Oral Supplementation with the Polyamine Spermidine Affects Hepatic but Not Pulmonary Lipid Metabolism in Lean but Not Obese Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Studies
2.2. Blood Plasma Analysis
2.3. Oral Glucose Tolerance Test
2.4. Necropsy and Organ Preparation
2.5. Lipid Droplet Quantification
2.6. mRNA Expression Analysis
2.7. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Fact Sheet 311: Obesity and Overweight. 2020, pp. 1–6. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 12 September 2022).
- Stanhope, K.L. Sugar Consumption, Metabolic Disease and Obesity: The State of the Controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wing, R.R.; Phelan, S. Long-Term Weight Loss Maintenance. Am. J. Clin. Nutr. 2005, 82, 222S–225S. [Google Scholar] [CrossRef] [PubMed]
- Choksomngam, Y.; Pattanakuhar, S.; Chattipakorn, N.; Chattipakorn, S.C. The Metabolic Role of Spermidine in Obesity: Evidence from Cells to Community. Obes. Res. Clin. Pract. 2021, 15, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Pegg, A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904–14912. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, K.; Kashiwagi, K. Modulation of Cellular Function by Polyamines. Int. J. Biochem. Cell Biol. 2010, 42, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Madeo, F.; Eisenberg, T.; Pietrocola, F.; Kroemer, G. Spermidine in Health and Disease. Science 2018, 359, eaan2788. [Google Scholar] [CrossRef] [Green Version]
- Kee, K.; Foster, B.A.; Merali, S.; Kramer, D.L.; Hensen, M.L.; Diegelman, P.; Kisiel, N.; Vujcic, S.; Mazurchuk, R.V.; Porter, C.W. Activated Polyamine Catabolism Depletes Acetyl-CoA Pools and Suppresses Prostate Tumor Growth in TRAMP Mice. J. Biol. Chem. 2004, 279, 40076–40083. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Esparza, N.C.; Latorre-Moratalla, M.L.; Comas-Basté, O.; Toro-Funes, N.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Polyamines in Food. Front. Nutr. 2019, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Soda, K.; Kano, Y.; Sakuragi, M.; Takao, K.; Lefor, A.; Konishi, F. Long-Term Oral Polyamine Intake Increases Blood Polyamine Concentrations. J. Nutr. Sci. Vitaminol. 2009, 55, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, T.; Knauer, H.; Schauer, A.; Büttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.; Antonacci, L.; et al. Induction of Autophagy by Spermidine Promotes Longevity. Nat. Cell Biol. 2009, 11, 1305–1314. [Google Scholar] [CrossRef]
- Eisenberg, T.; Abdellatif, M.; Schroeder, S.; Primessnig, U.; Stekovic, S.; Pendl, T.; Harger, A.; Schipke, J.; Zimmermann, A.; Schmidt, A.; et al. Cardioprotection and Lifespan Extension by the Natural Polyamine Spermidine. Nat. Med. 2016, 22, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Jell, J.; Merali, S.; Hensen, M.L.; Mazurchuk, R.; Spernyak, J.A.; Diegelman, P.; Kisiel, N.D.; Barrero, C.; Deeb, K.K.; Alhonen, L.; et al. Genetically Altered Expression of Spermidine/Spermine N1-Acetyltransferase Affects Fat Metabolism in Mice via Acetyl-CoA. J. Biol. Chem. 2007, 282, 8404–8413. [Google Scholar] [CrossRef] [Green Version]
