The Beneficial Effect of Cinnamon and Red Capsicum Intake on Postprandial Changes in Plasma Metabolites Evoked by a High-Carbohydrate Meal in Men with Overweight/Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Participants and Study Design
2.3. Study Procedures
2.4. Metabolomis Analysis
3. Results
3.1. Baseline Characteristics of Subjects
3.2. Metabolomic Analyses
3.3. Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Mortality Database [Onlzine Database]; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Hameed, A.; Galli, M.; Adamska-Patruno, E.; Krętowski, A.; Ciborowski, M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020, 12, 2538. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.-H.; Choi, K.M. Impact of High-Carbohydrate Diet on Metabolic Parameters in Patients with Type 2 Diabetes. Nutrients 2017, 9, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association Nutrition Recommendations and Interventions for Diabetes: A position statement of the American Diabetes Association. Diabetes Care 2007, 31, S61–S78. [CrossRef] [Green Version]
- Guldbrand, H.; Dizdar, B.; Bunjaku, B.; Lindström, T.; Bachrach-Lindström, M.; Fredrikson, M.; Ostgren, C.J.; Nystrom, F.H. In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia 2012, 55, 2118–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, W.C.; Lau, K.H.K.; Matsumoto, M.; Moghazy, D.; Keenan, H.; King, G.L. Improvement of insulin sensitivity by isoenergy high carbohydrate traditional Asian diet: A randomized controlled pilot feasibility study. PLoS ONE 2014, 9, e106851. [Google Scholar] [CrossRef] [PubMed]
- Palmnäs, M.; Brunius, C.; Shi, L.; Rostgaard-Hansen, A.; Torres, N.E.; González-Domínguez, R.; Zamora-Ros, R.; Ye, Y.L.; Halkjær, J.; Tjønneland, A.; et al. Perspective: Metabotyping—A Potential Personalized Nutrition Strategy for Precision Prevention of Cardiometabolic Disease. Adv. Nutr. 2019, 11, 524–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ota, A.; Ulrih, N.P. An Overview of Herbal Products and Secondary Metabolites Used for Management of Type Two Diabetes. Front. Pharm. 2017, 8, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, L.-J.; Qin, Y.; Wang, L.; Zeng, Y.; Chang, H.; Wang, J.; Wang, B.; Wan, J.; Chen, S.-H.; Zhang, Q.-Y.; et al. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin. Nutr. 2016, 35, 388–393. [Google Scholar] [CrossRef]
- Jang, H.-H.; Lee, J.; Lee, S.-H.; Lee, Y.-M. Effects of Capsicum annuum supplementation on the components of metabolic syndrome: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pérez, T.; Gómez-García, M.d.R.; Valverde, M.E.; Paredes-López, O. Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2972–2993. [Google Scholar] [CrossRef]
