Effects on Spirulina Supplementation on Immune Cells’ Parameters of Elite College Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Recruitment and Experimental Ethics
2.2. Design
2.3. Design Sampling and Detection
2.4. Training Plan
2.5. Statistical Analysis
3. Results
3.1. The Parameters of Immune Cells before and after the Supplementation
3.2. Difference of the Post-Test between the SP Group and PB Group
3.3. Comparison of the Delta Variation before and after between SP Group and PB Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Breedveld, A.; Kormelink, T.G.; van Egmond, M.; de Jong, E.C. Granulocytes as modulators of dendritic cell function. J. Leukoc. Biol. 2017, 102, 1003–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostrzewa-Nowak, D.; Wityk, P.; Ciechanowicz, A.; Nowak, R. Post-match recovery profile of leukocyte cell subsets among professional soccer players. Sci. Rep. 2021, 11, 13352. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.J.; Kunz, H.; Agha, N.; Graff, R. Exercise and the Regulation of Immune Functions. Prog. Mol. Biol. Transl. Sci. 2015, 135, 355–380. [Google Scholar] [PubMed]
- Wang, J.; Liu, S.; Li, G.; Xiao, J. Exercise Regulates the Immune System. Adv. Exp. Med. Biol. 2020, 1228, 395–408. [Google Scholar] [PubMed]
- Clark, A.; Mach, N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. J. Int. Soc. Sport. Nutr. 2016, 13, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakanis, M.W.; Peake, J.; Brenu, E.W.; Simmonds, M.; Gray, B.; Hooper, S.L.; Marshall-Gradisnik, S.M. The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc. Immunol. Rev. 2010, 16, 119–137. [Google Scholar] [CrossRef] [Green Version]
- Barry, J.C.; Simtchouk, S.; Durrer, C.; Jung, M.E.; Little, J.P. Short-Term Exercise Training Alters Leukocyte Chemokine Receptors in Obese Adults. Med. Sci. Sport. Exerc. 2017, 49, 1631–1640. [Google Scholar] [CrossRef]
- Walsh, N.P. Recommendations to maintain immune health in athletes. Eur. J. Sport Sci. 2018, 18, 820–831. [Google Scholar] [CrossRef] [Green Version]
- Grosset-Janin, A.; Nicolas, X.; Saraux, A. Sport and infectious risk: A systematic review of the literature over 20 years. Méd. Mal. Infect. 2012, 42, 533–544. [Google Scholar] [CrossRef]
- Walsh, N.P. Nutrition and Athlete Immune Health: New Perspectives on an Old Paradigm. Sport. Med. 2019, 49 (Suppl. 2), 153–168. [Google Scholar] [CrossRef]
- Mathews, N.M. Prohibited Contaminants in Dietary Supplements. Sport. Health 2018, 10, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; Horne, J.; Vanderhout, S.; El-Sohemy, A. Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Front. Nutr. 2019, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Harty, P.S.; Zabriskie, H.A.; Erickson, J.L.; Molling, P.E.; Kerksick, C.M.; Jagim, A.R. Multi-ingredient pre-workout supplements, safety implications, and performance outcomes: A brief review. J. Int. Soc. Sport. Nutr. 2018, 15, 41. [Google Scholar] [CrossRef] [Green Version]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxidative Med. Cell. Longev. 2017, 2017, 3247528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergeant, S.; Rahbar, E.; Chilton, F.H. Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur. J. Pharmacol. 2016, 785, 77–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhu, Y.D.; Borthakur, A.; Subeka, A.G.; Vellingiri, B.; Gopalakrishnan, A.V. Increased pro-inflammatory cytokines in ovary and effect of γ-linolenic acid on adipose tissue inflammation in a polycystic ovary syndrome model. J. Reprod. Immunol. 2021, 146, 103345. [Google Scholar] [CrossRef]
- Baker, E.J.; Valenzuela, C.A.; Dooremalen, W.T.; Martínez-Fernández, L.; Yaqoob, P.; Miles, E.A.; Calder, P.C. Gamma-Linolenic and Pinolenic Acids Exert Anti-Inflammatory Effects in Cultured Human Endothelial Cells Through Their Elongation Products. Mol. Nutr. Food Res. 2020, 64, e2000382. [Google Scholar]
- Liu, R.; Qin, S.; Li, W. Phycocyanin: Anti-inflammatory effect and mechanism. Biomed. Pharmacother. 2022, 153, 113362. [Google Scholar] [CrossRef]
- Romay, C.; Ledón, N.; González, R. Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation. Inflamm. Res. 1998, 47, 334–338. [Google Scholar] [CrossRef]
- Braakhuis, A.J.; Hopkins, W.G. Impact of Dietary Antioxidants on Sport Performance: A Review. Sport. Med. 2015, 45, 939–955. [Google Scholar]
