Importance of Intermittent Fasting Regimens and Selection of Adequate Therapy on Inflammation and Oxidative Stress in SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Methodology of Literature Search
3. The Impact of Dietary Supplements on Inflammatory Markers and in Response to SARS-CoV-2
3.1. Vitamins and Minerals
Authors/Year/Country | Duration | Participants | Study Design | TNF-α | IL-1β | IL-4 | IL-6 | IL-10 | CRP | IFN-γ | Other Outcomes |
---|---|---|---|---|---|---|---|---|---|---|---|
Rastogi et al., 2020 [50] India | 7-d | 40 SARS-CoV-2 RNA positive individuals | RCT: 1.Daily oral cholecalciferol (60,000 IU) with therapeutic target 25(OH)D > 50 ng/mL 2. Control | - | - | - | - | - | Ø | - | ↓ † Fibrinogen ↑ † Negative conversion of SARS-CoV-2 RNA (62.5% vs. 20.8%) |
Murai et al., 2021 [53] Brazil | - | 237 patients hospitalized for moderate to severe COVID-19 | RCT: 1.A single oral dose of 200,000 IU of vit. D3 2. Placebo | - | - | - | - | - | Ø | - | Ø Same LOS (median of 7.0 vs. 7.0 days) |
Lakkireddy et al., 2021 [49] India | 8–10-d | 87 Patients hospitalized for COVID-19 Vit. D < 30 ng/m | RCT: 1. 60,000 IU/day of oral vitamin D +standard treatment 2. Only standard treatment | - | - | - | 1. ↓ † 2. Ø | 1. ↓ *† 2. ↓ * | - | ↓ *† LDH, ferritin, N/L ratio | |
Beigmohammadi et al., 2021 [41] Iran | 7-d | 60 ICU-admitted COVID-19 patients | RCT: 1. Oral Vit. A (25,000 IU) daily, vit.D (600,000 IU; one dose), vit. E (300 IU twice daily), vit. C (500 mg four times daily), and one amp daily of B complex 2. Placebo | 1. ↓ *† 2. ↓ * | - | - | 1. ↓ *† 2. ↓ * | - | 1. ↓ *† 2. ↓ * | 1. ↓ * 2. ↓ * | ↓ † Hospitalization rate and ESR in treatment group |
Sabico et al., 2021 [48] Saudi Arabia | 14-d | 69 patients COVID-19 and sub-optimal vit. D status | RCT: 1.Oral vit. D3 (5000 IU) 2.Oral vit. D3 (1000 IU) | - | - | - | 1. ↓ * 2. ↓ * | - | 1. Ø 2. Ø | - | ↓ † Time to recovery in resolving cough with D3 (5000 IU) vs. D3 (1000 IU) |
Abd-Elsalam et al., 2021 [57] Egypt | 4 weeks | 191 patients with COVID-19 | RCT: 1.CQ/HCQ + 220 mg of zinc sulfate twice daily 2. HCQ only | - | - | - | - | - | Ø | - | Ø Clinical efficacy of HCQ |
Di Pierro et al., 2021 [58] Italy | 2 weeks | 42 COVID-19 outpatients | RCT: 1. Quercetin (500 mg/day (first week) and of 1000 mg/day (second week) 2. Standard of care | - | - | - | - | - | Ø | - | ↓ † LOS, virus clearance, symptoms frequency, LDH, ferritin |
Doae et al., 2021 [59] Iran | 2 weeks | 128 critically ill COVID-19 patients | RCT: 1. 1000 mg omega-3 daily (400 mg EPAs and 200 mg DHAs) 2. Control | - | - | - | - | - | - | - | ↑ † 1-month survival rate, pH, HCO3, and Be ↓ † Levels of BUN, Cr, and K in the treatment group |
Darban et al., 2021 [42] Iran | 10-d | 20 patients with severe COVID-19 | Pilot RCT: 1. Standard care + oral zinc sulfate (220 mg containing 50 mg zinc) , oral melatonin (6 mg, q6hr), and intravenous vit. C (2 g) 2. Standard care alone | - | - | - | - | - | 1. ↓ * 2. ↓ * | - | Ø LOS |
Sedighian et al., 2021 [60] Iran | 2 weeks | 30 patients with COVID-19 | Single blind RCT: 1. Hydroxychloroquine + 2 g DHAs and EPAs 2. Hydroxychloroquine | - | - | - | - | - | 1. ↓ † | - | † Body pain and fatigue in the treatment group Ø Olfactory |
Cannata-Andía et al., 2022 [52] Spain | - | 543 patients with moderate to severe COVID-19 | RCT: 1. A single-oral bolus of 100,000 IU of cholecalciferol 2. Control | - | - | - | Ø | - | Ø | - | Ø Hospitalization rate and death |
Shohan et al., 2022 [61] Iran | 7-d | 60 patients with severe COVID-19 | RCT: 1. Quercetin (1000 mg daily) + antiviral drugs 2. Antiviral drugs | ↓ * | ↓ * | - | ↓ † | - | ↓ † | - | ↓ † ALP, LDH Ø Mortality, duration of ICU-admission |
Pimentel et al., 2022 [62] Brazil | 7-d | 43 adult patients with COVID-19 | RCT: 1. Two 200 mL units of high-protein nutritional supplement (arginine, omega-3 fatty acids and nucleotides) over 24 h 2. Two 200 mL units of high-protein nutritional supplement alone | - | - | - | - | - | 1. ↓ † 2. Ø | - | ↑ Lymphocytes in the treatment group ↓ Lymphocytes in the control group |
Fernandes et al., 2022 [51] Brazil | - | 200 patients with moderate to severe COVID-19 | RCT: 1. Single oral dose of vit. D3 (200 000 IU) 2. Placebo | Ø | Ø | Ø | Ø | Ø | - | Ø | - |
Gutiérrez-Castrellón et al., 2022 [63] Spain | 30-d | 293 COVID-19 outpatients | RCT: 1. Probiotic (Lactiplantibacillus plantarum stains KABP022, KABP023 and KABP033 = Pediococcus acidilactici strain KABP021) 2. Placebo | - | - | - | - | - | 1. ↓ † hs-CRP Only on day 15 | - | ↓ † Complete remission (53.1% in probiotic group vs. 28.1% in placebo; p < 0.001) |
3.2. n-3 Polyunsaturated Fatty Acids (PUFAs)
3.3. Quercetin
3.4. Probiotics
4. The Potential Impact of IF on Inflammatory Markers
4.1. Interluekins
4.2. TNF-α
4.3. C-Reactive Protein
4.4. IGF-1
4.5. Interferon Gamma and Other Inflammatory Markers
4.6. Oxidative Stress
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- da Silva, S.J.R.; Kohl, A.; Pena, L.; Pardee, K. Recent Insights into SARS-CoV-2 Omicron Variant. Rev. Med. Virol. 2022, e2373. [Google Scholar] [CrossRef] [PubMed]