- Lu, J.; Varghese, R.T.; Zhou, L.; Vella, A.; Jensen, M.D. Glucose tolerance and free fatty acid metabolism in adults with variations in TCF7L2 rs7903146. Metab. Clin. Exp. 2017, 68, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamska, E.; Waszczeniuk, M.; Gościk, J.; Golonko, A.; Wilk, J.; Pliszka, J.; Maliszewska, K.; Lipińska, D.; Milewski, R.; Wasilewska, A.; et al. The usefulness of glycated hemoglobin A1c (HbA1c) for identifying dysglycemic states in individuals without previously diagnosed diabetes. Adv. Med. Sci. 2012, 57, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Adamska-Patruno, E.; Godzien, J.; Ciborowski, M.; Samczuk, P.; Bauer, W.; Siewko, K.; Gorska, M.; Barbas, C.; Kretowski, A. The Type 2 Diabetes Susceptibility PROX1 Gene Variants Are Associated with Postprandial Plasma Metabolites Profile in Non-Diabetic Men. Nutrients 2019, 11, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamska-Patruno, E.; Samczuk, P.; Ciborowski, M.; Godzien, J.; Pietrowska, K.; Bauer, W.; Gorska, M.; Barbas, C.; Kretowski, A. Metabolomics Reveal Altered Postprandial Lipid Metabolism After a High-Carbohydrate Meal in Men at High Genetic Risk of Diabetes. J. Nutr. 2019, 149, 915–922. [Google Scholar] [CrossRef]
- Samczuk, P.; Luba, M.; Godzien, J.; Mastrangelo, A.; Hady, H.R.; Dadan, J.; Barbas, C.; Gorska, M.; Kretowski, A.; Ciborowski, M. “Gear mechanism” of bariatric interventions revealed by untargeted metabolomics. J. Pharm. Biomed. Anal. 2018, 151, 219–226. [Google Scholar] [CrossRef]
- Bak, A.M.; Møller, A.B.; Vendelbo, M.H.; Nielsen, T.S.; Viggers, R.; Rungby, J.; Pedersen, S.B.; Jørgensen, J.O.L.; Jessen, N.; Møller, N. Differential regulation of lipid and protein metabolism in obese vs. lean subjects before and after a 72-h fast. Am. J. Physiol. Metab. 2016, 311, E224–E235. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, M.; Djazayery, A.; Farzadfar, F.; Qi, L.; Yekaninejad, M.S.; Aslibekyan, S.; Chamari, M.; Hassani, H.; Koletzko, B.; Uhl, O. Plasma metabolomic profiling of amino acids and polar lipids in Iranian obese adults. Lipids Health Dis. 2019, 18, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Boulet, M.M.; Chevrier, G.; Grenier-Larouche, T.; Pelletier, M.; Nadeau, M.; Scarpa, J.; Prehn, C.; Marette, A.; Adamski, J.; Tchernof, A. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am. J. Physiol. Metab. 2015, 309, E736–E746. [Google Scholar] [CrossRef] [Green Version]
- del Bas, J.M.; Caimari, A.; Rodriguez-Naranjo, M.I.; Childs, C.E.; Paras Chavez, C.; West, A.L.; Miles, E.A.; Arola, L.; Calder, P.C. Impairment of lysophospholipid metabolism in obesity: Altered plasma profile and desensitization to the modulatory properties of n–3 polyunsaturated fatty acids in a randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 266–279. [Google Scholar] [CrossRef] [Green Version]