- Kramer, D.L.; Diegelman, P.; Jell, J.; Vujcic, S.; Merali, S.; Porter, C.W. Polyamine Acetylation Modulates Polyamine Metabolic Flux, a Prelude to Broader Metabolic Consequences. J. Biol. Chem. 2008, 283, 4241–4251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Perez-Leal, O.; Barrero, C.; Zahedi, K.; Soleimani, M.; Porter, C.; Merali, S. Modulation of Polyamine Metabolic Flux in Adipose Tissue Alters the Accumulation of Body Fat by Affecting Glucose Homeostasis. Amino Acids 2014, 46, 701–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirinen, E.; Kuulasmaa, T.; Pietilä, M.; Heikkinen, S.; Tusa, M.; Itkonen, P.; Boman, S.; Skommer, J.; Virkamäki, A.; Hohtola, E.; et al. Enhanced Polyamine Catabolism Alters Homeostatic Control of White Adipose Tissue Mass, Energy Expenditure, and Glucose Metabolism. Mol. Cell. Biol. 2007, 27, 4953–4967. [Google Scholar] [CrossRef] [Green Version]
- Soda, K.; Dobashi, Y.; Kano, Y.; Tsujinaka, S.; Konishi, F. Polyamine-Rich Food Decreases Age-Associated Pathology and Mortality in Aged Mice. Exp. Gerontol. 2009, 44, 727–732. [Google Scholar] [CrossRef]
- Schipke, J.; Vital, M.; Schnapper-Isl, A.; Pieper, D.H.; Mühlfeld, C. Spermidine and Voluntary Activity Exert Differential Effects on Sucrose- Compared with Fat-Induced Systemic Changes in Male Mice. J. Nutr. 2019, 149, 451–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofer, S.J.; Davinelli, S.; Bergmann, M.; Scapagnini, G.; Madeo, F. Caloric Restriction Mimetics in Nutrition and Clinical Trials. Front. Nutr. 2021, 8, 717343. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD Development and Therapeutic Strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Sheka, A.C.; Adeyi, O.; Thompson, J.; Hameed, B.; Crawford, P.A.; Ikramuddin, S. Nonalcoholic Steatohepatitis: A Review. JAMA 2020, 323, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Okumura, S.; Teratani, T.; Fujimoto, Y.; Zhao, X.; Tsuruyama, T.; Masano, Y.; Kasahara, N.; Iida, T.; Yagi, S.; Uemura, T.; et al. Oral Administration of Polyamines Ameliorates Liver Ischemia/Reperfusion Injury and Promotes Liver Regeneration in Rats. Liver Transplant. 2016, 22, 1231–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Rojo De La Vega, M.; Dodson, M.; Yue, F.; Shi, B.; Fang, D.; Chapman, E.; Liu, L.; Zhang, D.D. Spermidine Confers Liver Protection by Enhancing NRF2 Signaling Through a MAP1S-Mediated Noncanonical Mechanism. Hepatology 2019, 70, 372–388. [Google Scholar] [CrossRef]
- Sadasivan, S.K.; Vasamsetti, B.; Singh, J.; Marikunte, V.V.; Oommen, A.M.; Jagannath, M.R.; Pralhada Rao, R. Exogenous Administration of Spermine Improves Glucose Utilization and Decreases Bodyweight in Mice. Eur. J. Pharmacol. 2014, 729, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Fernández, Á.F.; Bárcena, C.; Martínez-García, G.G.; Tamargo-Gómez, I.; Suárez, M.F.; Pietrocola, F.; Castoldi, F.; Esteban, L.; Sierra-Filardi, E.; Boya, P.; et al. Autophagy Couteracts Weight Gain, Lipotoxicity and Pancreatic β-Cell Death upon Hypercaloric pro-Diabetic Regimens. Cell Death Dis. 2017, 8, e2970. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Hu, Y.; Lou, X.; Rong, N.; Liu, F.; Yang, C.; Zheng, A.; Yang, S.; Bao, J.; Fu, Z. Spermidine Ameliorates Nonalcoholic Steatohepatitis through Thyroid Hormone-Responsive Protein Signaling and the Gut Microbiota-Mediated Metabolism of Bile Acids. J. Agric. Food Chem. 2022, 2022, 6492. [Google Scholar] [CrossRef] [PubMed]
- Bonhoure, N.; Byrnes, A.; Moir, R.D.; Hodroj, W.; Preitner, F.; Praz, V.; Marcelin, G.; Chua, S.C.; Martinez-Lopez, N.; Singh, R.; et al. Loss of the RNA Polymerase III Repressor MAF1 Confers Obesity Resistance. Genes Dev. 2015, 29, 934–947. [Google Scholar] [CrossRef] [Green Version]