- Araf, Y.; Akter, F.; Tang, Y.-D.; Fatemi, R.; Parvez, M.S.A.; Zheng, C.; Hossain, M.G. Omicron Variant of SARS-CoV-2: Genomics, Transmissibility, and Responses to Current COVID-19 Vaccines. J. Med. Virol. 2022, 94, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; May, A.; Polidori, L.; Louca, P.; Wolf, J.; Capdevila, J.; Hu, C.; Ourselin, S.; Steves, C.J.; Valdes, A.M.; et al. COVID-19 Vaccine Waning and Effectiveness and Side-Effects of Boosters: A Prospective Community Study from the ZOE COVID Study. Lancet Infect. Dis. 2022, 22, 1002–1010. [Google Scholar] [CrossRef]
- Webb, B.J.; Peltan, I.D.; Jensen, P.; Hoda, D.; Hunter, B.; Silver, A.; Starr, N.; Buckel, W.; Grisel, N.; Hummel, E.; et al. Clinical Criteria for COVID-19-Associated Hyperinflammatory Syndrome: A Cohort Study. Lancet Rheumatol. 2020, 2, e754–e763. [Google Scholar] [CrossRef]
- Forcados, G.E.; Muhammad, A.; Oladipo, O.O.; Makama, S.; Meseko, C.A. Metabolic Implications of Oxidative Stress and Inflammatory Process in SARS-CoV-2 Pathogenesis: Therapeutic Potential of Natural Antioxidants. Front. Cell Infect. Microbiol. 2021, 11, 654813. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic Value of Interleukin-6, C-Reactive Protein, and Procalcitonin in Patients with COVID-19. J. Clin. Virol. 2020, 127, 104370. [Google Scholar] [CrossRef]
- Jandaghi, P.; Hosseini, Z.; Chilibeck, P.; Hanley, A.J.; Deguire, J.R.; Bandy, B.; Pahwa, P.; Vatanparast, H. The Role of Immunomodulatory Nutrients in Alleviating Complications Related to SARS-CoV-2: A Scoping Review. Adv. Nutr. 2021, 13, nmab128. [Google Scholar] [CrossRef] [PubMed]
- Halim, C.; Mirza, A.F.; Sari, M.I. The Association between TNF-α, IL-6, and Vitamin D Levels and COVID-19 Severity and Mortality: A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 195. [Google Scholar] [CrossRef] [PubMed]
- Gelzo, M.; Cacciapuoti, S.; Pinchera, B.; De Rosa, A.; Cernera, G.; Scialò, F.; Comegna, M.; Mormile, M.; Fabbrocini, G.; Parrella, R.; et al. Matrix Metalloproteinases (MMP) 3 and 9 as Biomarkers of Severity in COVID-19 Patients. Sci. Rep. 2022, 12, 1212. [Google Scholar] [CrossRef] [PubMed]
- Poggiali, E.; Zaino, D.; Immovilli, P.; Rovero, L.; Losi, G.; Dacrema, A.; Nuccetelli, M.; Vadacca, G.B.; Guidetti, D.; Vercelli, A.; et al. Lactate Dehydrogenase and C-Reactive Protein as Predictors of Respiratory Failure in COVID-19 Patients. Clin. Chim. Acta 2020, 509, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.; Huang, Y.; Guo, Y.; Yin, M.; Chen, X.; Xiao, L.; Deng, G. Association of Inflammatory Markers with the Severity of COVID-19: A Meta-Analysis. Int. J. Infect. Dis. 2020, 96, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; Stampfer, M.J.; Hennekens, C.H. Plasma Concentration of Interleukin-6 and the Risk of Future Myocardial Infarction among Apparently Healthy Men. Circulation 2000, 101, 1767–1772. [Google Scholar] [CrossRef] [Green Version]
- Martins, T.B.; Anderson, J.L.; Muhlestein, J.B.; Horne, B.D.; Carlquist, J.F.; Roberts, W.L.; Carlquist, J.F. Risk Factor Analysis of Plasma Cytokines in Patients with Coronary Artery Disease by a Multiplexed Fluorescent Immunoassay. Am. J. Clin. Pathol. 2006, 125, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Elimam, H.; Abdulla, A.M.; Taha, I.M. Inflammatory Markers and Control of Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. 2019, 13, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative Stress and Inflammatory Markers in Prediabetes and Diabetes. J. Physiol. Pharm. 2019, 70, 70. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rifai, N.; Clearfield, M.; Downs, J.R.; Weis, S.E.; Miles, J.S.; Gotto, A.M. Air Force/Texas Coronary Atherosclerosis Prevention Study Investigators Measurement of C-Reactive Protein for the Targeting of Statin Therapy in the Primary Prevention of Acute Coronary Events. N. Engl. J. Med. 2001, 344, 1959–1965. [Google Scholar] [CrossRef] [PubMed]
- Kofler, T.; Kurmann, R.; Lehnick, D.; Cioffi, G.M.; Chandran, S.; Attinger-Toller, A.; Toggweiler, S.; Kobza, R.; Moccetti, F.; Cuculi, F.; et al. Colchicine in Patients With Coronary Artery Disease: A Systematic Review and Meta-Analysis of Randomized Trials. J. Am. Heart Assoc. 2021, 10, e021198. [Google Scholar] [CrossRef] [PubMed]
- Aw, K.L.; Koh, A.; Lee, H.L.; Kudzinskas, A.; De Palma, R. Colchicine for Symptomatic Coronary Artery Disease after Percutaneous Coronary Intervention. Open Heart 2022, 9, e001887. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.L.; May, H.T.; Horne, B.D.; Bair, T.L.; Hall, N.L.; Carlquist, J.F.; Lappé, D.L.; Muhlestein, J.B. Intermountain Heart Collaborative (IHC) Study Group Relation of Vitamin D Deficiency to Cardiovascular Risk Factors, Disease Status, and Incident Events in a General Healthcare Population. Am. J. Cardiol. 2010, 106, 963–968. [Google Scholar] [CrossRef]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.A.; Willett, W.C. Diet Quality and Major Chronic Disease Risk in Men and Women: Moving toward Improved Dietary Guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formoso, G.; Taraborrelli, M.; Guagnano, M.T.; D’Adamo, M.; Di Pietro, N.; Tartaro, A.; Consoli, A. Magnetic Resonance Imaging Determined Visceral Fat Reduction Associates with Enhanced IL-10 Plasma Levels in Calorie Restricted Obese Subjects. PLoS ONE 2012, 7, e52774. [Google Scholar] [CrossRef] [PubMed]