- Iannotti, F.A.; Piscitelli, F.; Martella, A.; Mazzarella, E.; Allarà, M.; Palmieri, V.; Parrella, C.; Capasso, R.; Di Marzo, V. Analysis of the “endocannabinoidome” in peripheral tissues of obese Zucker rats. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 127–135. [Google Scholar] [CrossRef]
- Libert, D.M.; Nowacki, A.S.; Natowicz, M.R. Metabolomic analysis of obesity, metabolic syndrome and type 2 diabetes: Amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. Peer J. 2018, 6, e5410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Han, Q.; Liu, Y.; Sun, C.; Gang, X.; Wang, G. The Relationship between Branched-Chain Amino Acid Related Metabolomic Signature and Insulin Resistance: A Systematic Review. J. Diabetes Res. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hameed, A.; Mojsak, P.; Buczynska, A.; Suleria, H.A.; Kretowski, A.; Ciborowski, M. Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM. J. Clin. Med. 2020, 9, 2257. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Granda, A.; Damms-Machado, A.; Basrai, M.; Bischoff, S.C. Changes in Plasma Acylcarnitine and Lysophosphatidylcholine Levels Following a High-Fructose Diet: A Targeted Metabolomics Study in Healthy Women. Nutrients 2018, 10, 1254. [Google Scholar] [CrossRef] [Green Version]
- Rhee, E.P.; Cheng, S.; Larson, M.G.; Walford, G.A.; Lewis, G.D.; McCabe, E.; Yang, E.; Farrell, L.; Fox, C.S.; O’Donnell, C.J.; et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Investig. 2011, 121, 1402–1411. [Google Scholar] [CrossRef] [Green Version]
- Suvitaival, T.; Bondia-Pons, I.; Yetukuri, L.; Pöhö, P.; Nolan, J.J.; Hyötyläinen, T.; Kuusisto, J.; Orešič, M. Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism 2018, 78, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantero, I.; Abete, I.; del Bas, J.M.; Caimari, A.; Arola, L.; Zulet, M.A.; Martinez, J.A. Changes in lysophospholipids and liver status after weight loss: The RESMENA study. Nutr. Metab. 2018, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tulipani, S.; Palau-Rodriguez, M.; Miñarro Alonso, A.; Cardona, F.; Marco-Ramell, A.; Zonja, B.; Lopez de Alda, M.; Muñoz-Garach, A.; Sanchez-Pla, A.; Tinahones, F.J.; et al. Biomarkers of Morbid Obesity and Prediabetes by Metabolomic Profiling of Human Discordant Phenotypes. Clin. Chim. Acta 2016, 463, 53–61. [Google Scholar] [CrossRef]
- Riccardi, G.; Rivellese, A.A.; Giacco, R. Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes. Am. J. Clin. Nutr. 2008, 87, 269S–274S. [Google Scholar] [CrossRef] [Green Version]
- Persaud, S.J.; Muller, D.; Belin, V.D.; Kitsou-Mylona, I.; Asare-Anane, H.; Papadimitriou, A.; Burns, C.J.; Huang, G.C.; Amiel, S.A.; Jones, P.M. The Role of Arachidonic Acid and Its Metabolites in Insulin Secretion From Human Islets of Langerhans. Diabetes 2006, 56, 197–203. [Google Scholar] [CrossRef]
