Dietary Exposure to Polychlorinated Biphenyls and Dioxins and Its Relationship to Telomere Length in Subjects Older Than 55 Years from the SUN Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Assessment of Dietary Exposures to PCBs and Dioxins
2.3. Outcome Assessment: TL
2.4. Assessment of Other Variables
2.5. Statistical Analyses
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marti del Moral, A.; Zalba Goñi, G. (Eds.) Telomeres, Diet and Human Disease, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315152431. [Google Scholar]
- Miri, M.; Nazarzadeh, M.; Alahabadi, A.; Ehrampoush, M.H.; Rad, A.; Lotfi, M.H.; Sheikhha, M.H.; Sakhvidi, M.J.Z.; Nawrot, T.S.; Dadvand, P. Air pollution and telomere length in adults: A systematic review and meta-analysis of observational studies. Environ. Pollut. 2019, 244, 636–647. [Google Scholar] [CrossRef]
- Donat-Vargas, C.; Bellavia, A.; Berglund, M.; Glynn, A.; Wolk, A.; Åkesson, A. Cardiovascular and cancer mortality in relation to dietary polychlorinated biphenyls and marine polyunsaturated fatty acids: A nutritional-toxicological aspect of fish consumption. J. Intern. Med. 2020, 287, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, S.; Schettgen, T.; Beier, F.; Wilop, S.; Quinete, N.; Esser, A.; Masouleh, B.K.; Ferreira, M.S.V.; Vankann, L.; Uciechowski, P.; et al. Accelerated telomere shortening in peripheral blood lymphocytes after occupational polychlorinated biphenyls exposure. Mol. Toxicol. 2016, 91, 289–300. [Google Scholar] [CrossRef] [Green Version]
- WHO. Air Quality Guidelines for Europe, 2nd ed.; Theakston, F., Ed.; WHO: Geneva, Switzerland, 2000; ISBN 9289013583. [Google Scholar]
- Donat-Vargas, C.; Moreno-Franco, B.; Laclaustra, M.; Sandoval-Insausti, H.; Jarauta, E.; Guallar-Castillon, P. Exposure to dietary polychlorinated biphenyls and dioxins, and its relationship with subclinical coronary atherosclerosis: The aragon workers’ health study. Environ. Int. 2020, 136, 1–8. [Google Scholar] [CrossRef]
- Tornevi, A.; Sommar, J.; Rantakokko, P.; Åkesson, A.; Donat-Vargas, C.; Kiviranta, H.; Rolandsson, O.; Rylander, L.; Wennberg, M.; Bergdahl, I.A. Chlorinated persistent organic pollutants and type 2 diabetes—A population-based study with pre- and post-diagnostic plasma samples. Environ. Res. 2019, 174, 35–45. [Google Scholar] [CrossRef]
- Donat-Vargas, C.; Gea, A.; Sayon-Orea, C.; Carlos, S.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Association between dietary intakes of PCBs and the risk of obesity: The SUN project. J. Epidemiol. Community Health 2014, 68, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Donat-Vargas, C.; Gea, A.; Sayon-Orea, C.; De La Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Association between dietary intake of polychlorinated biphenyls and the incidence of hypertension in a Spanish cohort: The Seguimiento Universidad de Navarra project. Hypertension 2015, 65, 714–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donat-Vargas, C.; Åkesson, A.; Tornevi, A.; Wennberg, M.; Sommar, J.; Kiviranta, H.; Rantakokko, P.; Bergdahl, I.A. Persistent organochlorine pollutants in plasma, blood pressure, and hypertension in a longitudinal study. Hypertension 2018, 71, 1258–1268. [Google Scholar] [CrossRef] [Green Version]