- Chae, J.S.; Paik, J.K.; Kang, R.; Kim, M.; Choi, Y.; Lee, S.-H.; Lee, J.H. Mild Weight Loss Reduces Inflammatory Cytokines, Leukocyte Count, and Oxidative Stress in Overweight and Moderately Obese Participants Treated for 3 Years with Dietary Modification. Nutr. Res. 2013, 33, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Meydani, S.N.; Das, S.K.; Pieper, C.F.; Lewis, M.R.; Klein, S.; Dixit, V.D.; Gupta, A.K.; Villareal, D.T.; Bhapkar, M.; Huang, M.; et al. Long-Term Moderate Calorie Restriction Inhibits Inflammation without Impairing Cell-Mediated Immunity: A Randomized Controlled Trial in Non-Obese Humans. Aging (Albany NY) 2016, 8, 1416–1426. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-Y.; Boushey, C.J.; Wilkens, L.R.; Haiman, C.A.; Le Marchand, L. High-Quality Diets Associate With Reduced Risk of Colorectal Cancer: Analyses of Diet Quality Indexes in the Multiethnic Cohort. Gastroenterology 2017, 153, 386–394.e2. [Google Scholar] [CrossRef]
- Ryan, D.H.; Yockey, S.R. Weight Loss and Improvement in Comorbidity: Differences at 5%, 10%, 15%, and Over. Curr. Obes. Rep. 2017, 6, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.; et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A Randomized Clinical Trial. JAMA Intern. Med. 2017, 177, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Schuebel, R.; Nattenmueller, J.; Sookthai, D.; Nonnenmacher, T.; Graf, M.E.; Riedl, L.; Schlett, C.L.; von Stackelberg, O.; Johnson, T.; Nabers, D.; et al. Effects of Intermittent and Continuous Calorie Restriction on Body Weight and Metabolism over 50 Wk: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2018, 108, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.; Clifton, P.M.; Keogh, J.B. Effect of Intermittent Compared With Continuous Energy Restricted Diet on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Noninferiority Trial. JAMA Netw. Open 2018, 1, e180756. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef]
- Hutchison, A.T.; Liu, B.; Wood, R.E.; Vincent, A.D.; Thompson, C.H.; O’Callaghan, N.J.; Wittert, G.A.; Heilbronn, L.K. Effects of Intermittent Versus Continuous Energy Intakes on Insulin Sensitivity and Metabolic Risk in Women with Overweight. Obes. (Silver Spring) 2019, 27, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cienfuegos, S.; Gabel, K.; Kalam, F.; Ezpeleta, M.; Wiseman, E.; Pavlou, V.; Lin, S.; Oliveira, M.L.; Varady, K.A. Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab. 2020, 32, 366–378.e3. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Rahman, M.A.; Rahman, M.S.; Sohag, A.A.M.; Dash, R.; Hossain, K.S.; Farjana, M.; Uddin, M.J. Intermittent Fasting, a Possible Priming Tool for Host Defense against SARS-CoV-2 Infection: Crosstalk among Calorie Restriction, Autophagy and Immune Response. Immunol. Lett. 2020, 226, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Zabetakis, I.; Lordan, R.; Norton, C.; Tsoupras, A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients 2020, 12, 1466. [Google Scholar] [CrossRef]
- Ealey, K.N.; Phillips, J.; Sung, H.-K. COVID-19 and Obesity: Fighting Two Pandemics with Intermittent Fasting. Trends Endocrinol. Metab. 2021, 32, 706–720. [Google Scholar] [CrossRef]
- Bhatti, S.I.; Mindikoglu, A.L. The Impact of Dawn to Sunset Fasting on Immune System and Its Clinical Significance in COVID-19 Pandemic. Metab. Open 2022, 13, 100162. [Google Scholar] [CrossRef]
- Jamshed, H.; Beyl, R.A.; Della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients 2019, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, C.L.; Muhlestein, J.B.; May, H.T.; Le, V.T.; Galenko, O.; Garrett, K.D.; Brunker, C.; Hopkins, R.O.; Carlquist, J.F.; Knowlton, K.U.; et al. Randomized Controlled Trial of Once-per-Week Intermittent Fasting for Health Improvement: The WONDERFUL Trial. Eur. Heart J. Open 2021, 1, oeab026. [Google Scholar] [CrossRef]
- Wu, R.; Wang, L.; Kuo, H.-C.D.; Shannar, A.; Peter, R.; Chou, P.J.; Li, S.; Hudlikar, R.; Liu, X.; Liu, Z.; et al. An Update on Current Therapeutic Drugs Treating COVID-19. Curr. Pharmacol. Rep. 2020, 6, 56–70. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-Analysis of Individual Participant Data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef]
- Beigmohammadi, M.T.; Bitarafan, S.; Hoseindokht, A.; Abdollahi, A.; Amoozadeh, L.; Soltani, D. The Effect of Supplementation with Vitamins A, B, C, D, and E on Disease Severity and Inflammatory Responses in Patients with COVID-19: A Randomized Clinical Trial. Trials 2021, 22, 802. [Google Scholar] [CrossRef] [PubMed]
