J. Prevalence of osteoporosis, osteopenia, and vertebral fractures in long-term renal transplant recipients. Transplant. Proc. 2007, 39, 2256–2258. [Google Scholar] [CrossRef]
- Alis, G.; Alis, M.; Erturk, T.; Karayagiz, A.H.; Berber, I.; Cakir, U. Evaluation of Bone Disease in Kidney Trans-plant Recipients. Transplant. Proc. 2017, 49, 509–511. [Google Scholar] [CrossRef]
- Velioglu, A.; Kaya, B.; Aykent, B.; Ozkan, B.; Karapinar, M.S.; Arikan, H.; Asicioglu, E.; Bugdaycı, O.; Yavuz, D.G.; Tuglular, S. Low bone density, vertebral fracture and FRAX score in kidney transplant recipients: A cross-sectional cohort study. PLoS ONE 2021, 16, e0251035. [Google Scholar] [CrossRef]
- Jørgensen, H.S.; Behets, G.; Bammens, B.; Claes, K.; Meijers, B.; Naesens, M.; Sprangers, B.; Kuypers, D.R.J.; D’haese, P.; Evenepoel, P. Patterns of renal osteodystrophy 1 year after kidney transplantation. Nephrol. Dial. Transplant. 2021, 36, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, Y.; Cojocaru, E.; Fiorini, F.; Granata, A.; Esposito, P.; Russo, L.; Bortoluzzi, A.; Storari, A.; Russo, D. Vitamin D in kidney transplant recipients. Clin. Nephrol. 2020, 93, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Sadlier, D.; Magee, C. Prevalence of 25(OH) vitamin D (calcidiol) deficiency at time of renal transplantation: A prospective study. Clin. Transplant. 2007, 21, 683–688. [Google Scholar] [CrossRef]
- Stavroulopoulos, A.; Cassidy, M.J.D.; Porter, C.J.; Hosking, D.J.; Roe, S.D. Vitamin D Status in Renal Transplant Recipients. Arab. Archaeol. Epigr. 2007, 7, 2546–2552. [Google Scholar] [CrossRef]
- Tripathi, S.S.; Gibney, E.M.; Gehr, T.W.; King, A.L.; Beckman, M.J. High Prevalence of Vitamin D Deficiency in African American Kidney Transplant Recipients. Transplantion 2008, 85, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Riancho, J.A.; De Francisco, A.L.; Del Arco, C.; Amado, J.A.; Cotorruelo, J.G.; Arias, M.; Gonzalez-Macias, J. Serum levels of 1,25-dihydroxyvitamin D after renal transplantation. Miner. Electrolyte Metab. 1988, 14, 332–337. [Google Scholar]
- Yilmaz, M.I.; Sonmez, A.; Saglam, M.; Yaman, H.; Kilic, S.; Turker, T.; Unal, H.U.; Gok, M.; Cetinkaya, H.; Eyileten, T.; et al. Longitudinal analysis of vascular function and biomarkers of metabolic bone disorders before and after renal trans-plantation. Am. J. Nephrol. 2013, 37, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Cianciolo, G.; Galassi, A.; Capelli, I.; Angelini, M.L.; La Manna, G.; Cozzolino, M. Vitamin D in Kidney Transplant Recipients: Mechanisms and Therapy. Am. J. Nephrol. 2016, 43, 397–407. [Google Scholar] [CrossRef]