- Åkesson, A.; Donat-Vargas, C.; Berglund, M.; Glynn, A.; Wolk, A.; Kippler, M. Dietary exposure to polychlorinated biphenyls and risk of heart failure—A population-based prospective cohort study. Environ. Int. 2019, 126, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pesatori, A.C.; Consonni, D.; Rubagotti, M.; Grillo, P.; Bertazzi, P.A. Cancer incidence in the population exposed to dioxin after the “Seveso accident”: Twenty years of follow-up. Environ. Health 2009, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Dragan, Y.P.; Schrenk, D. Animal studies addressing the carcinogenicity of TCDD (or related compounds) with an emphasis on tumour promotion. Food Addit. Contam. 2000, 17, 289–302. [Google Scholar] [CrossRef]
- Mitro, S.D.; Birnbaum, L.S.; Needham, B.L.; Zota, A.R. Cross-sectional associations between exposure to persistent organic pollutants and leukocyte telomere length among U.S. adults in NHANES, 2001–2002. Environ. Health Perspect. 2016, 124, 651–658. [Google Scholar] [CrossRef]
- Shin, J.-Y.; Choi, Y.Y.; Jeon, H.-S.; Hwang, J.-H.; Kim, S.-A.; Kang, J.-H.; Chang, Y.-S.; Jacobs, D.R.; Park, J.Y.; Lee, D.-H. Low-dose persistent organic pollutants increased telomere length in peripheral leukocytes of healthy Koreans. Mutagenesis 2010, 25, 511–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, B.; Nabizadeh Nodehi, R.; Yunesian, M. Serum level of PCBs and OCPs and leukocyte telomere length among adults in Tehran, Iran. Chemosphere 2020, 248, 126092. [Google Scholar] [CrossRef]
- Karimi, B.; Nabizadeh, R.; Yunesian, M. Association between leukocyte telomere length and serum concentrations of PCBs and organochlorine pesticides. Arch. Environ. Contam. Toxicol. 2020, 79, 122–130. [Google Scholar] [CrossRef]
- Patel, C.J.; Manrai, A.K.; Corona, E.; Kohane, I.S. Systematic correlation of environmental exposure and physiological and self-reported behaviour factors with leukocyte telomere length. Int. J. Epidemiol. 2016, 46, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Scinicariello, F.; Buser, M.C. Polychlorinated biphenyls and leukocyte telomere length: An analysis of NHANES 1999–2002. EBioMedicine 2015, 2, 1974–1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobus, J.A.; Flor, S.; Klingelhutz, A.J.; Robertson, L.W.; Ludewig, G. 2-(4′-chlorophenyl)-1,4-benzoquinone increases the frequency of micronuclei and shortens telomeres. Environ. Toxicol. Pharmacol. 2008, 25, 267–272. [Google Scholar] [CrossRef]