- Darban, M.; Malek, F.; Memarian, M.; Gohari, A.; Kiani, A.; Emadi, A.; Lavvaf, S.; Bagheri, B. Efficacy of High Dose Vitamin C, Melatonin and Zinc in Iranian Patients with Acute Respiratory Syndrome Due to Coronavirus Infection: A Pilot Randomized Trial. J. Cell Mol. Anesth. 2021, 6, 164–167. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dror, A.A.; Morozov, N.; Daoud, A.; Namir, Y.; Yakir, O.; Shachar, Y.; Lifshitz, M.; Segal, E.; Fisher, L.; Mizrachi, M.; et al. Pre-Infection 25-Hydroxyvitamin D3 Levels and Association with Severity of COVID-19 Illness. PLoS ONE 2022, 17, e0263069. [Google Scholar] [CrossRef]
- Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D Deficiency Aggravates COVID-19: Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Yue, S.; Xue, W. Increased Risk for COVID-19 in Patients with Vitamin D Deficiency. Nutrition 2021, 84, 111106. [Google Scholar] [CrossRef]
- Annweiler, C.; Beaudenon, M.; Simon, R.; Guenet, M.; Otekpo, M.; Célarier, T.; Gautier, J. GERIA-COVID study group Vitamin D Supplementation Prior to or during COVID-19 Associated with Better 3-Month Survival in Geriatric Patients: Extension Phase of the GERIA-COVID Study. J. Steroid. Biochem. Mol. Biol. 2021, 213, 105958. [Google Scholar] [CrossRef]
- Sabico, S.; Enani, M.A.; Sheshah, E.; Aljohani, N.J.; Aldisi, D.A.; Alotaibi, N.H.; Alshingetti, N.; Alomar, S.Y.; Alnaami, A.M.; Amer, O.E.; et al. Effects of a 2-Week 5000 IU versus 1000 IU Vitamin D3 Supplementation on Recovery of Symptoms in Patients with Mild to Moderate COVID-19: A Randomized Clinical Trial. Nutrients 2021, 13, 2170. [Google Scholar] [CrossRef]
- Lakkireddy, M.; Gadiga, S.G.; Malathi, R.D.; Karra, M.L.; Raju, I.S.S.V.P.M.; Ragini; Chinapaka, S.; Baba, K.S.S.S.; Kandakatla, M. Impact of Daily High Dose Oral Vitamin D Therapy on the Inflammatory Markers in Patients with COVID-19 Disease. Sci. Rep. 2021, 11, 10641. [Google Scholar] [CrossRef]
- Rastogi, A.; Bhansali, A.; Khare, N.; Suri, V.; Yaddanapudi, N.; Sachdeva, N.; Puri, G.D.; Malhotra, P. Short Term, High-Dose Vitamin D Supplementation for COVID-19 Disease: A Randomised, Placebo-Controlled, Study (SHADE Study). Postgrad. Med. J. 2022, 98, 87–90. [Google Scholar] [CrossRef]
- Fernandes, A.L.; Murai, I.H.; Reis, B.Z.; Sales, L.P.; Santos, M.D.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; et al. Effect of a Single High Dose of Vitamin D3 on Cytokines, Chemokines, and Growth Factor in Patients with Moderate to Severe COVID-19. Am. J. Clin. Nutr. 2022, 115, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Cannata-Andía, J.B.; Díaz-Sottolano, A.; Fernández, P.; Palomo-Antequera, C.; Herrero-Puente, P.; Mouzo, R.; Carrillo-López, N.; Panizo, S.; Ibañez, G.H.; Cusumano, C.A.; et al. A Single-Oral Bolus of 100,000 IU of Cholecalciferol at Hospital Admission Did Not Improve Outcomes in the COVID-19 Disease: The COVID-VIT-D-a Randomised Multicentre International Clinical Trial. BMC Med. 2022, 20, 83. [Google Scholar] [CrossRef] [PubMed]
- Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.A.; Zaman, A.; Sloggett, K.J.; Steinke, S.; Grau, L.; Catenacci, V.A.; Cornier, M.-A.; Rynders, C.A. Early Time-Restricted Eating Compared with Daily Caloric Restriction: A Randomized Trial in Adults with Obesity. Obesity (Silver Spring) 2022, 30, 1027–1038. [Google Scholar] [CrossRef]
- Patel, O.; Chinni, V.; El-Khoury, J.; Perera, M.; Neto, A.S.; McDonald, C.; See, E.; Jones, D.; Bolton, D.; Bellomo, R.; et al. A Pilot Double-blind Safety and Feasibility Randomized Controlled Trial of High-dose Intravenous Zinc in Hospitalized COVID-19 Patients. J. Med. Virol. 2021, 93, 3261–3267. [Google Scholar] [CrossRef]
- Balboni, E.; Zagnoli, F.; Filippini, T.; Fairweather-Tait, S.J.; Vinceti, M. Zinc and Selenium Supplementation in COVID-19 Prevention and Treatment: A Systematic Review of the Experimental Studies. J. Trace Elem. Med. Biol. 2022, 71, 126956. [Google Scholar] [CrossRef]
- Abd-Elsalam, S.; Soliman, S.; Esmail, E.S.; Khalaf, M.; Mostafa, E.F.; Medhat, M.A.; Ahmed, O.A.; El Ghafar, M.S.A.; Alboraie, M.; Hassany, S.M. Do Zinc Supplements Enhance the Clinical Efficacy of Hydroxychloroquine?: A Randomized, Multicenter Trial. Biol. Trace Elem. Res. 2021, 199, 3642–3646. [Google Scholar] [CrossRef]
- Di Pierro, F.; Derosa, G.; Maffioli, P.; Bertuccioli, A.; Togni, S.; Riva, A.; Allegrini, P.; Khan, A.; Khan, S.; Khan, B.A.; et al. Possible Therapeutic Effects of Adjuvant Quercetin Supplementation Against Early-Stage COVID-19 Infection: A Prospective, Randomized, Controlled, and Open-Label Study. Int. J. Gen. Med. 2021, 14, 2359–2366. [Google Scholar] [CrossRef]
- Doaei, S.; Gholami, S.; Rastgoo, S.; Gholamalizadeh, M.; Bourbour, F.; Bagheri, S.E.; Samipoor, F.; Akbari, M.E.; Shadnoush, M.; Ghorat, F.; et al. The Effect of Omega-3 Fatty Acid Supplementation on Clinical and Biochemical Parameters of Critically Ill Patients with COVID-19: A Randomized Clinical Trial. J. Transl. Med. 2021, 19, 128. [Google Scholar] [CrossRef]
- Sedighiyan, M.; Abdollahi, H.; Karimi, E.; Badeli, M.; Erfanian, R.; Raeesi, S.; Hashemi, R.; Vahabi, Z.; Asanjarani, B.; Mansouri, F.; et al. Omega-3 Polyunsaturated Fatty Acids Supplementation Improve Clinical Symptoms in Patients with COVID-19: A Randomised Clinical Trial. Int. J. Clin. Pr. 2021, 75, e14854. [Google Scholar] [CrossRef]