- Russo, D.; Corrao, S.; Battaglia, Y.; Andreucci, M.; Caiazza, A.; Carlomagno, A.; Lamberti, M.; Pezone, N.; Pota, A.; Russo, L.; et al. Progression of coronary artery calcification and cardiac events in patients with chronic renal disease not receiving dialysis. Kidney Int. 2011, 80, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Russo, D.; Morrone, L.; Di Iorio, B.; Andreucci, M.; De Gregorio, M.G.; Errichiello, C.; Russo, L.; Locatelli, F. Parathyroid hormone may be an early predictor of low serum hemoglobin concentration in patients with not advanced stages of chronic kidney disease. J. Nephrol. 2015, 28, 701–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikgenc, M.; Paydas, S.; Balal, M.; Demir, E.; Kurt, C.; Sertdemir, Y.; Binokay, F.; Erken, U. Bone Disease in Renal Transplantation and Pleotropic Effects of Vitamin D Therapy. Transplant. Proc. 2010, 42, 2518–2526. [Google Scholar] [CrossRef]
- El-Agroudy, A.E.; El-Husseini, A.A.; El-Sayed, M.; Mohsen, T.; Ghoneim, M.A. A prospective randomized study for prevention of postrenal transplantation bone loss. Kidney Int. 2005, 67, 2039–2045. [Google Scholar] [CrossRef] [Green Version]
- Kincses, Z.; Balogh, A.; Lőcsey, L.; Berczi, C.; Asztalos, L. Comparison of calcium and alfacalcidol supplement in the prevention of osteopenia after kidney transplantation. Osteoporos. Int. 2003, 14, 412–417. [Google Scholar] [CrossRef]
- Cueto-Manzano, A.M.; Konel, S.; Freemont, A.J.; Adams, J.E.; Mawer, B.; Gokal, R.; Hutchison, A. Effect of 1,25-dihydroxyvitamin D3 and calcium carbonate on bone loss associated with long-term renal transplantation. Am. J. Kidney Dis. 2000, 35, 227–236. [Google Scholar] [CrossRef]
- Segaud, N.; Legroux, I.; Hazzan, M.; Noel, C.; Cortet, B. Changes in bone mineral density after kidney transplantation: 2-year assessment of a French cohort. Osteoporos. Int. 2018, 29, 1165–1175. [Google Scholar] [CrossRef]
- Hadji, P.; Coleman, R.; Gnant, M. Bone effects of mammalian target of rapamycin (m, TOR) inhibition with everolimus. Crit. Rev. Oncol. 2013, 87, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Kneissel, M.; Luong-Nguyen, N.H.; Baptist, M.; Cortesi, R.; Zumstein-Mecker, S.; Kossida, S.; O’Reilly, T.; Lane, H.; Susa, M. Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone 2004, 35, 1144–1156. [Google Scholar] [CrossRef]
- Gregorini, M.; Sileno, G.; Pattonieri, E.; Corradetti, V.; Abelli, M.; Ticozzelli, E.; Scudeller, L.; Grignano, M.; Esposito, P.; Bogliolo, L.; et al. Understanding Bone Damage After Kidney Transplantation: A Retrospective Monocentric Cross Sectional Analysis. Transplant. Proc. 2017, 49, 650–657. [Google Scholar] [CrossRef]
- Morrone, L.F.; Bolasco, P.; Camerini, C.; Cianciolo, G.; Cupisti, A.; Galassi, A.; Mazzaferro, S.; Russo, D.; Russo, L.; Cozzolino, M. Vitamin D in patients with chronic kidney disease: A position statement of the Working Group “Trace Elements and Mineral Metabolism” of the Italian Society of Nephrology. J. Nephrol. 2016, 29, 305–328. [Google Scholar] [CrossRef] [PubMed]
- Aucella, F.; Battaglia, Y.; Bellizzi, V.; Bolignano, D.; Capitanini, A.; Cupisti, A. Erratum to: Physical exercise programs in CKD: Lights, shades and perspectives. J. Nephrol. 2015, 28, 521. [Google Scholar] [CrossRef] [Green Version]
- Provenzano, M.; Rotundo, S.; Chiodini, P.; Gagliardi, I.; Michael, A.; Angotti, E.; Borrelli, S.; Serra, R.; Foti, D.; De Sarro, G.; et al. Contribution of Predictive and Prognostic Biomarkers to Clinical Research on Chronic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 5846. [Google Scholar] [CrossRef]