- Senthilkumar, P.K.; Robertson, L.W.; Ludewig, G. PCB153 reduces telomerase activity and telomere length in immortalized human skin keratinocytes (HaCaT) but not in human foreskin keratinocytes (NFK). Toxicol. Appl. Pharmacol. 2012, 259, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, P.K.; Klingelhutz, A.J.; Jacobus, J.A.; Lehmler, H.; Robertson, L.W.; Ludewig, G. Airborne polychlorinated biphenyls (PCBs) reduce telomerase activity and shorten telomere length in immortal human skin keratinocytes (HaCat). Toxicol. Lett. 2011, 204, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, X.; Senthilkumar, P.K.; Schnoor, J.L.; Ludewig, G. Effects of PCB126 and PCB153 on telomerase activity and telomere length in undifferentiated and differentiated HL-60 cells. Environ. Sci. Pollut. Res. 2016, 23, 2173–2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasko, T.; Hoffmann, J.; Gostek, S.; Schettgen, T.; Quinete, N.; Preisinger, C.; Kraus, T.; Ziegler, P. Telomerase gene expression bioassays indicate metabolic activation of genotoxic lower chlorinated polychlorinated biphenyls. Sci. Rep. 2018, 8, 16903. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, G.; Hoppin, J.A.; Hou, L.; Koutros, S.; Gadalla, S.M.; Savage, S.A.; Lubin, J.; Blair, A.; Hoxha, M.; Baccarelli, A.; et al. Pesticide use and relative leukocyte telomere length in the agricultural health study. PLoS ONE 2015, 10, e0133382. [Google Scholar] [CrossRef] [PubMed]
- Carlos, S.; De La Fuente-Arrillaga, C.; Bes-Rastrollo, M.; Razquin, C.; Rico-Campà, A.; Martínez-González, M.A.; Ruiz-Canela, M. Mediterranean diet and health outcomes in the SUN cohort. Nutrients 2018, 10, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llobet, J.M.; Martí-Cid, R.; Castell, V.; Domingo, J.L. Significant decreasing trend in human dietary exposure to PCDD/PCDFs and PCBs in Catalonia, Spain. Toxicol. Lett. 2008, 178, 117–126. [Google Scholar] [CrossRef]
- De la Fuente-Arrillaga, C.; Vázquez Ruiz, Z.; Bes-Rastrollo, M.; Sampson, L.; Martinez-González, M.A. Reproducibility of an FFQ validated in Spain. Public Health Nutr. 2010, 13, 1364–1372. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Cawthon, R.M. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009, 37, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Pedrero, L.; Ojeda-Rodríguez, A.; Martínez-González, M.A.; Zalba, G.; Bes-Rastrollo, M.; Marti, A. Ultra-processed food consumption and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) project. Am. J. Clin. Nutr. 2020, 111, 1259–1266. [Google Scholar] [CrossRef]
- Alonso-Pedrero, L.; Ojeda-Rodríguez, A.; Zalba, G.; Razquin, C.; Martínez-González, M.Á.; Bes-Rastrollo, M.; Marti, A. Association between ideal cardiovascular health and telomere length in participants older than 55 years old from the SUN cohort. Rev. Española Cardiol. 2021. [Google Scholar] [CrossRef]
- Ojeda-Rodríguez, A.; Zazpe, I.; Alonso-Pedrero, L.; Zalba, G.; Guillen-Grima, F.; Martinez-Gonzalez, M.A.; Marti, A. Association between diet quality indexes and the risk of short telomeres in an elderly population of the SUN project. Clin. Nutr. 2019, 39, 2487–2494. [Google Scholar] [CrossRef]
- Study Design & Analysis. Telomere Research Network. Available online: https://trn.tulane.edu/resources/study-design-analysis/ (accessed on 14 December 2021).