- Ma, K.; Nunemaker, C.S.; Wu, R.; Chakrabarti, S.K.; Taylor-Fishwick, D.A.; Nadler, J.L. 12-Lipoxygenase Products Reduce Insulin Secretion and {beta}-Cell Viability in Human Islets. J. Clin. Endocrinol. Metab. 2010, 95, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.P.; Guijas, C.; Astudillo, A.M.; Rubio, J.M.; Balboa, M.A.; Balsinde, J. Sequestration of 9-Hydroxystearic Acid in FAHFA (Fatty Acid Esters of Hydroxy Fatty Acids) as a Protective Mechanism for Colon Carcinoma Cells to Avoid Apoptotic Cell Death. Cancers 2019, 11, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisawa, K.; Takami, T.; Fukui, Y.; Nagatomo, T.; Saeki, I.; Matsumoto, T.; Hidaka, I.; Yamamoto, N.; Okamoto, T.; Furutani-Seiki, M.; et al. Assessment of high-fat-diet-induced fatty liver in medaka. Biol. Open 2018, 7, bio031534. [Google Scholar] [CrossRef] [Green Version]
- Górska, M.; Dobrzyń A Fau-Zendzian-Piotrowska, M.; Zendzian-Piotrowska, M. Fau-Górski, J.; Górski, J. Effect of streptozotocin-diabetes on the functioning of the sphingomyelin-signalling pathway in skeletal muscles of the rat. Horm. Metab. Res. 2004, 36, 14–21. [Google Scholar] [PubMed]
- Górska, M.; Dobrzyń, A. Fau-Baranowski, M.; Baranowski, M. Concentrations of sphingosine and sphinganine in plasma of patients with type 2 diabetes. Med. Sci. Monit. 2005, 11, 38. [Google Scholar]
- Gambineri, A.; Pelusi, C. Sex hormones, obesity and type 2 diabetes: Is there a link? Endocr. Connect. 2019, 8, R1–R9. [Google Scholar] [CrossRef]
- Brahimaj, A.; Muka, T.; Kavousi, M.; Laven, J.S.E.; Dehghan, A.; Franco, O.H. Serum dehydroepiandrosterone levels are associated with lower risk of type 2 diabetes: The Rotterdam Study. Diabetologia 2017, 60, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-J.; Lin, J.; Pan, C.-F.; Chuang, C.-K.; Liu, H.-L.; Sun, F.-J.; Wang, T.-J.; Chen, H.-H.; Wu, C.-J. Indoxyl Sulfate, Not P-Cresyl Sulfate, is Associated with Advanced Glycation end Products in Patients on Long-Term Hemodialysis. Kidney Blood Press. Res. 2015, 40, 121–129. [Google Scholar] [CrossRef]
- English, P.; Williams, G. Hyperglycaemic crises and lactic acidosis in diabetes mellitus. Postgrad. Med. J. 2004, 80, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Sahin, K.; Orhan, C.; Tuzcu, M.; Sahin, N.; Ozdemir, O.; Juturu, V. Ingested capsaicinoids can prevent low-fat-high-carbohydrate diet and high-fat diet-induced obesity by regulating the NADPH oxidase and Nrf2 pathways. J. Inflamm. Res. 2017, 10, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Polansky Mm Fau-Anderson, R.A.; Anderson, R.A. Cinnamon extract regulates plasma levels of adipose-derived factors and expression of multiple genes related to carbohydrate metabolism and lipogenesis in adipose tissue of fructose-fed rats. Horm. Metab. Res. 2010, 42, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.; Lin, H.; Fang, X.; Wang, Y.; Jiang, Z.; Qu, Y.; Xiang, M.; Shen, Z.; Xin, L.; Lu, Y.; et al. Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes. Food Funct. 2021, 12, 12194–12220. [Google Scholar] [CrossRef] [PubMed]
Anthropometric Parameters | HC/NC Meal Study | Cinnamon/Capsicum Study | p-Value * for Comparison with OW/OB Group | ||
---|---|---|---|---|---|
OW/OB | NW | p-Value * | |||
Age [years] | 37.8 ± 6.3 | 35.3 ± 8.6 | 0.4 | 46 ± 8.4 | 0.02 |
BMI [kg/m2] | 30.8 ± 5.4 | 23.8 ± 1.6 | 0.0009 | 32.0 ± 4.3 | 0.2 |
Body Fat contents [%] | 28.0 ± 6.3 | 17.0 ± 5.3 | 0.0001 | 31.4 ± 4.1 | 0.2 |
Fat free mass [%] | 69.8 ± 12.2 | 66.3 ± 6.6 | 0.4 | 67.9 ± 7.5 | 0.6 |
WHR | 0.998 ± 0.06 | 0.91 ± 0.06 | 0.003 | 1.03 ± 0.05 | 0.1 |
Fasting glucose concentration [mg/dL] | 87.9 ± 5.8 | 84.2 ± 8.1 | 0.2 | 101.05 ± 8.98 | 0.0002 |
Fasting Insulin concentration [IU/mL] | 12.7 ± 9.3 | 6.5 ± 1.7 | 0.06 | 13.8 ± 4.5 | 0.2 |
HOMA–IR | 2.8 ± 2.1 | 1.3 ± 0.3 | 0.05 | 3.46 ± 1.2 | 0.05 |
HOMA–β | 186.3 ± 121.1 | 157.5 ± 150.4 | 0.6 | 136.32 ± 56.3 | 0.4 |
HbA1c | 5.3 ± 0.3 | 5.2 ± 0.3 | 0.3 | 5.4 ± 0.3 | 0.9 |
Metabolites | Monoisotopic Neutral Mass [Da] | RT [min] | OW/OB vs. NW | ||
---|---|---|---|---|---|
Change * [%] | VIP | Absolute p(corr) | |||
Bilirubin | 584.2621 | 8.0 | −30 | 1.82 | 0.52 |
584.2634 | 8.0 | −34 | 2.12 | 0.41 | |
Leucine (S) | 131.0947 | 0.3 | 33 | 1.45 | 0.65 |
Valine | 117.0788 | 0.2 | −28 | 1.88 | 0.51 |
Piperidine | 85.0892 | 0.3 | 41 | 1.80 | 0.73 |
Linoleamide (S) | 279.2558 | 5.5 | 66 | 1.65 | 0.53 |
Dodecanamide (S) | 199.1938 | 5.3 | 32 | 1.51 | 0.57 |
Palmitoleamide (S) | 253.2406 | 6.3 | 79 | 2.17 | 0.68 |
HETE | 320.2348 | 5.8 | 43 | 1.78 | 0.49 |
LPC 18:1 | 507.3684 | 6.0 | 21 | 1.29 | 0.43 |
LPA 16:0 | 410.2430 | 5.7 | 20 | 1.39 | 0.51 |
LPI 16:0 | 572.2964 | 5.8 | 51 | 1.48 | 0.53 |
LPI 18:0 | 600.3278 | 6.8 | 31 | 1.15 | 0.43 |
LPI 18:1 | 598.3119 | 6.1 | 37 | 1.82 | 0.61 |
PC 36:5 | 779.5468 | 9.4 | −45 | 1.98 | 0.64 |
PC 38:6 | 805.5624 | 9.8 | −26 | 1.60 | 0.47 |
PC O–36:5 or P–36:4 | 765.5682 | 10.4 | −30 | 1.83 | 0.52 |
PC 38:5 | 807.5777 | 10.1 | −44 | 2.67 | 0.67 |
Metabolite | Monoisotopic Mass [Da] | RT [min] | NC Meal OW/OB vs. NW | HC Meal OW/OB vs. NW | Direction of AUC Change after Cinnamon/Capsicum Intake | ||||
---|---|---|---|---|---|---|---|---|---|
Change [%] | VIP | Absolute p(corr) | Change [%] | VIP | Absolute p(corr) | ||||
Androsterone sulfate (S) | 370.1814 | 3.9 | −8 | NA | NA | 114 | 1.49 | 0.51 | ↓ |
Indoxyl sulfate | 213.0097 | 0.7 | −25 | NA | NA | 155 | 2.71 | 0.67 | ↓ |
