Life before and after COVID-19: The ‘New Normal’ Benefits the Regularity of Daily Sleep and Eating Routines among College Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Recruitment
2.3. Data Collection
2.4. Markers of Daily Routines
2.4.1. Sleep Routines
- i.
- Sleep duration (h), calculated as the difference between bedtime and wakeup time.
- ii.
- iii.
- Sleep debt (h), calculated as the difference in sleep duration between weekends and weekdays [21].
2.4.2. Eating Routines
- i.
- Eating duration (h), calculated as the length between the first and the last caloric event [11].
- ii.
- Eating jet lag (h), calculated as the difference between each participant’s eating midpoint on weekends and eating midpoint on weekdays [9]. All analyses were conducted using the absolute value of eating jet lag.
2.5. Anthropometric Parameters
2.6. Health-Related Variables
2.6.1. Diet Quality
2.6.2. Eating Behaviors
- i.
- Cognitive restraint, understood as the conscious efforts of individuals to control what they eat to maintain or lose weight.
- ii.
- Uncontrolled eating, which expresses the tendency to eat excessively in response to the loss of control over the food itself.
- iii.
- Emotional eating, understood as the need to overeat when individuals are unable to cope with emotionally negative situations and moods.
2.6.3. Physical Activity
2.6.4. Sleep Quality
2.6.5. Well-Being
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rybnikova, N.A.; Haim, A.; Portnov, B.A. Does artificial light-at-night exposure contribute to the worldwide obesity pandemic? Int. J. Obes. 2016, 40, 815–823. [Google Scholar] [CrossRef]
- Korman, M.; Tkachev, V.; Reis, C.; Komada, Y.; Kitamura, S.; Gubin, D.; Kumar, V.; Roenneberg, T. COVID-19-mandated social restrictions unveil the impact of social time pressure on sleep and body clock. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; Dutil, C. Lack of sleep as a contributor to obesity in adolescents: Impacts on eating and activity behaviors. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McHill, A.W.; Phillips, A.J.K.; Czeisler, C.A.; Keating, L.; Yee, K.; Barger, L.K.; Garaulet, M.; Scheer, F.A.J.L.; Klerman, E.B. Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 2017, 106, 1213–1219. [Google Scholar] [CrossRef]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social jetlag: Misalignment of biological and social time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Zerón-Rugerio, M.F.; Cambras, T.; Izquierdo-Pulido, M. Social jet lag associates negatively with the adherence to the mediterranean diet and body mass index among young adults. Nutrients 2019, 11, 1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roenneberg, T.; Allebrandt, K.V.; Merrow, M.; Vetter, C. Social Jetlag and Obesity. Curr. Biol. 2012, 23, 737. [Google Scholar] [CrossRef] [Green Version]
- Roenneberg, T.; Kuehnle, T.; Pramstaller, P.P.; Ricken, J.; Havel, M.; Guth, A.; Merrow, M. A marker for the end of adolescence. Curr. Biol. 2004, 14, 1038–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerón-Rugerio, M.F.; Hernáez, Á.; Porras-Loaiza, A.P.; Cambras, T.; Izquierdo-Pulido, M. Eating jet lag: A marker of the variability in meal timing and its association with body mass index. Nutrients 2019, 11, 2980. [Google Scholar] [CrossRef] [Green Version]
- Parsons, M.J.; Moffitt, T.E.; Gregory, A.M.; Goldman-Mellor, S.; Nolan, P.M.; Poulton, R.; Caspi, A. Social jetlag, obesity and metabolic disorder: Investigation in a cohort study. Int. J. Obes. 2015, 39, 842–848. [Google Scholar] [CrossRef] [Green Version]