- Callahan, C.L.; Pavuk, M.; Birnbaum, L.S.; Ren, X.; Olson, J.R.; Bonner, M.R. Serum polychlorinated biphenyls and leukocyte telomere length in a highly-exposed population: The Anniston community health survey. Environ. Int. 2017, 108, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.A.; Nunez, Y.; Abuawad, A.; Zota, A.R.; Renzetti, S.; Devick, K.L.; Gennings, C.; Goldsmith, J.; Coull, B.A.; Kioumourtzoglou, M.-A. An overview of methods to address distinct research questions on environmental mixtures: An application to persistent organic pollutants and leukocyte telomere length. Environ. Health 2019, 18, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, L.; Andreotti, G.; Baccarelli, A.A.; Savage, S.; Hoppin, J.A.; Sandler, D.P.; Barker, J.; Zhu, Z.-Z.; Hoxha, M.; Dioni, L.; et al. Lifetime pesticide use and telomere shortening among male pesticide applicators in the agricultural health study. Environ. Health Perspect. 2013, 121, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.G.; Dsouza, R.; Khattar, E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: Implications in human aging. Environ. Toxicol. Pharmacol. 2021, 85, 103633. [Google Scholar] [CrossRef]
- Djien Liem, A.K.; Furst, P.; Rappe, C. Exposure of populations to dioxins and related compounds. Food Addit. Contam. 2000, 17, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.S.; Gubbi, S.; Barzilai, N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 2020, 32, 15–30. [Google Scholar] [CrossRef]
- McKinney, J.D.; Waller, C.L. Polychlorinated biphenyls as hormonally active structural analogues. Environ. Health Perspect. 1994, 102, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Cheng, J.; Long, Y.; He, X.; Liang, G.; Tang, X.; Jiang, C.; Chen, F. PCB 118-induced endothelial cell apoptosis is partially mediated by excessive ROS production. Toxicol. Mech. Methods 2017, 27, 394–399. [Google Scholar] [CrossRef]
- Wang, C.; Petriello, M.C.; Zhu, B.; Hennig, B. PCB 126 induces monocyte/macrophage polarization and inflammation through AhR and NF-κB pathways. Toxicol. Appl. Pharmacol. 2019, 367, 71–81. [Google Scholar] [CrossRef]
- Mitchell, C.; Hobcraft, J.; McLanahan, S.S.; Siegel, S.R.; Berg, A.; Brooks-Gunn, J.; Garfinkel, I.; Notterman, D. Social disadvantage, genetic sensitivity, and children’s telomere length. Proc. Natl. Acad. Sci. USA 2014, 111, 5944–5949. [Google Scholar] [CrossRef] [Green Version]
Overall | PCBs-Energy Adjusted Intake (ng/d) | Dioxins-Energy Adjusted Intake (pg WHO TEQ/d) | Total Exposure to pg WHO TEQ/d (DL-PCBs and Dioxins) | ||||
---|---|---|---|---|---|---|---|
<1125.13 | ≥1125.13 | <32.80 | ≥32.80 | <97.80 | ≥97.80 | ||
N | 886 | 443 | 443 | 443 | 443 | 433 | 443 |
Males | 645 (73) | 328 (74) | 317 (72) | 330 (74) | 315 (71) | 350 (79) | 295 (67) |
Telomere length, T/S ratio | 0.70/0.69 (0.21) | 0.72/0.69 (0.21) | 0.69/0.68 (0.19) | 0.71/0.69 (0.21) | 0.69/0.68 (0.20) | 0.71/0.69 (0.20) | 0.69/0.69 (0.20) |
Age, y | 67.70 (6.10) | 66.91 (6.05) | 66.93 (6.16) | 66.76 (6.10) | 67.08 (6.11) | 66.65 (5.94) | 67.19 (6.26) |