Lactic acid | 90.0319 | 0.3 | 10 | NA | NA | 73 | 2.05 | 0.56 | Not changing |
Uric acid | 168.0282 | 0.2 | −16 | NA | NA | 145 | 1.55 | 0.63 | ↓ |
Hydroxy stearic acid | 300.2659 | 7.4 | −17 | NA | NA | 54 | 1.74 | 0.51 | ↑ |
Hexanoylcarnitine | 259.1779 | 2.2 | −16 | 0.42 | 0.12 | 84 | 1.88 | 0.42 | ND |
HETE | 320.2348 | 5.8 | −11 | NA | NA | 129 | 1.93 | 0.64 | ND |
Sphinganine C17:0 | 287.282 | 4.2 | 11 | 0.54 | 0.10 | −49 | 1.89 | 0.50 | ↑ |
Sphinganine C16:0 | 273.2662 | 4.1 | −8 | 0.15 | 0.07 | −60 | 1.79 | 0.56 | ↑ |
Sphingosine C16:0 | 271.2509 | 4.5 | 12 | 0.88 | 0.27 | −40 | 1.51 | 0.53 | Not changing |
Sphingosine C18:3 | 295.2506 | 5.7 | 550 | 2.63 | 0.55 | 57 | 0.42 | 0.27 | ↓ |
Lauroyldiethanolamide | 287.2456 | 5 | −4 | 0.26 | 0.08 | −71 | 2.87 | 0.78 | ↑ |
Linoleamide | 279.2558 | 5.5 | 682 | 3.75 | 0.77 | 38 | 0.74 | 0.40 | Not changing |
Palmitoyl N-Isopropylamide | 297.3025 | 7.8 | 69 | 1.75 | 0.50 | 36 | 0.67 | 0.39 | ↑ |
LPC 14:0 | 467.3007 | 5.1 | 2 | 0.22 | 0.14 | 185 | 2.22 | 0.65 | ↓ |
LPC O-15:0 | 467.3369 | 5.9 | −19 | NA | NA | 125 | 1.02 | 0.65 | ↑ |
LPC 16:0 | 495.3317 | 5.6 | −23 | 0.22 | 0.14 | 161 | 1.79 | 0.56 | ↓ |
LPC 17:0 sn-1 | 509.348 | 6.3 | −15 | NA | NA | 91 | 1.96 | 0.51 | Not changing |
LPC 17:0 sn-2 | 509.3481 | 6.2 | −14 | NA | NA | 94 | 2.08 | 0.54 | Not changing |
LPC 19:0 | 551.3587 | 6.0 | −22 | NA | NA | 92 | 1.64 | 0.69 | ↓ |
LPC 20:1 | 549.3789 | 6.3 | −36 | 0.28 | 0.02 | 274 | 2.17 | 0.55 | ↓ |
LPE 16:0 | 453.2856 | 5.6 | 23 | NA | NA | 255 | 1.91 | 0.65 | Not changing |
LPE O-16:0 | 439.3049 | 5.8 | 2 | NA | NA | 211 | 1.96 | 0.66 | ↑ |
LPE P-16:0 or LPE O-16:1 | 437.2904 | 5.8 | −30 | NA | NA | 195 | 1.91 | 0.70 | ↓ |
LPE P-19:1 | 477.3213 | 5.7 | −23 | 0.18 | 0.02 | 133 | 1.67 | 0.67 | ↓ |
LPE P-18:0 or LPE O-18:1 | 465.3216 | 5.9 | −25 | NA | NA | 113 | 1.17 | 0.63 | ↑ |
LPE P-20:0 or LPE O-20:1 | 493.3553 | 7.0 | 10 | NA | NA | 64 | 1.39 | 0.53 | ↓ |
LPE 20:3 | 503.3008 | 5.7 | 15 | 0.45 | 0.12 | −71 | 2.49 | 0.53 | ↑ |
LPA 22:4 | 486.2715 | 6.3 | 30 | 1.19 | 0.29 | 101 | 1.53 | 0.52 | Not changing |
LPI 16:0 | 572.2965 | 5.8 | 41 | NA | NA | 224 | 1.40 | 0.68 | ND |
LPI 18:0 | 600.3276 | 6.5 | 22 | NA | NA | 98 | 1.59 | 0.58 | ND |
LPI 18:1 | 598.3119 | 6.1 | 26 | NA | NA | 76 | 1.44 | 0.67 | ↑ |
LPI 20:4 | 620.2964 | 5.6 | −22 | NA | NA | 41 | 1.50 | 0.42 | ↓ |
PC 32:1 | 731.547 | 10.1 | 73 | 1.52 | 0.34 | 116 | 1.48 | 0.49 | ↓ |
PC 38:5 | 807.5777 | 10.1 | −8 | 0.54 | 0.23 | 78 | 1.06 | 0.49 | ↓ |
SM 32:1 | 674.5368 | 8.3 | 19 | 0.97 | 0.26 | 48 | 1.09 | 0.46 | ↓ |
Metabolite | Monoisotopic Mass * [Da] | RT [min] | Change [%] | VIP | Absolute p(corr) |
---|---|---|---|---|---|
Sphingosine-1-phosphate | 379.2489 | 5.0 | 170 | 1.26 | 0.49 |