- Herrero, R.; Sánchez, G.; Asensio, I.; López, E.; Ferruelo, A.; Vaquero, J.; Moreno, L.; De Lorenzo, A.; Bañares, R.; Lorente, J.A. Liver-Lung Interactions in Acute Respiratory Distress Syndrome. Intensive Care Med. Exp. 2020, 8, 48. [Google Scholar] [CrossRef]
- Hunt, A.N.; Malur, A.; Monfort, T.; Lagoudakis, P.; Mahajan, S.; Postle, A.D.; Thomassen, M.J. Hepatic Steatosis Accompanies Pulmonary Alveolar Proteinosis. Am. J. Respir. Cell Mol. Biol. 2017, 57, 448–458. [Google Scholar] [CrossRef] [Green Version]
- Orgeig, S.; Morrison, J.L.; Daniels, C.B. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2015; Volume 6, pp. 363–422. [Google Scholar]
- Hoet, P.H.M.; Nemery, B. Polyamines in the Lung: Polyamine Uptake and Polyamine-Linked Pathological or Toxicological Conditions. Am. J. Physiol. Cell. Mol. Physiol. 2000, 278, L417–L433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.L.; Wyatt, I.; Cohen, G.M. The Accumulation of Diamines and Polyamines into Rat Lung Slices. Biochem. Pharmacol. 1982, 31, 3029–3033. [Google Scholar] [CrossRef]
- Elsayed, N.M.; Ellingson, A.S.; Tierney, D.F.; Mustafa, M.G. Effects of Ozone Inhalation on Polyamine Metabolism and Tritiated Thymidine Incorporation into DNA of Rat Lungs. Toxicol. Appl. Pharmacol. 1990, 102, 1–8. [Google Scholar] [CrossRef]
- Hacker, A.D.; Tierney, D.F.; O’Brien, T.K. Polyamine Metabolism in Rat Lungs with Oxygen Toxicity. Biochem. Biophys. Res. Commun. 1983, 113, 491–496. [Google Scholar] [CrossRef]
- Shiao, R.T.; Kostenbauder, H.B.; Olson, J.W.; Gillespie, M.N. Mechanisms of Lung Polyamine Accumulation in Chronic Hypoxic Pulmonary Hypertension. Am. J. Physiol. Cell. Mol. Physiol. 1990, 259, L351–L358. [Google Scholar] [CrossRef]
- Rin Baek, A.; Hong, J.; Sung Song, K.; Soo Jang, A.; Jin Kim, D.; Sie Chin, S.; Woo Park, S. Spermidine Attenuates Bleomycin-Induced Lung Fibrosis by Inducing Autophagy and Inhibiting Endoplasmic Reticulum Stress (ERS)-Induced Cell Death in Mice. Exp. Mol. Med. 2020, 52, 2034–2045. [Google Scholar] [CrossRef]
- Kang, Y.P.; Lee, S.B.; Lee, J.; Kim, H.M.; Hong, J.Y.; Lee, W.J.; Choi, C.W.; Shin, H.K.; Kim, D.-J.; Koh, E.S.; et al. Metabolic Profiling Regarding Pathogenesis of Idiopathic Pulmonary Fibrosis. J. Proteome Res. 2016, 15, 1717–1724. [Google Scholar] [CrossRef] [PubMed]
- Ahrendt, N.; Steingrüber, T.; Rajces, A.; Lopez-Rodriguez, E.; Eisenberg, T.; Magnes, C.; Madeo, F.; Sedej, S.; Schmiedl, A.; Ochs, M.; et al. Spermidine Supplementation and Voluntary Activity Differentially Affect Obesity-Related Structural Changes in the Mouse Lung. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2020, 319, L312–L324. [Google Scholar] [CrossRef]
- Schipke, J.; Brandenberger, C.; Vital, M.; Mühlfeld, C. Starch and Fiber Contents of Purified Control Diets Differentially Affect Hepatic Lipid Homeostasis and Gut Microbiota Composition. Front. Nutr. 2022, 9, 915082. [Google Scholar] [CrossRef]
- Lee, S.; Muniyappa, R.; Yan, X.; Chen, H.; Yue, L.Q.; Hong, E.-G.; Kim, J.K.; Quon, M.J. Comparison between Surrogate Indexes of Insulin Sensitivity and Resistance and Hyperinsulinemic Euglycemic Clamp Estimates in Mice. Am. J. Physiol. Metab. 2008, 294, E261–E270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsia, C.C.W.; Hyde, D.M.; Ochs, M.; Weibel, E.R. An Official Research Policy Statement of the American Thoracic Society/European Respiratory Society: Standards for Quantitative Assessment of Lung Structure. Am. J. Respir. Crit. Care Med. 2010, 181, 394–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherle, W. A Simple Method for Volumetry of Organs in Quantitative Stereology. Mikroskopie 1970, 26, 57–60. [Google Scholar] [PubMed]