Body mass index, kg/m2 | 25.85 (3.15) | 25.64 (2.98) | 26.06 (3.30) | 25.78 (3.08) | 25.92 (3.23) | 25.66 (3.04) | 26.03 (3.26) |
Physical activity, MET-h/week | 22.64 (19.81) | 22.06 (20.03) | 23.22 (19.59) | 23.28 (20.46) | 22.01 (19.14) | 22.13 (19.75) | 23.15 (19.88) |
Total energy intake, kcal/d | 2247.49 (649.44) | 2252.88 (683.08) | 2242.11 (614.69) | 2245.22 (680.33) | 2249.76 (617.77) | 2253.98 (675.08) | 2241.01 (623.44) |
Computer use, h/d | 1.44 (1.55) | 1.40 (1.49) | 1.48 (1.60) | 1.41 (1.44) | 1.46 (1.64) | 1.42 (1.48) | 1.45 (1.61) |
TV watching (<3 h/d) | 87 (9.82) | 40 (9.03) | 47 (10.61) | 43 (9.71) | 44 (9.93) | 42 (9.48) | 45 (10.16) |
Sedentarism, h/d | 4.07 (2.38) | 3.92 (2.06) | 4.23 (2.65) | 4.01 (2.12) | 4.14 (2.60) | 3.96 (2.06) | 4.19 (2.65) |
Night sleeping, h/d | 7.18 (0.75) | 7.20 (0.72) | 7.16 (0.78) | 7.17 (0.72) | 7.18 (0.79) | 7.21 (0.71) | 7.14 (0.79) |
Sleeping siesta, h/d | 0.39 (0.76) | 0.39 (0.70) | 0.39 (0.81) | 0.37 (0.67) | 0.41 (0.83) | 0.37 (0.64) | 0.41 (0.86) |
Years at university, y | 5.34 (1.87) | 5.47 (1.92) | 5.22 (1.81) * | 5.45 (1.87) | 5.23 (1.86) * | 5.49 (1.90) | 5.20 (1.82) * |
Special diet | 134 (15.12) | 65 (14.67) | 69 (15.58) | 62 (14.00) | 72 (16.25) | 63 (14.22) | 71 (16.03) |
Snacking between hours | 185 (20.88) | 99 (22.35) | 86 (19.41) | 102 (23.02) | 83 (18.74) | 101 (22.80) | 84 (18.96) |
Personal history of CVD | 74 (8.35) | 36 (8.13) | 38 (8.58) | 36 (8.13) | 38 (8.58) | 37 (8.35) | 37 (8.35) |
Personal history of hypertension | 463 (52.26) | 217 (48.98) | 246 (55.53) | 219 (49.44) | 244 (55.08) | 220 (49.66) | 243 (54.85) |
Personal history of diabetes | 80 (9.03) | 42 (9.48) | 38 (8.58) | 40 (9.03) | 40 (9.03) | 40 (9.03) | 40 (9.03) |
Mediterranean diet score (0–9) | 4.97 (1.73) | 4.53 (1.63) | 5.41 (1.71) ** | 4.65 (1.70) | 5.28 (1.70) ** | 4.45 (1.66) | 5.49 (1.63) ** |
Smoking status | |||||||
Current | 133 (15.01) | 72 (16.25) | 61 (13.77) | 71 (16.03) | 62 (14.00) | 72 (16.25) | 61 (13.77) |
Never | 292 (32.96) | 144 (32.51) | 148 (33.41) | 130 (29.35) | 162 (36.57) * | 136 (30.70) | 156 (35.21) |
Former | 459 (51.81) | 226 (51.02) | 233 (52.60) | 241 (54.40) | 218 (49.21) | 234 (52.82) | 225 (50.79) |
Total cholesterol intake, mg/d | 388.03 (121.55) | 367.22 (115.38) | 408.84 (124.11) ** | 367.33 (112.55) | 408.73 (126.71) ** | 366.69 (116.54) | 409.37 (122.83) ** |
Ultra-processed food consumption, servings/d | 2.53 (1.30) | 2.72 (1.26) | 2.34 (1.32) ** | 2.83 (1.40) | 2.23 (1.12) ** | 2.81 (1.38) | 2.25 (1.15) ** |
Total dietary fiber intake, g/d | 30.91 (12.21) | 29.57 (12.32) | 32.25 (11.97) ** | 28.19 (10.13) | 33.63 (13.46) ** | 29.29 (11.89) | 32.53 (12.32) ** |
Alcohol consumption, g/d | 9.89 (13.38) | 9.92 (13.66) | 9.86 (13.10) | 11.41 (15.62) | 8.38 (10.48) * | 10.47 (14.21) | 9.31 (12.49) |
Macro-nutrients intake | |||||||
Carbohydrate intake, % energy | 43.92 (8.26) | 45.29 (8.27) | 42.54 (8.02) ** | 45.65 (7.89) | 42.19 (8.27) ** | 45.52 (8.20) | 42.32 (8.01) ** |
Protein intake, % energy | 18.67 (3.52) | 17.41 (3.34) | 19.92 (3.24) ** | 17.12 (3.13) | 20.22 (3.20) ** | 17.24 (3.22) | 20.09 (3.22) ** |