- Mota, M.C.; Silva, C.M.; Balieiro, L.C.T.; Gonçalves, B.F.; Fahmy, W.M.; Crispim, C.A. Association between social jetlag food consumption and meal times in patients with obesity-related chronic diseases. PLoS ONE 2019, 14, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaput, J.-P. Does sleep restriction increase eating in the absence of hunger? Maybe! Am. J. Clin. Nutr. 2021, 114, 1270–1271. [Google Scholar] [CrossRef]
- Dashti, H.; Scheer, F.; Jacques, P.; Lamon-Fava, S.; Ordovás, J. Short Sleep Duration and Dietary Intake: Epidemiologic Evidence, Mechanisms, and Health Implications. Adv. Nutr. 2015, 6, 648–659. [Google Scholar] [CrossRef]
- Al Khatib, H.K.; Harding, S.V.; Darzi, J.; Pot, G.K. The effects of partial sleep deprivation on energy balance: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2017, 71, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Makarem, N.; Sears, D.D.; St-Onge, M.; Zuraikat, F.M.; Gallo, L.C.; Talavera, G.A.; Castaneda, S.F.; Lai, Y.; Aggarwal, B. Variability in Daily Eating Patterns and Eating Jetlag Are Associated With Worsened Cardiometabolic Risk Profiles in the American Heart Association Go Red for Women Strategically Focused Research Network. J. Am. Heart Assoc. 2021, 10, 022024. [Google Scholar] [CrossRef]
- Wright, K.P.; Linton, S.K.; Withrow, D.; Casiraghi, L.; Lanza, S.M.; de la Iglesia, H.; Vetter, C.; Depner, C.M. Sleep in university students prior to and during COVID-19 Stay-at-Home orders. Curr. Biol. 2020, 30, R797–R798. [Google Scholar] [CrossRef] [PubMed]
- Blume, C.; Schmidt, M.H.; Cajochen, C. Effects of the COVID-19 lockdown on human sleep and rest-activity rhythms. Curr. Biol. 2020, 30, R795–R797. [Google Scholar] [CrossRef]
- Leone, M.J.; Sigman, M.; Golombek, D.A. Effects of lockdown on human sleep and chronotype during the COVID-19 pandemic. Curr. Biol. 2020, 30, R930–R931. [Google Scholar] [CrossRef]
- Departamento de Salud. RESOLUCIÓN SLT/2983/2020. Available online: https://dogc.gencat.cat/es/document-del-dogc/?documentId=887071 (accessed on 20 November 2021).
- Open Data Kit ODK. Available online: https://opendatakit.org/ (accessed on 4 May 2021).
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. J. Biol. Rhythms 2003, 18, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Martín-García, M.; Vila-Maldonado, S.; Rodríguez-Gómez, I.; Faya, F.M.; Plaza-Carmona, M.; Pastor-Vicedo, J.C.; Ara, I. The Spanish version of the Three Factor Eating Questionnaire-R21 for children and adolescents (TFEQ-R21C): Psychometric analysis and relationships with body composition and fitness variables. Physiol. Behav. 2016, 165, 350–357. [Google Scholar] [CrossRef]
- Bryant, E.J.; Rehman, J.; Pepper, L.B.; Walters, E.R. Obesity and Eating Disturbance: The Role of TFEQ Restraint and Disinhibition. Curr. Obes. Rep. 2019, 8, 363–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Román Viñas, B.; Ribas Barba, L.; Ngo, J.; Serra Majem, L. Validación en población catalana del cuestionario internacional de actividad física. Gac. Sanit. 2013, 27, 254–257. [Google Scholar] [CrossRef] [Green Version]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Macías, J.A.; Royuela, A. La versión española del Índice de Calidad de Sueño de Pittsburgh. Inf. Psiquiatr. 1996, 146, 465–472. [Google Scholar]
- Topp, C.W.; Østergaard, S.D.; Søndergaard, S.; Bech, P. The WHO-5 well-being index: A systematic review of the literature. Psychother. Psychosom. 2015, 84, 167–176. [Google Scholar] [CrossRef]
- Silva, C.M.; Mota, M.C.; Miranda, M.T.; Paim, S.L.; Waterhouse, J.; Crispim, C.A. Chronotype, social jetlag and sleep debt are associated with dietary intake among Brazilian undergraduate students. Chronobiol. Int. 2016, 33, 740–748. [Google Scholar] [CrossRef]