- Tschanz, S.; Schneider, J.P.; Knudsen, L. Design-Based Stereology: Planning, Volumetry and Sampling Are Crucial Steps for a Successful Study. Ann. Anat. 2014, 196, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Tschanz, S.; Burri, P.H.; Weibel, E.R. A Simple Tool for Stereological Assessment of Digital Images: The STEPanizer. J. Microsc. 2011, 243, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Ochs, M.; Schipke, J. Correction to: A Short Primer on Lung Stereology. Respir. Res. 2022, 23, 53. [Google Scholar] [CrossRef] [PubMed]
- Koponen, T.; Cerrada-Gimenez, M.; Pirinen, E.; Hohtola, E.; Paananen, J.; Vuohelainen, S.; Tusa, M.; Pirnes-Karhu, S.; Heikkinen, S.; Virkamäki, A.; et al. The Activation of Hepatic and Muscle Polyamine Catabolism Improves Glucose Homeostasis. Amino Acids 2012, 42, 427–440. [Google Scholar] [CrossRef]
- Kraus, D.; Yang, Q.; Kong, D.; Banks, A.S.; Zhang, L.; Rodgers, J.T.; Pirinen, E.; Pulinilkunnil, T.C.; Gong, F.; Wang, Y.C.; et al. Nicotinamide N-Methyltransferase Knockdown Protects against Diet-Induced Obesity. Nature 2014, 508, 258–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, M.M.; Greenaway, S.; White, J.K.; Fuchs, H.; Gailus-Durner, V.; Wells, S.; Sorg, T.; Wong, K.; Bedu, E.; Cartwright, E.J.; et al. A Comparative Phenotypic and Genomic Analysis of C57BL/6J and C57BL/6N Mouse Strains. Genome Biol. 2013, 14, R82. [Google Scholar] [CrossRef]
- Pellizzon, M.A.; Ricci, M.R. Effects of Rodent Diet Choice and Fiber Type on Data Interpretation of Gut Microbiome and Metabolic Disease Research. Curr. Protoc. Toxicol. 2018, 77, 55. [Google Scholar] [CrossRef] [Green Version]
- Thigpen, J.E.; Setchell, K.D.R.; Saunders, H.E.; Haseman, J.K.; Grant, M.G.; Forsythe, D.B. Selecting the Appropriate Rodent Diet for Endocrine Disruptor Research and Testing Studies. ILAR J. 2004, 45, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Cederroth, C.R.; Vinciguerra, M.; Kühne, F.; Madani, R.; Doerge, D.R.; Visser, T.J.; Foti, M.; Rohner-Jeanrenaud, F.; Vassalli, J.D.; Nef, S. A Phytoestrogen-Rich Diet Increases Energy Expenditure and Decreases Adiposity in Mice. Environ. Health Perspect. 2007, 115, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Méndez, J.D.; Balderas, F.L. Inhibition by L-Arginine and Spermidine of Hemoglobin Glycation and Lipid Peroxidation in Rats with Induced Diabetes. Biomed. Pharmacother. 2006, 60, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Goss, V.; Hunt, A.N.; Postle, A.D. Regulation of Lung Surfactant Phospholipid Synthesis and Metabolism. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2013, 1831, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.R. Clearance and Recycling of Pulmonary Surfactant. Am. J. Physiol. Cell. Mol. Physiol. 1990, 259, L1–L12. [Google Scholar] [CrossRef] [PubMed]