Total fat intake, % energy | 34.30 (6.93) | 34.15 (7.21) | 34.45 (6.64) | 33.55 (6.87) | 35.04 (6.92) ** | 33.94 (7.16) | 34.65 (6.68) |
Model 1 | Model 2 | Model 3 | Model 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SD of T/S Ratio (95% CI) | p-Value | FDR * | SD of T/S Ratio (95% CI) | p-Value | FDR * | SD of T/S Ratio (95% CI) | p-Value | FDR * | SD of T/S Ratio (95% CI) | p-Value | FDR * | |
Total PCBs, ng/d | −0.20 (−0.42 to 0.01) | 0.063 | 0.115 | −0.19 (−0.41 to 0.02) | 0.081 | 0.145 | −0.21 (−0.43 to 0.005) | 0.055 | 0.096 | −0.30 (−0.55 to −0.06) | 0.015 | 0.0347 |
Dioxin-like PCBs, pg WHO TEQ/d | −4.16 (−8.68 to 0.37) | 0.072 | 0.115 | −3.90 (−8.45 to 0.65) | 0.093 | 0.145 | −4.36 (−8.95 to 0.23) | 0.062 | 0.096 | −6.17 (−11.30 to −1.03) | 0.019 | 0.0347 |
Total Dioxins, pg WHO TEQ/d | −10.10 (−30.00 to 9.67) | 0.315 | 0.315 | −9.51 (−29.50 to 10.50) | 0.350 | 0.350 | −11.90 (−32.20 to 8.30) | 0.247 | 0.247 | −13.90 (−37.70 to 9.79) | 0.249 | 0.249 |
Total exposure to TEQ, pg WHO TEQ/d (DL-PCBs and dioxins) | −3.36 (−7.19 to 0.47) | 0.086 | 0.115 | −3.15 (−7.00 to 0.70) | 0.109 | 0.145 | −3.57 (−7.46 to 0.32) | 0.072 | 0.096 | −5.02 (−9.44 to −0.61) | 0.026 | 0.0347 |
n | Total PCB, ng/d | DL-PCBs, pg WHO TEQ/d | Total Dioxins, pg WHO TEQ/d | Total Exposure, pg WHO TEQ/d (DL-PCBs and Dioxins) | |||||
---|---|---|---|---|---|---|---|---|---|
SD of T/S Ratio (95% CI) | p-Value | SD of T/S Ratio (95% CI) | p-Value | SD of T/S Ratio (95% CI) | p-Value | SD of T/S Ratio (95% CI) | p-Value | ||
Overall (n = 886) | 886 | −0.30 (−0.55 to −0.06) | 0.015 | −6.17 (−11.30 to −1.03) | 0.019 | −13.90 (−37.70 to 9.79) | 0.249 | −5.02 (−9.44 to −0.61) | 0.026 |
Energy limits: percentiles 5–95 (n = 89) | 797 | −0.35 (−0.61 to −0.08) | 0.010 | −7.15 (−12.70 to −1.61) | 0.011 | −20.80 (−46.50 to 5.00) | 0.114 | −5.98 (−10.70 to −1.22) | 0.014 |
Additionally adjusted for: | |||||||||
Omega-3 fatty acids intake | 886 | −0.45 (−0.77 to −0.13) | 0.006 | −9.72 (−16.70 to −2.77) | 0.006 | −14.20 (−41.00 to 12.50) | 0.295 | −7.67e (−13.60 to −1.78) | 0.011 |
Years elapsed between saliva collection and the inclusion in the study | 886 | −0.301 (−0.54 to −0.58) | 0.015 | −6.14 (−11.30 to −1.01) | 0.019 | −13.60 (−37.4 to 10.1) | 0.259 | −5.00 (−9.40 to −0.59) | 0.026 |
Excluding participants: | |||||||||
With family history of obesity (n = 181) | 705 | −0.38 (−0.65 to −0.11) | 0.005 | −7.90 (−13.60 to −2.15) | 0.007 | −20.50 (−47.40 to 6.44) | 0.136 | −6.53 (−11.50 to −1.59) | 0.010 |
With family history of CVD (n = 216) | 670 | −0.24 (−0.52 to 0.04) | 0.093 | −4.78 (−10.80 to 1.21) | 0.118 | −14.20 (−42.40 to 14.00) | 0.323 | −4.01 (−9.16 to 1.14) | 0.127 |
With family history of HTA (n = 230) | 656 | −0.35 (−0.64 to −0.06) | 0.019 | −7.34 (−13.50 to −1.21) | 0.019 | −15.50 (−43.70 to 12.70) | 0.281 | −5.95 (−11.20 to −0.68) | 0.027 |
With family history of diabetes (n = 169) | 717 | −0.32 (−0.57 to −0.07) | 0.013 | −6.61 (−11.90 to −1.28) | 0.015 | −10.70 (−36.10 to 14.70) | 0.410 | −5.23 (−9.81 to −0.65) | 0.025 |