- Lopez-Minguez, J.; Saxena, R.; Bandín, C.; Scheer, F.A.; Garaulet, M. Late dinner impairs glucose tolerance in MTNR1B risk allele carriers: A randomized, cross-over study. Clin. Nutr. 2018, 37, 1133–1140. [Google Scholar] [CrossRef]
- Zerón-Rugerio, M.F.; Longo-Silva, G.; Hernáez, Á.; Ortega-Regules, A.E.; Cambras, T.; Izquierdo-Pulido, M. The Elapsed Time between Dinner and the Midpoint of Sleep Is Associated with Adiposity in Young Women. Nutrients 2020, 12, 410. [Google Scholar] [CrossRef] [Green Version]
- Chaix, A.; Manoogian, E.N.C.; Melkani, G.C.; Panda, S. Time-Restricted Eating to Prevent and Manage Chronic Metabolic Diseases. Annu. Rev. Nutr. 2019, 39, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Zerón-Rugerio, M.F.; Díez-Noguera, A.; Izquierdo-Pulido, M.; Cambras, T. Higher eating frequency is associated with lower adiposity and robust circadian rhythms: A cross-sectional study. Am. J. Clin. Nutr. 2021, 113, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Celorio-Sardà, R.; Comas-Basté, O.; Latorre-Moratalla, M.L.; Zerón-Rugerio, M.F.; Urpi-Sarda, M.; Illán-Villanueva, M.; Farran-Codina, A.; Izquierdo-Pulido, M.; Vidal-Carou, M.D.C. Effect of COVID-19 Lockdown on Dietary Habits and Lifestyle of Food Science Students and Professionals from Spain. Nutrients 2021, 13, 1494. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Gualtieri, P.; Cinelli, G.; Bigioni, G.; Soldati, L.; Attinà, A.; Bianco, F.F.; Caparello, G.; Camodeca, V.; Carrano, E.; et al. Psychological aspects and eating habits during covid-19 home confinement: Results of ehlc-covid-19 italian online survey. Nutrients 2020, 12, 2152. [Google Scholar] [CrossRef] [PubMed]
- Prete, M.; Luzzetti, A.; Augustin, L.S.A.; Porciello, G.; Montagnese, C.; Calabrese, I.; Ballarin, G.; Coluccia, S.; Patel, L.; Vitale, S.; et al. Changes in lifestyle and dietary habits during covid-19 lockdown in Italy: Results of an online survey. Nutrients 2021, 13, 1923. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Chourdakis, M. Impact of the first COVID-19 lockdown on body weight: A combined systematic review and a meta-analysis. Clin. Nutr. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Wolfson, J.A.; Leung, C.W.; Richardson, C.R. More frequent cooking at home is associated with higher Healthy Eating Index-2015 score. Public Health Nutr. 2020, 23, 2384–2394. [Google Scholar] [CrossRef]
- Larson, N.I.; Perry, C.L.; Story, M.; Neumark-Sztainer, D. Food Preparation by Young Adults Is Associated with Better Diet Quality. J. Am. Diet. Assoc. 2006, 106, 2001–2007. [Google Scholar] [CrossRef]
- Monsivais, P.; Aggarwal, A.; Drewnowski, A. Time spent on home food preparation and indicators of healthy eating. Am. J. Prev. Med. 2014, 47, 796–802. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Aggarwal, A.; Tang, W.; Drewnowski, A. Cooking at Home: A Strategy to Comply with U.S. Dietary Guidelines at No Extra Cost. Am. J. Prev. Med. 2017, 52, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Messina, G.; Polito, R.; Monda, V.; Cipolloni, L.; Di Nunno, N.; Di Mizio, G.; Murabito, P.; Carotenuto, M.; Messina, A.; Pisanelli, D.; et al. Functional role of dietary intervention to improve the outcome of COVID-19: A hypothesis of work. Int. J. Mol. Sci. 2020, 21, 3104. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, F.; Sessa, F.; Valenzano, A.; Polito, R.; Monda, V.; Cibelli, G.; Villano, I.; Pisanelli, D.; Perrella, M.; Daniele, A.; et al. Covid-19: Role of nutrition and supplementation. Nutrients 2021, 13, 976. [Google Scholar] [CrossRef]