- Schipke, J.; Kuhlmann, S.; Hegermann, J.; Fassbender, S.; Kühnel, M.; Jonigk, D.; Mühlfeld, C. Lipofibroblasts in Structurally Normal, Fibrotic, and Emphysematous Human Lungs. Am. J. Respir. Crit. Care Med. 2021, 204, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Schipke, J.; Jütte, D.; Brandenberger, C.; Autilio, C.; Perez-Gil, J.; Bernhard, W.; Ochs, M.; Mühlfeld, C. Dietary Carbohydrates and Fat Induce Distinct Surfactant Alterations in Mice. Am. J. Respir. Cell Mol. Biol. 2021, 64, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.J.; Ravikumar, P.; Bellotto, D.J.; Unger, R.H.; Hsia, C.C.W. Fatty Diabetic Lung: Altered Alveolar Structure and Surfactant Protein Expression. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2010, 298, 392–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollenbach, J.; Lopez-Rodriguez, E.; Mühlfeld, C.; Schipke, J. Voluntary Activity Modulates Sugar-Induced Elastic Fiber Remodeling in the Alveolar Region of the Mouse Lung. Int. J. Mol. Sci. 2019, 20, 2438. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, I.; Soames, A.R.; Clay, M.F.; Smith, L.L. The Accumulation and Localisation of Putrescine, Spermidine, Spermine and Paraquat in the Rat Lung. Biochem. Pharmacol. 1988, 37, 1909–1918. [Google Scholar] [CrossRef]
- Dinsdale, D.; Preston, S.G.; Nemery, B. Effects of Injury on [3H]Putrescine Uptake by Types I and II Cells in Rat Lung Slices. Exp. Mol. Pathol. 1991, 54, 218–229. [Google Scholar] [CrossRef]
Ingredient | CD | HSD | HFD |
---|---|---|---|
Fat (%) | 4.1 | 4.1 | 34.8 |
Pork lard (%) | 1.6 | 1.6 | 31.6 |
Soybean oil (%) | 2.4 | 2.4 | 3.1 |
Carbohydrates (%) | 68.5 | 70 | 31.8 |
Pectin/inulin (%) | 13.6 | 0.2 | 0.2 |
Corn starch (%) | 35.9 | 7.8 | 7.8 |
Maltodextrin (%) | 11 | 11 | 11.4 |
Sucrose (%) | 5.9 | 45.9 | 6.8 |
Protein (%) | 17.6 | 17.6 | 23.7 |
Energy (kcal/g) | 3.25 | 3.75 | 5.23 |
Kcal% Fat | 11 | 10 | 60 |
Kcal% Carbohydrates | 67 | 71 | 22 |
Kcal% Protein | 22 | 19 | 18 |
Target | BioRad Assay ID | |
---|---|---|
SREBF1 | Sterol regulatory element binding transcription factor 1 | qMmuCIP0033121 |
SREBF2 | Sterol regulatory element binding transcription factor 2 | qMmuCIP0035147 |
PPARA | Peroxisome proliferator-activated receptor alpha | qMmuCEP0054952 |
ACLY | ATP citrate lyase | qMmuCEP0053217 |
ACACA | Acetyl-CoA carboxylase α | qMmuCIP0030034 |
FASN | Fatty acid synthase | qMmuCEP0054102 |
GPAM | Glycerol-3-phosphate acyltransferase | qMmuCIP0034231 |
ATGL | Adipose triglyceride lipase | qMmuCEP0034900 |
CPT1A | Carnitine palmitoyltransferase 1α | qMmuCEP0054021 |
HADHA | Mitochondrial trifunctional protein, subunit α | qMmuCEP0054151 |
HADHB | Mitochondrial trifunctional protein, subunit β | qMmuCIP0062992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pankoke, S.; Pfarrer, C.; Glage, S.; Mühlfeld, C.; Schipke, J. Oral Supplementation with the Polyamine Spermidine Affects Hepatic but Not Pulmonary Lipid Metabolism in Lean but Not Obese Mice. Nutrients 2022, 14, 4318. https://doi.org/10.3390/nu14204318
Pankoke S, Pfarrer C, Glage S, Mühlfeld C, Schipke J. Oral Supplementation with the Polyamine Spermidine Affects Hepatic but Not Pulmonary Lipid Metabolism in Lean but Not Obese Mice. Nutrients. 2022; 14(20):4318. https://doi.org/10.3390/nu14204318
Chicago/Turabian StylePankoke, Sophia, Christiane Pfarrer, Silke Glage, Christian Mühlfeld, and Julia Schipke. 2022. "Oral Supplementation with the Polyamine Spermidine Affects Hepatic but Not Pulmonary Lipid Metabolism in Lean but Not Obese Mice" Nutrients 14, no. 20: 4318. https://doi.org/10.3390/nu14204318
APA StylePankoke, S., Pfarrer, C., Glage, S., Mühlfeld, C., & Schipke, J. (2022). Oral Supplementation with the Polyamine Spermidine Affects Hepatic but Not Pulmonary Lipid Metabolism in Lean but Not Obese Mice. Nutrients, 14(20), 4318. https://doi.org/10.3390/nu14204318