- Shohan, M.; Nashibi, R.; Mahmoudian-Sani, M.-R.; Abolnezhadian, F.; Ghafourian, M.; Alavi, S.M.; Sharhani, A.; Khodadadi, A. The Therapeutic Efficacy of Quercetin in Combination with Antiviral Drugs in Hospitalized COVID-19 Patients: A Randomized Controlled Trial. Eur. J. Pharmacol. 2022, 914, 174615. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, R.F.W.; Silva, A.P.; Santana, A.I.C.; Silva, D.D.S.E.; Ramos, M.D.S.; de Souza, M.C.; Suen, V.M.M.; Maduro, I.P.D.N.N.; Filho, D.R.; Júnior, A.D.; et al. Effect of Immunonutrition on Serum Levels of C-Reactive Protein and Lymphocytes in Patients with COVID-19: A Randomized, Controlled, Double-Blind Clinical Trial. Nutr. Hosp. 2022, 39, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Castrellón, P.; Gandara-Martí, T.; Abreu Y Abreu, A.T.; Nieto-Rufino, C.D.; López-Orduña, E.; Jiménez-Escobar, I.; Jiménez-Gutiérrez, C.; López-Velazquez, G.; Espadaler-Mazo, J. Probiotic Improves Symptomatic and Viral Clearance in Covid19 Outpatients: A Randomized, Quadruple-Blinded, Placebo-Controlled Trial. Gut Microbes 2022, 14, 2018899. [Google Scholar] [CrossRef] [PubMed]
- Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health Benefits of N-3 Polyunsaturated Fatty Acids: Eicosapentaenoic Acid and Docosahexaenoic Acid. Adv. Food Nutr. Res. 2012, 65, 211–222. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Polyunsaturated Fatty Acids and Inflammatory Processes: Nutrition or Pharmacology? Br. J. Clin. Pharm. 2013, 75, 645–662. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Marine Omega-3 Fatty Acids and Inflammatory Processes: Effects, Mechanisms and Clinical Relevance. Biochim. Biophys. Acta 2015, 1851, 469–484. [Google Scholar] [CrossRef]
- Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry. Viruses 2015, 8, 6. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, C.; Ji, K.; Wang, X.; Li, X.; Xie, H.; Wang, Y.; Huang, Y.; Qi, D.; Fan, H. Quercetin Reduces TNF-α-Induced Mesangial Cell Proliferation and Inhibits PTX3 Production: Involvement of NF-ΚB Signaling Pathway. Phytother. Res. 2019, 33, 2401–2408. [Google Scholar] [CrossRef]
- Margolin, L.; Luchins, J.; Margolin, D.; Margolin, M.; Lefkowitz, S. 20-Week Study of Clinical Outcomes of Over-the-Counter COVID-19 Prophylaxis and Treatment. J. Evid.-Based Integr. Med. 2021, 26, 2515690X211026193. [Google Scholar] [CrossRef]
- King, S.; Glanville, J.; Sanders, M.E.; Fitzgerald, A.; Varley, D. Effectiveness of Probiotics on the Duration of Illness in Healthy Children and Adults Who Develop Common Acute Respiratory Infectious Conditions: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2014, 112, 41–54. [Google Scholar] [CrossRef]
- Horne, B.D.; May, H.T.; Muhlestein, J.B.; Le, V.T.; Bair, T.L.; Knowlton, K.U.; Anderson, J.L. Association of Periodic Fasting with Lower Severity of COVID-19 Outcomes in the SARS-CoV-2 Prevaccine Era: An Observational Cohort from the INSPIRE Registry. BMJ Nutr. Prev. Health 2022, e000462. [Google Scholar] [CrossRef]
- Moro, T.; Tinsley, G.; Pacelli, F.Q.; Marcolin, G.; Bianco, A.; Paoli, A. Twelve Months of Time-Restricted Eating and Resistance Training Improves Inflammatory Markers and Cardiometabolic Risk Factors. Med. Sci. Sports Exerc. 2021, 53, 2577–2585. [Google Scholar] [CrossRef] [PubMed]
- Martens, C.R.; Rossman, M.J.; Mazzo, M.R.; Jankowski, L.R.; Nagy, E.E.; Denman, B.A.; Richey, J.J.; Johnson, S.A.; Ziemba, B.P.; Wang, Y.; et al. Short-Term Time-Restricted Feeding Is Safe and Feasible in Non-Obese Healthy Midlife and Older Adults. Geroscience 2020, 42, 667–686. [Google Scholar] [CrossRef] [PubMed]
- Moro, T.; Tinsley, G.; Longo, G.; Grigoletto, D.; Bianco, A.; Ferraris, C.; Guglielmetti, M.; Veneto, A.; Tagliabue, A.; Marcolin, G.; et al. Time-Restricted Eating Effects on Performance, Immune Function, and Body Composition in Elite Cyclists: A Randomized Controlled Trial. J. Int. Soc. Sports Nutr. 2020, 17, 65. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Sun, Y.; Ye, Y.; Hu, D.; Zhang, H.; He, Z.; Zhao, H.; Yang, H.; Mao, Y. Randomized Controlled Trial for Time-Restricted Eating in Healthy Volunteers without Obesity. Nat. Commun. 2022, 13, 1003. [Google Scholar] [CrossRef] [PubMed]
- Aliasghari, F.; Izadi, A.; Gargari, B.P.; Ebrahimi, S. The Effects of Ramadan Fasting on Body Composition, Blood Pressure, Glucose Metabolism, and Markers of Inflammation in NAFLD Patients: An Observational Trial. J. Am. Coll. Nutr. 2017, 36, 640–645. [Google Scholar] [CrossRef]
- Mohammadzade, F.; Vakili, M.A.; Seyediniaki, A.; Amirkhanloo, S.; Farajolahi, M.; Akbari, H.; Eshghinia, S. Effect of Prolonged Intermittent Fasting in Ramadan on Biochemical and Inflammatory Parameters of Healthy Men. J. Clin. Basic Res. 2017, 1, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, R.; Akram, A.; Mushtaq, R.; Khwaja, S.; Ahmed, S. The Role of Inflammatory Markers Following Ramadan Fasting. Pak. J. Med. Sci. 2019, 35, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Almeneessier, A.S.; BaHammam, A.A.; Alzoghaibi, M.; Olaish, A.H.; Nashwan, S.Z.; BaHammam, A.S. The Effects of Diurnal Intermittent Fasting on Proinflammatory Cytokine Levels While Controlling for Sleep/Wake Pattern, Meal Composition and Energy Expenditure. PLoS ONE 2019, 14, e0226034. [Google Scholar] [CrossRef]