With family history of cancer (n = 105) | 781 | −0.25 (−0.51 to 0.02) | 0.071 | −4.77 (−10.40 to 0.85) | 0.096 | −2.19 (−28.40 to 24.00) | 0.870 | −3.60 (−8.44 to 1.24) | 0.144 |
With personal history of obesity (n = 128) | 758 | −0.28 (−0.54 to −0.02) | 0.033 | −5.62 (−11.10 to −0.13) | 0.045 | −12.10 (−38.10 to 13.80) | 0.359 | −4.59 (−9.33 to 0.15) | 0.058 |
With personal history of CVD (n = 74) | 812 | −0.308 (−0.56 to −0.05) | 0.021 | −6.04 (−11.50 to −0.574) | 0.030 | −9.59 (−34.30 to 15.10) | 0.447 | −4.78 (−9.47 to −0.09) | 0.046 |
With personal history of HTA (n = 463) | 423 | −0.46 (−0.86 to −0.05) | 0.027 | −9.76 (−18.10 to −1.40) | 0.022 | −18.10 (−54.30 to 18.10) | 0.326 | −7.72 (−14.80 to −0.63) | 0.033 |
With personal history of diabetes (n = 80) | 806 | −0.32 (−0.56 to −0.07) | 0.011 | −6.56 (−11.70 to −1.42) | 0.012 | −15.00 (−38.60 to 8.60) | 0.213 | −5.35 (−9.75 to −0.94) | 0.017 |
With personal history of dyslipidemia (n = 176) | 710 | −0.32 (−0.60 to −0.05) | 0.022 | −6.98 (−12.80 to −1.13) | 0.019 | −13.80 (−40.20 to 12.70) | 0.307 | −5.61 (−10.60 to −0.60) | 0.028 |
With personal history of cancer (n = 79) | 807 | −0.32 (−0.57 to −0.06) | 0.016 | −6.46 (−11.90 to −1.02) | 0.020 | −13.50 (−38.50 to 11.60) | 0.291 | −5.20 (−9.86 to −0.55) | 0.029 |
Taking drugs to treat Diabetes and immunosuppressants for alzheimers | 868 | −0.249 (−0.48 to −0.02) | 0.037 | −5.10 (−10.10 to −0.15) | 0.043 | −9.87 (−32.70 to 12.90) | 0.396 | −4.10 (−8.35 to 0.151) | 0.059 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Pedrero, L.; Donat-Vargas, C.; Bes-Rastrollo, M.; Ojeda-Rodríguez, A.; Zalba, G.; Razquin, C.; Martínez-González, M.A.; Marti, A. Dietary Exposure to Polychlorinated Biphenyls and Dioxins and Its Relationship to Telomere Length in Subjects Older Than 55 Years from the SUN Project. Nutrients 2022, 14, 353. https://doi.org/10.3390/nu14020353
Alonso-Pedrero L, Donat-Vargas C, Bes-Rastrollo M, Ojeda-Rodríguez A, Zalba G, Razquin C, Martínez-González MA, Marti A. Dietary Exposure to Polychlorinated Biphenyls and Dioxins and Its Relationship to Telomere Length in Subjects Older Than 55 Years from the SUN Project. Nutrients. 2022; 14(2):353. https://doi.org/10.3390/nu14020353
Chicago/Turabian StyleAlonso-Pedrero, Lucia, Carolina Donat-Vargas, Maira Bes-Rastrollo, Ana Ojeda-Rodríguez, Guillermo Zalba, Cristina Razquin, Miguel A. Martínez-González, and Amelia Marti. 2022. "Dietary Exposure to Polychlorinated Biphenyls and Dioxins and Its Relationship to Telomere Length in Subjects Older Than 55 Years from the SUN Project" Nutrients 14, no. 2: 353. https://doi.org/10.3390/nu14020353
APA StyleAlonso-Pedrero, L., Donat-Vargas, C., Bes-Rastrollo, M., Ojeda-Rodríguez, A., Zalba, G., Razquin, C., Martínez-González, M. A., & Marti, A. (2022). Dietary Exposure to Polychlorinated Biphenyls and Dioxins and Its Relationship to Telomere Length in Subjects Older Than 55 Years from the SUN Project. Nutrients, 14(2), 353. https://doi.org/10.3390/nu14020353