- Aucella, F.; Gesuete, A.; Battaglia, Y. A “Nephrological” Approach to Physical Activity. Kidney Blood Press. Res. 2014, 39, 189–196. [Google Scholar] [CrossRef]
KTRs (n = 100) | ||
---|---|---|
Age, years * | 53.29 | (11.58) |
Male, % | 69.0 | |
Smoke, % | 11.0 | |
Diabetes, % | 10.0 | |
Race-Caucasian, % | 94.0 | |
Weight, kg * | 73.21 | (12.22) |
Height, cm * | 170.88 | (10.45) |
BMI, kg/m2 * | 24.71 | (2.93) |
HD Vintage Pre-KT, months * | 28.33 | (30.69) |
KT pre-emptive, % | 8.0 | |
KT vintage, months ** | 73.0 | (25.2–159.0) |
Systolic BP, mmHg * | 130.25 | (14.50) |
Diastolic BP, mmHg * | 78.10 | (8.03) |
HR, bpm * | 72.98 | (11.24) |
Creatinine serum, mg/dL* | 1.42 | (0.53) |
eGFR, ml/min/1.73 m2 * | 53.22 | (17.00) |
Calcium serum, mg/dL * | 9.37 | (0.45) |
Phosphorus serum, mg/dL * | 3.20 | (0.65) |
25-OH Vitamin D, ng/mL * | 14.85 | (8.04) |
iPTH, pg/mL ** | 83 | (66.0–116.0) |
Total Protein, g/dL * | 6.61 | (0.51) |
Albumin, % * | 58.70 | (4.13) |
LDH, U/L * | 311.16 | (66.20) |
Urinary Calcium, mg/24 h * | 112.06 | (100.46) |
Urinary Phosphorus, g/24 h * | 0.69 | (0.27) |
Urinary Creatinine, g/24 h * | 1.24 | (0.45) |
25-OH Vitamin D status: | ||
moderate insufficiency, % | 26.0 | |
severe insufficiency, % | 39.0 | |
deficiency, % | 35.0 |
WHO Criteria | FN | Mean | SD | LV | Mean | SD |
---|---|---|---|---|---|---|
Normal BMD | T-score 1st | −0.473 | 0.709 | T-score 1st | 0.058 | 0.866 |
T-score 2nd | −0.460 | 0.611 | T-score 2nd | 0.050 | 0.982 | |
p-value * | 0.49 | p-value * | 0.96 | |||
Z-score 1st | 0.261 | 0.790 | Z-score 1st | 0.671 | 1.038 | |
Z-score 2nd | 0.393 | 0.763 | Z-score 2nd | 0.740 | 1.229 | |
p-value * | 0.50 | p-value * | 0.79 | |||
Osteopenia | T-score 1st | −1.700 | 0.450 | T-score 1st | −1.652 | 0.338 |
T-score 2nd | −1.611 | 0.680 | T-score 2nd | −1.826 | 0.452 | |
p-value * | 0.21 | p-value * | 0.06 | |||
Z-score 1st | −0.804 | 0.538 | Z-score 1st | −1.102 | 1.125 | |
Z-score 2nd | −0.800 | 0.489 | Z-score 2nd | −1.003 | 0.687 | |
p-value * | 0.48 | p-value * | 0.63 | |||
Osteoporosis | T-score 1st | −2.600 | 0.229 | T-score 1st | −3.050 | 0.407 |
T-score 2nd | −2.942 | 0.262 | T-score 2nd | −3.085 | 0.365 | |
p-value * | 0.002 | p-value * | 0.79 | |||
Z-score 1st | −1.575 | 0.430 | Z-score 1st | −2.200 | 0.580 | |
Z-score 2nd | −1.786 | 0.433 | Z-score 2nd | −2.236 | 0.693 | |
p-value * | 0.227 | p-value * | 0.87 |
WHO Criteria at LV | WHO Criteria at FN | |||||
---|---|---|---|---|---|---|
Age, years* | Normal (n = 37) | 51.54 | (11.04) | Normal (n = 33) | 48.88 | (10.64) |
Osteopenia (n = 42) | 53.26 | (12.95) | Osteopenia (n = 53) | 54.42 | (11.85) | |
Osteoporosis (n = 18) | 56.67 | (9.28) | Osteoporosis (n = 12) | 59.73 | (6.87) | |
Statistics ° | p = 0.314 | Statistics ° | p = 0.01 °* | |||
Male, n (%) | Normal (n = 37) | 27 | (72.9) | Normal (n = 33) | 23 | (69.7) |
Osteopenia (n = 42) | 28 | (66.6) | Osteopenia (n = 53) | 37 | (69.8) | |