- Racine, S.E. Emotional ratings of high- and low-calorie food are differentially associated with cognitive restraint and dietary restriction. Appetite 2018, 121, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Contreras, C.; Farrán-Codina, A.; Izquierdo-Pulido, M.; Zerón-Rugerio, M.F. A higher dietary restraint is associated with higher BMI: A cross-sectional study in college students. Physiol. Behav. 2021, 240, 113536. [Google Scholar] [CrossRef]
- Pilz, L.K.; Keller, L.K.; Lenssen, D.; Roenneberg, T. Time to rethink sleep quality: PSQI scores reflect sleep quality on workdays. Sleep 2018, 41, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Ma, X.; Di, Q. Mental health problems during the COVID-19 pandemics and the mitigation effects of exercise: A longitudinal study of college students in China. Int. J. Environ. Res. Public Health 2020, 17, 3722. [Google Scholar] [CrossRef]
- Mantilla Toloza, S.C.; Gómez-Conesa, A. El Cuestionario Internacional de Actividad Física. Un instrumento adecuado en el seguimiento de la actividad física poblacional. Rev. Iberoam. Fisioter. Kinesiol. 2007, 10, 48–52. [Google Scholar] [CrossRef]
- Dimitrov, A.; Veer, I.M.; Kleeblatt, J.; Seyfarth, F.; Roenneberg, T.; Ising, M.; Uhr, M.; Keck, M.E.; Kramer, A.; Berger, M.; et al. Chronotype is associated with psychological well-being depending on the composition of the study sample. J. Health Psychol. 2018, 25, 1236–1247. [Google Scholar] [CrossRef]
Pre-Pandemic (n = 71) | New Normal (n = 68) | p-Value a | |
---|---|---|---|
Eating jet lag, h | 0.9 (0.7) | 0.6 (0.5) | 0.022 |
Breakfast | |||
Weekdays, hh:mm | 09:10 (01:22) | 09:05 (00:58) | 0.141 |
Weekends, hh:mm | 10:11 (01:22) | 09:52 (01:00) | 0.284 |
Lunch | |||
Weekdays, hh:mm | 14:02 (00:39) | 14:10 (00:30) | 0.383 |
Weekends, hh:mm | 14:30 (01:57) | 14:28 (00:34) | 0.494 |
Dinner | |||
Weekdays, hh:mm | 21:37 (00:41) | 21:22 (00:28) | 0.045 |
Weekends, hh:mm | 21:32 (00:57) | 21:31 (00:39) | 0.542 |
Eating duration | |||
Weekdays, hh:mm | 12.4 (1.5) | 12.1 (1.1) | 0.892 |
Weekends, hh:mm | 11.0 (1.8) | 11.5 (1.0) | 0.176 |
Pre-Pandemic (n = 71) | New Normal (n = 68) | p-Value a | |
---|---|---|---|
Body mass index, kg/m2 | 22.2 (3.2) | 21.3 (2.7) | 0.177 |
Diet quality, score | 8.9 (1.8) | 8.5 (1.9) | 0.366 |
Eating behaviors | |||
Cognitive restraint, score | 2.1 (0.5) | 1.9 (0.3) | 0.027 |
Emotional eating, score | 1.7 (0.6) | 1.7 (0.6) | 0.893 |
Uncontrolled eating, score | 1.9 (0.5) | 1.9 (0.4) | 0.707 |
Sleep quality, score | 5.1 (2.4) | 5.2 (2.5) | 0.818 |
Physical activity, MET-minutes/day | 2242.8 (1591.1) | 2193.9 (1913.7) | 0.899 |
Well-being, score | 57.8 (16.6) | 55.2 (17.6) | 0.550 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Contreras, C.; Zerón-Rugerio, M.F.; Izquierdo-Pulido, M. Life before and after COVID-19: The ‘New Normal’ Benefits the Regularity of Daily Sleep and Eating Routines among College Students. Nutrients 2022, 14, 351. https://doi.org/10.3390/nu14020351
Ramírez-Contreras C, Zerón-Rugerio MF, Izquierdo-Pulido M. Life before and after COVID-19: The ‘New Normal’ Benefits the Regularity of Daily Sleep and Eating Routines among College Students. Nutrients. 2022; 14(2):351. https://doi.org/10.3390/nu14020351
Chicago/Turabian StyleRamírez-Contreras, Catalina, María Fernanda Zerón-Rugerio, and Maria Izquierdo-Pulido. 2022. "Life before and after COVID-19: The ‘New Normal’ Benefits the Regularity of Daily Sleep and Eating Routines among College Students" Nutrients 14, no. 2: 351. https://doi.org/10.3390/nu14020351
APA StyleRamírez-Contreras, C., Zerón-Rugerio, M. F., & Izquierdo-Pulido, M. (2022). Life before and after COVID-19: The ‘New Normal’ Benefits the Regularity of Daily Sleep and Eating Routines among College Students. Nutrients, 14(2), 351. https://doi.org/10.3390/nu14020351