- Rahbar, A.R.; Safavi, E.; Rooholamini, M.; Jaafari, F.; Darvishi, S.; Rahbar, A. Effects of Intermittent Fasting during Ramadan on Insulin-like Growth Factor-1, Interleukin 2, and Lipid Profile in Healthy Muslims. Int. J. Prev. Med. 2019, 10, 7. [Google Scholar] [CrossRef]
- Faris, M.A.-I.E.; Jahrami, H.A.; Obaideen, A.A.; Madkour, M.I. Impact of Diurnal Intermittent Fasting during Ramadan on Inflammatory and Oxidative Stress Markers in Healthy People: Systematic Review and Meta-Analysis. J. Nutr. Intermed. Metab. 2019, 15, 18–26. [Google Scholar] [CrossRef]
- Mansoor, A.J.; Hussein, Y.; Jumaa, A.; Marbut, M.; Marbut, M.; Aljubori, A. Effect of Ramadan Fasting on Pro-Inflammatory Cytokines in Normal Healthy Non Obese Female Medical Students in College of Medicine-Tikrit University. Ann. Trop. Med. Public Health 2020, 23, 42–45. [Google Scholar] [CrossRef]
- Lubis, F.; Pase, M.A. Effects of Ramadan Fasting on Lipid Profiles and Interleukin-6 in Obese Patients: Effects of Ramadan Fasting on Lipid Profiles and Interleukin-6 in Obese Patients. J. Endocrinol. Trop. Med. Infect. Dis. (JETROMI) 2020, 2, 107–117. [Google Scholar] [CrossRef]
- Zouhal, H.; Bagheri, R.; Ashtary-Larky, D.; Wong, A.; Triki, R.; Hackney, A.C.; Laher, I.; Abderrahman, A.B. Effects of Ramadan Intermittent Fasting on Inflammatory and Biochemical Biomarkers in Males with Obesity. Physiol. Behav. 2020, 225, 113090. [Google Scholar] [CrossRef] [PubMed]
- Riat, A.; Suwandi, A.; Ghashang, S.K.; Buettner, M.; Eljurnazi, L.; Grassl, G.A.; Gutenbrunner, C.; Nugraha, B. Ramadan Fasting in Germany (17–18 h/Day): Effect on Cortisol and Brain-Derived Neurotrophic Factor in Association With Mood and Body Composition Parameters. Front. Nutr. 2021, 8, 697920. [Google Scholar] [CrossRef] [PubMed]
- Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.; Bhutani, S.; Hoddy, K.K.; Rood, J.; Ravussin, E.; Varady, K.A. Effects of Alternate-Day Fasting or Daily Calorie Restriction on Body Composition, Fat Distribution, and Circulating Adipokines: Secondary Analysis of a Randomized Controlled Trial. Clin. Nutr. 2018, 37, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.; Brindal, E.; James-Martin, G.; Noakes, M. Randomized Trial of a High Protein, Partial Meal Replacement Program with or without Alternate Day Fasting: Similar Effects on Weight Loss, Retention Status, Nutritional, Metabolic, and Behavioral Outcomes. Nutrients 2018, 10, 1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundfør, T.M.; Svendsen, M.; Tonstad, S. Effect of Intermittent versus Continuous Energy Restriction on Weight Loss, Maintenance and Cardiometabolic Risk: A Randomized 1-Year Trial. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 698–706. [Google Scholar] [CrossRef] [Green Version]
- Cho, A.-R.; Moon, J.-Y.; Kim, S.; An, K.-Y.; Oh, M.; Jeon, J.Y.; Jung, D.-H.; Choi, M.H.; Lee, J.-W. Effects of Alternate Day Fasting and Exercise on Cholesterol Metabolism in Overweight or Obese Adults: A Pilot Randomized Controlled Trial. Metab. Clin. Exp. 2019, 93, 52–60. [Google Scholar] [CrossRef]
- Pinto, A.M.; Bordoli, C.; Buckner, L.P.; Kim, C.; Kaplan, P.C.; Del Arenal, I.M.; Jeffcock, E.J.; Hall, W.L. Intermittent Energy Restriction Is Comparable to Continuous Energy Restriction for Cardiometabolic Health in Adults with Central Obesity: A Randomized Controlled Trial; the Met-IER Study. Clin. Nutr. 2020, 39, 1753–1763. [Google Scholar] [CrossRef]
- Razavi, R.; Parvaresh, A.; Abbasi, B.; Yaghoobloo, K.; Hassanzadeh, A.; Mohammadifard, N.; Clark, C.C.T.; Morteza Safavi, S. The Alternate-Day Fasting Diet Is a More Effective Approach than a Calorie Restriction Diet on Weight Loss and Hs-CRP Levels. Int. J. Vitam. Nutr. Res. 2021, 91, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Luo, S.; Ye, Y.; Yin, S.; Fan, J.; Xia, M. Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients. J. Clin. Endocrinol. Metab. 2021, 106, 64–79. [Google Scholar] [CrossRef]
- Han, K.; Singh, K.; Rodman, M.J.; Hassanzadeh, S.; Wu, K.; Nguyen, A.; Huffstutler, R.D.; Seifuddin, F.; Dagur, P.K.; Saxena, A.; et al. Fasting-Induced FOXO4 Blunts Human CD4+ T Helper Cell Responsiveness. Nat. Metab. 2021, 3, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Singh, K.; Rodman, M.J.; Hassanzadeh, S.; Baumer, Y.; Huffstutler, R.D.; Chen, J.; Candia, J.; Cheung, F.; Stagliano, K.E.R.; et al. Identification and Validation of Nutrient State-Dependent Serum Protein Mediators of Human CD4+ T Cell Responsiveness. Nutrients 2021, 13, 1492. [Google Scholar] [CrossRef]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31, 92–104.e5. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xing, C.; Zhang, J.; Zhao, H.; Shi, W.; He, B. Eight-Hour Time-Restricted Feeding Improves Endocrine and Metabolic Profiles in Women with Anovulatory Polycystic Ovary Syndrome. J. Transl. Med. 2021, 19, 148. [Google Scholar] [CrossRef] [PubMed]