Osteoporosis (n = 18) | 12 | (66.6) | Osteoporosis (n = 12) | 7 | (58.3) | |
Statistics °° | p = 0.80 | Statistics °° | p = 0.91 | |||
Diabetes, n (%) | Normal (n = 37) | 5 | (13.5) | Normal (n = 33) | 4 | (12.1) |
Osteopenia (n = 42) | 3 | (7.1) | Osteopenia (n = 53) | 5 | (9.4) | |
Osteoporosis (n = 18) | 2 | (11.1) | Osteoporosis (n = 12) | 1 | (8.3) | |
Statistics °° | p = 0.64 | Statistics °° | p = 0.91 | |||
BMI, kg/m2 * | Normal (n = 37) | 25.43 | (2.89) | Normal (n = 33) | 25.27 | (3.20) |
Osteopenia (n = 42) | 24.62 | (2.74) | Osteopenia (n = 53) | 24.72 | (2.78) | |
Osteoporosis (n = 18) | 23.39 | (2.95) | Osteoporosis (n = 12) | 23.55 | (2.62) | |
Statistics ° | p = 0.05 °* | Statistics ° | p = 0.23 | |||
HD Vintage Pre-KT, months * | Normal (n = 37) | 24.97 | (20.44) | Normal (n = 33) | 25.00 | (34.96) |
Osteopenia (n = 42) | 23.95 | (15.92) | Osteopenia (n = 53) | 28.68 | (28.96) | |
Osteoporosis (n = 18) | 39.44 | (51.24) | Osteoporosis (n = 12) | 40.00 | (25.85) | |
Statistics ° | p = 0.11 | Statistics ° | p = 0.38 | |||
KT vintage, months ** | Normal (n = 37) | 106.97 | (109.95) | Normal (n = 33) | 98.97 | (93.45) |
Osteopenia (n = 42) | 97.83 | (85.74) | Osteopenia (n = 53) | 112.28 | (97.96) | |
Osteoporosis (n = 18) | 107.17 | (102.11) | Osteoporosis (n = 12) | 71.82 | (85.97) | |
Statistics ° | p = 0.90 | Statistics ° | p = 0.42 | |||
eGFR, ml/min/1.73 m2 * | Normal (n = 37) | 51.76 | (13.81) | Normal (n = 33) | 53.30 | (14.81) |
Osteopenia (n = 42) | 55.98 | (18.89) | Osteopenia (n = 53) | 53.32 | (17.73) | |
Osteoporosis (n = 18) | 49.50 | (19.02) | Osteoporosis (n = 12) | 52.36 | (21.59) | |
Statistics ° | p = 0.33 | Statistics ° | p = 0.98 | |||
Calcium serum, mg/dL * | Normal (n = 37) | 9.37 | (0.44) | Normal (n = 33) | 9.35 | (0.42) |
Osteopenia (n = 42) | 9.43 | (0.42) | Osteopenia (n = 53) | 9.35 | (0.48) | |
Osteoporosis (n = 18) | 9.32 | (0.49) | Osteoporosis (n = 12) | 9.45 | (0.46) | |
Statistics ° | p = 0.63 | Statistics ° | p = 0.80 | |||
Phosphorus serum, mg/dL * | Normal (n = 37) | 3.11 | (0.77) | Normal (n = 33) | 3.11 | (0.76) |
Osteopenia (n = 42) | 3.19 | (0.49) | Osteopenia (n = 53) | 3.26 | (0.63) | |
Osteoporosis (n = 18) | 3.30 | (0.65) | Osteoporosis (n = 12) | 3.10 | (0.40) | |
Statistics ° | p = 0.60 | Statistics ° | p = 0.52 | |||
25-OH Vitamin D, ng/mL * | Normal (n = 37) | 13.24 | (7.52) | Normal (n = 33) | 12.84 | (6.99) |
Osteopenia (n = 42) | 14.73 | (7.40) | Osteopenia (n = 53) | 16.29 | (8.60) | |
Osteoporosis (n = 18) | 17.70 | (10.15) | Osteoporosis (n = 12) | 13.72 | (8.25) | |
Statistics ° | p = 0.16 | Statistics ° | p = 0.14 | |||
iPTH, pg/mL ** | Normal (n = 37) | 119.00 | (95.40) | Normal (n = 33) | 106.87 | (89.48) |
Osteopenia (n = 42) | 87.77 | (39.95) | Osteopenia (n = 53) | 96.51 | (57.20) | |
Osteoporosis (n = 18) | 102.38 | (56.89) | Osteoporosis (n = 12) | 112.0 | (64.42) | |
Statistics ° | p = 0.14 | Statistics ° | p = 0.70 |
Gain T-Score | Gain Z-Score | Gain BMD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Lumbar Spine | p | Femoral Neck | p | Lumbar Spine | p | Femoral Neck | p | Lumbar Spine | p | Femoral Neck | p |