Sphinganine C17:0 | 287.282 | 4.2 | 1,758,409 | 2.11 | 0.88 |
Arachidonic Acid methyl ester | 318.2559 | 8.0 | 688,141 | 1.32 | 0.58 |
Docosenamide | 337.3343 | 7.4 | 159 | 2.43 | 0.99 |
LPC 14:0 | 467.3007 | 5.1 | −27 | 1.13 | 0.48 |
LPC 16:0 | 495.3328 | 5.5 | −100 | 1.52 | 0.64 |
LPC 18:2 | 519.3327 | 5.4 | −8 | 1.79 | 0.79 |
LPC 20:1 | 549.3789 | 6.3 | −34 | 1.50 | 0.67 |
LPE P-16:0 | 437.2904 | 5.8 | −17 | 1.22 | 0.54 |
LPE P-19:1 | 477.3213 | 5.7 | −29 | 2.01 | 0.87 |
LPE 20:3 | 503.3013 | 5.6 | 1,134,744 | 1.36 | 0.56 |
LPE 20:4 | 501.2858 | 5.3 | −52 | 1.35 | 0.38 |
PC 32:4 | 757.5624 | 9.8 | −59 | 1.05 | 0.44 |
PC36:2 | 807.5756 | 10.9 | −99 | 1.38 | 0.54 |
PC 38:4 | 831.5747 | 10.2 | −99 | 1.32 | 0.53 |
PC 40:6 | 855.5756 | 10.2 | −90 | 1.62 | 0.66 |
PC 40:7 | 899.5623 | 10.5 | 2884 | 1.20 | 0.46 |
PC 16:0/20:4 | 963.5415 | 9.6 | −88 | 1.50 | 0.42 |
PC O-36:2 or PC P-36:1 | 771.6079 | 8.5 | 17,503 | 2.12 | 0.86 |
PC O-40:5 or PC P-40:5 | 841.5964 | 10.2 | −100 | 1.72 | 0.69 |
SM d34:2 | 846.4822 | 8.2 | −27 | 2.43 | 0.86 |
SM d32:1 | 820.4666 | 8.0 | −30 | 2.35 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hameed, A.; Adamska-Patruno, E.; Godzien, J.; Czajkowski, P.; Miksza, U.; Pietrowska, K.; Fiedorczuk, J.; Moroz, M.; Bauer, W.; Sieminska, J.; et al. The Beneficial Effect of Cinnamon and Red Capsicum Intake on Postprandial Changes in Plasma Metabolites Evoked by a High-Carbohydrate Meal in Men with Overweight/Obesity. Nutrients 2022, 14, 4305. https://doi.org/10.3390/nu14204305
Hameed A, Adamska-Patruno E, Godzien J, Czajkowski P, Miksza U, Pietrowska K, Fiedorczuk J, Moroz M, Bauer W, Sieminska J, et al. The Beneficial Effect of Cinnamon and Red Capsicum Intake on Postprandial Changes in Plasma Metabolites Evoked by a High-Carbohydrate Meal in Men with Overweight/Obesity. Nutrients. 2022; 14(20):4305. https://doi.org/10.3390/nu14204305
Chicago/Turabian StyleHameed, Ahsan, Edyta Adamska-Patruno, Joanna Godzien, Przemyslaw Czajkowski, Urszula Miksza, Karolina Pietrowska, Joanna Fiedorczuk, Monika Moroz, Witold Bauer, Julia Sieminska, and et al. 2022. "The Beneficial Effect of Cinnamon and Red Capsicum Intake on Postprandial Changes in Plasma Metabolites Evoked by a High-Carbohydrate Meal in Men with Overweight/Obesity" Nutrients 14, no. 20: 4305. https://doi.org/10.3390/nu14204305
APA StyleHameed, A., Adamska-Patruno, E., Godzien, J., Czajkowski, P., Miksza, U., Pietrowska, K., Fiedorczuk, J., Moroz, M., Bauer, W., Sieminska, J., Górska, M., Krętowski, A. J., & Ciborowski, M. (2022). The Beneficial Effect of Cinnamon and Red Capsicum Intake on Postprandial Changes in Plasma Metabolites Evoked by a High-Carbohydrate Meal in Men with Overweight/Obesity. Nutrients, 14(20), 4305. https://doi.org/10.3390/nu14204305