- McAllister, M.J.; Pigg, B.L.; Renteria, L.I.; Waldman, H.S. Time-Restricted Feeding Improves Markers of Cardiometabolic Health in Physically Active College-Age Men: A 4-Week Randomized Pre-Post Pilot Study. Nutr. Res. 2020, 75, 32–43. [Google Scholar] [CrossRef]
- Kotarsky, C.J.; Johnson, N.R.; Mahoney, S.J.; Mitchell, S.L.; Schimek, R.L.; Stastny, S.N.; Hackney, K.J. Time-Restricted Eating and Concurrent Exercise Training Reduces Fat Mass and Increases Lean Mass in Overweight and Obese Adults. Physiol. Rep. 2021, 9, e14868. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.E.; Guarner-Lans, V.; Díaz-Díaz, E.; Manzano-Pech, L.; Palacios-Chavarría, A.; Valdez-Vázquez, R.R.; Aisa-Álvarez, A.; Saucedo-Orozco, H.; Pérez-Torres, I. Hyperglycemia and Loss of Redox Homeostasis in COVID-19 Patients. Cells 2022, 11, 932. [Google Scholar] [CrossRef]
- Kim, H.; Rebholz, C.M.; Hegde, S.; LaFiura, C.; Raghavan, M.; Lloyd, J.F.; Cheng, S.; Seidelmann, S.B. Plant-based diets, pescatarian diets and COVID-19 severity: A population-based case-control study in six countries. BMJ Nutr. Prev. Health 2021, 4, 257–266. [Google Scholar] [CrossRef]
- Perez-Araluce, R.; Martínez-González, M.; Gea, A.; Carlos, S. Components of the Mediterranean Diet and Risk of COVID-19. Front. Nutr. 2022, 8, 805533. [Google Scholar] [CrossRef] [PubMed]
- Angelidi, A.M.; Kokkinos, A.; Katechaki, E.; Ros, E.; Mantzoros, C.S. Mediterranean diet as a nutritional approach for COVID-19. Metabolism 2021, 114, 154407. [Google Scholar] [CrossRef] [PubMed]
- Ponzo, V.; Pellegrini, M.; D’Eusebio, C.; Bioletto, F.; Goitre, I.; Buscemi, S.; Frea, S.; Ghigo, E.; Bo, S. Mediterranean Diet and SARS-CoV-2 Infection: Is There Any Association? A Proof-of-Concept Study. Nutrients 2021, 13, 1721. [Google Scholar] [CrossRef] [PubMed]
Authors/Year/ Country | Duration | Participants | Study Design | 8-Isoprostane | TNF-α | IL-1β | IL-6 | IL-8 | CRP | IGF-1 |
---|---|---|---|---|---|---|---|---|---|---|
Sutton et al., 2018 [30] US | 5 weeks | 12 prediabetic men | RCT crossover: 1. Eucaloric eTRE (6-hr eating window, last meal before 3 pm) without weight loss 2. Control (12-hr. eating window) | 1. ↓14%† 2. Ø | - | - | Ø | - | Ø hs-CRP | - |
Jamshed et al., 2019 [37] US | 4-day | 11 overweight adults | RCT crossover: 1. eTRE (8 a.m.–2 p.m.) 2. Control (8 a.m.–8 p.m) | - | - | - | - | - | - | Ø |
Martens et al., 2020 [73] US | 6 weeks | 22 healthy non-obese older adults | RCT: 1. Eucaloric TRE (16/8)- without weight loss 2. Control | - | - | - | Ø | - | Ø | - |
Wilkinson et al., 2020 [95] US | 12 weeks | 19 adults with MetSyn | Single arm: 10-h TRE (self-selected eating window) | - | - | - | - | - | Ø hs-CRP | - |
Cienfuegos et al., 2020 [32] US | 8 weeks | 49 obese adults | RCT: 1. 4-h TRE (3–7 p.m.) 2. 6-h TRE (1–7 p.m.) 3. Control | 1. ↓37% *,† 2. ↓34% *,† 3. Ø | Ø | - | Ø | - | - | - |
McAllister et al., 2020 [96] US | 4 weeks | 22 men BMI: 28.5 ± 8.3 | RCT: 16:8 TRE 1. Isocaloric TRE 2. Ad libitum TRE | - | - | - | - | - | 1. ↓45† hs-CRP 2. ↓14 | - |
Moro et al., 2020 [74] Italy | 4 weeks | 16 elite under -23 cyclists | RCT: 1. TRE (10 a.m.–6 p.m.) 2. Control (7 a.m.–9 p.m.) | - | Ø | - | Ø | - | - | 1. ↓14% * 2. Ø |
Moro et al., 2021 [72] Italy | 12 months | 20 healthy resistance-trained males | RCT: 1. mTRE (3 meals;1 p.m.,4 p.m. and 8 p.m.) 2. Control (8 a.m., 1 p.m., and 8 p.m.) | - | 1. ↓ *† 2. Ø | 1. ↓ *† 2. Ø | 1. ↓ *† 2. Ø | - | 1. ↓ *† 2. ↑ † | |
Li et al., 2021 [97] China | 5 weeks | 15 overweight and obese women with PCOS | Single arm: eTRE (8 am–4 pm) 1-week baseline weight stabilization + 5-week trial | - | - | - | - | - | ↓42% * hs-CRP | ↑34% * |
Kotarsky et al., 2021 [98] US | 8 weeks | 21 overweight and obese adults | RCT: 1. mTRE (12–8 p.m.) + concurrent exercise training 2. Normal eating + concurrent exercise training | - | - | - | - | - | Ø hs-CRP | - |
Xie et al., 2022 [75] China | 5 weeks | 82 healthy adults | RCT: 1. e-TRE (6 a.m.–3 p.m.) 2. mTRE (11 a.m.–8 p.m.) 3. Control (ad lib intake) | - | 1. † 2.Ø 3. Ø | - | - | 1. † 2.Ø 3. Ø | Ø | - |
Authors/Year/ Country | Duration | Participants | Study Design | MMP-9 | TNF-α | IL-1β | IL-2 | IL-6 | IL-8 | IL-10 | CRP | IGF-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aliasghari et al., 2017 [76] Iran | 30-d | 83 patients with NAFLD | Observational Ramadan fasting 1.Ramadan fasting (n = 42) 2.Control (n = 41) | - | - | - | - | 1. ↓ *† 2. ↓ * | - | - | 1. ↓ *† Hs-CRP 2. ↓ * | - |
Mohammad zade et al., 2017 [77] Iran | 30-d | 23 healthy men | Observational Ramadan fasting | - | - | - | - | Ø | - | - | Ø | - |
Mushtaq et al., 2019 [78] Pakistan | 29-d | 110 normal, overweight, and obese men (n = 55) and women (n = 55) | Observational Ramadan fasting (1st vs. 29th day of Ramadan just before Iftar) + dietary recommendation (oily foods prohibited at Iftar (breaking of fast time), plus white oats provided (bran diet) for Sahar (onset of fasting time) meal | - | ↓16% * Ψ men ↓11% * Ψ women | - | - | - | - | - | - | - |