0.04 ± 0.49 | 0.64 | −0.83 ± 0.33 | 0.63 | 0.98 ± 0.45 | 0.25 | −0.32 ± 0.42 | 0.73 | −0.02 ± 0.22 | 0.63 | 0.005 ± 0.06 | 0.89 |
Parameter | Estimate | Std. Error | df | t | Sig. | 95% CI | |
---|---|---|---|---|---|---|---|
LB | UB | ||||||
Intercept | −4.206 | 1.215 | 160.804 | −3.460 | <0.001 | −6.606 | −1.805 |
Age | 0.0191 | 0.011 | 127.615 | 1.670 | 0.097 | −0.003 | 0.041 |
Sex | −0.571 | 0.268 | 144.941 | −2.127 | 0.035 * | −1.101 | −0.040 |
BMI | 0.124 | 0.043 | 141.759 | 2.876 | 0.005 * | 0.038 | 0.210 |
25-OH-Vitamin D | 0.009 | 0.004 | 110.486 | 1.930 | 0.056 | −0.001 | 0.019 |
Diabetes | −0.108 | 0.459 | 97.962 | −0.236 | 0.814 | −1.020 | 0.803 |
HD vintage | 0.002 | 0.004 | 98.741 | 0.575 | 0.567 | −0.006 | 0.011 |
Steroids | −0.135539 | 0.162 | 103.202 | −0.837 | 0.405 | −0.456 | 0.185 |
Parameter | Estimate | Std. Error | df | t | Sig. | 95% CI | |
---|---|---|---|---|---|---|---|
LB | UB | ||||||
Intercept | −2.462 | 0.743 | 149.884 | −3.311 | 0.001 | −3.931 | −0.992 |
Age | −0.002 | 0.006 | 114.061 | −0.415 | 0.679 | −0.016 | 0.010 |
Sex | −0.311 | 0.160 | 123.858 | −1.935 | 0.055 * | −0.629 | 0.007 |
BMI | 0.094 | 0.025 | 121.308 | 3.684 | <0.001 * | 0.043 | 0.145 |
25-OH-Vitamin D | −0.005 | 0.003 | 122.614 | −1.642 | 0.103 | −0.013 | 0.001 |
Diabetes | 0.362 | 0.259 | 98.616 | 1.400 | 0.165 | −0.151 | 0.876 |
HD vintage | −0.003 | 0.002 | 98.390 | −1.188 | 0.238 | −0.008 | 0.002 |
Steroids | 0.058 | 0.128 | 131.974 | 0.452 | 0.652 | −0.196 | 0.312 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battaglia, Y.; Bellasi, A.; Bortoluzzi, A.; Tondolo, F.; Esposito, P.; Provenzano, M.; Russo, D.; Andreucci, M.; Cianciolo, G.; Storari, A. Bone Mineral Density Changes in Long-Term Kidney Transplant Recipients: A Real-Life Cohort Study of Native Vitamin D Supplementation. Nutrients 2022, 14, 323. https://doi.org/10.3390/nu14020323
Battaglia Y, Bellasi A, Bortoluzzi A, Tondolo F, Esposito P, Provenzano M, Russo D, Andreucci M, Cianciolo G, Storari A. Bone Mineral Density Changes in Long-Term Kidney Transplant Recipients: A Real-Life Cohort Study of Native Vitamin D Supplementation. Nutrients. 2022; 14(2):323. https://doi.org/10.3390/nu14020323
Chicago/Turabian StyleBattaglia, Yuri, Antonio Bellasi, Alessandra Bortoluzzi, Francesco Tondolo, Pasquale Esposito, Michele Provenzano, Domenico Russo, Michele Andreucci, Giuseppe Cianciolo, and Alda Storari. 2022. "Bone Mineral Density Changes in Long-Term Kidney Transplant Recipients: A Real-Life Cohort Study of Native Vitamin D Supplementation" Nutrients 14, no. 2: 323. https://doi.org/10.3390/nu14020323
APA StyleBattaglia, Y., Bellasi, A., Bortoluzzi, A., Tondolo, F., Esposito, P., Provenzano, M., Russo, D., Andreucci, M., Cianciolo, G., & Storari, A. (2022). Bone Mineral Density Changes in Long-Term Kidney Transplant Recipients: A Real-Life Cohort Study of Native Vitamin D Supplementation. Nutrients, 14(2), 323. https://doi.org/10.3390/nu14020323