Almeneessier et al., 2019 [79] Saudi Arabia | 14-d | 12 healthy men | Single arm Ramadan fasting (from dawn to sunset) | - | - | ↓ * | - | ↓ * | ↓ * | - | - | - |
Rahbar et al., 2019 [80] Saudi Arabia | 30-d | 34 healthy men | Observational Ramadan fasting | - | - | - | ↓ * | - | - | - | --- | ↓ * |
Faris et al., 2019 [81] UAE | 30-d | 57 overweight and obese adults | Observational Ramadan fasting | - | ↓ * | - | - | ↓ * | - | ↑* | - | ↓ * |
Mansoor et al., 2020 [81] Iraq | 21-d | 20 healthy young women aged 19–20 y | Observational Ramadan fasting | - | ↓ * | - | - | ↓ * | - | - | - | |
Lubis and Pase. 2020 [83] Indonesia | 30-d | 30 obese adults | Observational Ramadan fasting | - | - | - | - | ↓ * | - | - | - | - |
Zouhal et al., 2020 [84] Tunisia | 30-d | 28 obese men | RCT: 1. Ramdan fasting 2. Control | - | 1. ↓ † 2. ↓ * | - | - | 1. ↓ † 2. Ø | - | - | 1. Ø 2.Ø | - |
Riat et al., 2021 [85] Germany | 27–29-d | 34 healthy adults | Observational Ramadan fasting (17–18 h) T1: baseline: 6–8 d before Ramadan T2: Mid of Ramadan (day 14–16) T3: End of Ramadan (day 27–29) T4: One week after Ramadan T5: One month after Ramadan | T2: Ø T3: Ø T4: Ø T5: ↓ * | - | - | - | - | T2: ↑* T3: ↓¥ T4: ↓¥ T5: ↓¥ | - | - | T2: ↑* T3: ↓¥ T4: Ø T5: ↑* |
Authors/ Year/ Country | Duration | Participants | Study Design | TNF-α | IL-1β | IL-2 | IL-4 | IL-5 | IL-6 | IL-13 | IL17 | IL-22 | CRP | IFN-γ | CD40 Ligand | IGF-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trepanowski et al., 2018 [86] US | 24 weeks | 69 overweight and obese | RCT: 1. ADF (25% energy needs on fast days;125% on fed days) 2. CR (75% energy needs daily) 3. Control (100% energy needs daily) | 1. Ø 2. Ø 3. Ø | - | - | - | - | 1. Ø 2. Ø 3. Ø | - | - | - | - | - | - | - |
Bowen et al., 2018 [87] Australia | 24 weeks | 162 overweight and obese adults | RCT: 1. High protein, ADF + CR (1 Ad lib intake d/wk) 2. CR | - | - | - | - | - | - | - | - | - | 1. ↓19* hs-CRP 2. Ø | - | - | - |
Schübel et al., 2018 [28] Germany | 12 weeks | 144 overweight and obese adults | RCT: 12-week trial 5:2 vs. CR and control +38 wk (12 wk maintenance + 26 wk follow up) | - | - | - | - | - | - | - | - | - | Ø | - | - | Ø |
Sundfor et al., [88] 2018 Norway | 52 weeks | 112 obese adults | RCT: 5:2 diet vs. CR + Med diet | - | - | - | - | - | - | - | - | - | Ø at 6 months | - | - | - |
Cho et al., 2019 [89] South Korea | 8 weeks | 31 overweight and obese adults | RCT: ADF vs. usual diet with or without exercise | - | - | - | - | - | - | - | - | - | Ø hs-CRP | - | - | - |
Pinto et al., 2019 [90] UK | 4 weeks | 43 adults with central obesity | RCT: 1. 5:2 diet 2. CR | 1. ↓18% * 2.Ø | 1. Ø 2. Ø | - | - | - | 1. Ø 2. Ø | - | - | - | - | - | - | - |
Razavi et al., 2021 [91] Iran | 17 weeks | 75 adults with MetSyn | RCT: 1. ADF (400–600 kcal on fast days) 2. CR (75% energy restriction daily) | 1. Ø 2. Ø | - | - | - | - | 1. Ø 2. Ø | - | - | - | 1. ↓48% * † hs-CRP 2. ↓26% * | - | - | - |
Han et al., 2021 [94] US | 1-day | 20 adults | Single arm: 24-h prolonged fasting vs. post-prandial response, 3 h after isocaloric breakfast (500 kcal) | - | ↓ * | ↓ * | ↓ * | ↓ * | - | - | ↓ * | - | - | ↓ * | - | - |
Han et al., 2021 [93] US | 1-day | 21 adults | Single arm: 24-h prolonged fasting vs. post-prandial response, 3 h after isocaloric breakfast (500 kcal) | - | - | - | Ø | ↓ * | - | ↓ * | ↓ * | ↓ * | - | ↓ * | - | - |
Bartholomew et al., 2021 [38] US | 26 weeks | 103 adults; ≥1 MetSyn component or T2D | RCT: 1. 5:2 diet for 4 weeks; followed by fasting once a week for 22 weeks 2. Ad libitum control | - | - | - | - | - | - | - | - | - | Ø | - | - | - |
Guo et al., 2021 [92] China | 8 weeks | 39 adults with MetSyn | RCT: 1. 5:2 diet (two days fasting per week) 2. Control | Ø | - | - | - | - | Ø | - | - | - | - | - | 1. ↓ † 2. Ø | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezzati, A.; Rosenkranz, S.K.; Horne, B.D. Importance of Intermittent Fasting Regimens and Selection of Adequate Therapy on Inflammation and Oxidative Stress in SARS-CoV-2 Infection. Nutrients 2022, 14, 4299. https://doi.org/10.3390/nu14204299
Ezzati A, Rosenkranz SK, Horne BD. Importance of Intermittent Fasting Regimens and Selection of Adequate Therapy on Inflammation and Oxidative Stress in SARS-CoV-2 Infection. Nutrients. 2022; 14(20):4299. https://doi.org/10.3390/nu14204299
Chicago/Turabian StyleEzzati, Armin, Sara K. Rosenkranz, and Benjamin D. Horne. 2022. "Importance of Intermittent Fasting Regimens and Selection of Adequate Therapy on Inflammation and Oxidative Stress in SARS-CoV-2 Infection" Nutrients 14, no. 20: 4299. https://doi.org/10.3390/nu14204299
APA StyleEzzati, A., Rosenkranz, S. K., & Horne, B. D. (2022). Importance of Intermittent Fasting Regimens and Selection of Adequate Therapy on Inflammation and Oxidative Stress in SARS-CoV-2 Infection. Nutrients, 14(20), 4299. https://doi.org/10.3390/nu14204299