- Spielmann, G.; Bollard, C.M.; Bigley, A.B.; Hanley, P.J.; Blaney, J.W.; LaVoy, E.C.; Pircher, H.; Simpson, R.J. The effects of age and latent cytomegalovirus infection on the redeployment of CD8+ T cell subsets in response to acute exercise in humans. Brain Behav. Immun. 2014, 39, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.M.; Merien, F.; Braakhuis, A.; Dulson, D. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine 2018, 104, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Anane, L.H.; Edwards, K.M.; Burns, V.E.; Drayson, M.T.; Riddell, N.E.; van Zanten, J.J.V.; Wallace, G.R.; Mills, P.J.; Bosch, J.A. Mobilization of γδ T lymphocytes in response to psychological stress, exercise, and β-agonist infusion. Brain Behav. Immun. 2009, 23, 823–829. [Google Scholar] [CrossRef]
- Nieman, D.C.; Pence, B.D. Exercise immunology: Future directions. J. Sport Health Sci. 2020, 9, 432–445. [Google Scholar] [CrossRef]
- Lee, E.C.; Fragala, M.S.; Kavouras, S.; Queen, R.M.; Pryor, J.L.; Casa, D.J. Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes. J. Strength Cond. Res. 2017, 31, 2920–2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, P.L.; Pyne, D.B.; Hopkins, W.G.; Barnes, C.J. Lower white blood cell counts in elite athletes training for highly aerobic sports. Eur. J. Appl. Physiol. 2010, 110, 925–932. [Google Scholar] [CrossRef]
- Moro, T.; Tinsley, G.; Longo, G.; Grigoletto, D.; Bianco, A.; Ferraris, C.; Guglielmetti, M.; Veneto, A.; Tagliabue, A.; Marcolin, G.; et al. Time-restricted eating effects on performance, immune function, and body composition in elite cyclists: A randomized controlled trial. J. Int. Soc. Sport. Nutr. 2020, 17, 1–11. [Google Scholar] [CrossRef]
- Weiskopf, D.; Weinberger, B.; Grubeck-Loebenstein, B. The aging of the immune system. Transpl. Int. 2009, 22, 1041–1050. [Google Scholar] [CrossRef]
- Cordova, A.; Sureda, A.; Tur, J.A.; Pons, A. Immune response to exercise in elite sportsmen during the competitive season. J. Physiol. Biochem. 2010, 66, 1–6. [Google Scholar] [CrossRef]
- Cavaglieri, C.R.; Dias, R.; Frollini, A.B.; Brunelli, D.T.; Yamada, A.K.; Prestes, J.; Leite, R.D.; Simões, R.A.; Salles, G.S.L.; Trevisan, D.; et al. Immune parameters, symptoms of upper respiratory tract infections, and training-load indicators in volleyball athletes. Int. J. Gen. Med. 2011, 4, 837. [Google Scholar] [CrossRef] [Green Version]
- Motran, C.C.; Silvane, L.; Chiapello, L.S.; Theumer, M.G.; Ambrosio, L.F.; Volpini, X.; Celias, D.P.; Cervi, L. Helminth Infections: Recognition and Modulation of the Immune Response by Innate Immune Cells. Front. Immunol. 2018, 9, 664. [Google Scholar] [CrossRef] [PubMed]
- Milasius, K.; Malickaite, R.; Dadeliene, R. Effect of spirulina food supplement on blood morphological parameters, biochemical composition and on the immune function of sportsmen. Biol. Sport 2009, 26, 157. [Google Scholar] [CrossRef]
- Juszkiewicz, A.; Basta, P.; Petriczko, E.; Machaliński, B.; Trzeciak, J.; Łuczkowska, K.; Skarpańska-Stejnborn, A. An attempt to induce an immunomodulatory effect in rowers with spirulina extract. J. Int. Soc. Sport. Nutr. 2018, 15, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenon, S.M.; Aguado-Zuniga, J.; Hatton, J.P.; Owens, C.D.; Conte, M.S.; Hughes-Fulford, M. Effects of fatty acids on endothelial cells: Inflammation and monocyte adhesion. J. Surg. Res. 2012, 177, e35–e43. [Google Scholar] [CrossRef] [Green Version]
- Fragala, M.S.; Kraemer, W.J.; Denegar, C.R.; Maresh, C.M.; Mastro, A.; Volek, J.S. Neuroendocrine-immune interactions and responses to exercise. Sport. Med. 2011, 41, 621–639. [Google Scholar] [CrossRef]
- Zheng, K. Research on the Physiological Monitoring and Evaluation of Pre-Competition Altitude Training for Zhejiang Elite Swimmers. Phys. Act. Health 2021, 5, 64–70. [Google Scholar] [CrossRef]
- Timmons, B.W.; Hamadeh, M.J.; Devries, M.C.; Tarnopolsky, M.A. Influence of gender, menstrual phase, and oral contraceptive use on immunological changes in response to prolonged cycling. J. Appl. Physiol. 2005, 99, 979–985. [Google Scholar] [CrossRef]
Variables | PB Group | SP Group | t | P |
---|---|---|---|---|
Sex | Male | Male | / | / |
Number | 19 | 20 | / | / |
Age (year) | 19.69 ± 0.92 | 19.87 ± 0.74 | 0.28 | 0.78 |
Body height (cm) | 177.72 ± 5.34 | 179.86 ± 2.70 | 1.91 | 0.07 |
Body mass (kg) | 62.36 ± 9.20 | 64.95 ± 7.792 | −0.49 | 0.62 |
Supplementation | Component | Content | Component | Content |
---|---|---|---|---|
Spirulina tablets | Protein | 60–75 g | Zn | 0.8–3 mg |
Carbohydrate | 10–30 g | Se | 1–3 μg | |
Fat | 2–3 g | β carotene | 50–200 mg | |
Dietary fiber | 0.5–1.5 g | Vitamin B1 | 100–300 μg | |
γ-linolenic acid | 0.5–1.6 g | Vitamin B2 | 3–10 μg | |
Spirulina polysaccharide | 2.6 g | Vitamin B6 | 100–300 μg | |
Docosahexaenoic acid | 0.2–0.8 mg | Vitamin B12 | 10–20 μg | |
Coenzyme Q10 | 1.5–4 mg | Vitamin C | 10–80 μg | |
Chlorophyll | 0.8–1.2 g | Vitamin E | 1–8 μg | |
Carotenoid | 100–400 mg | Nicotinic acid | 2.5–10 μg | |
Phycocyanin | 3.5–7 g | Folic acid | 35–100 μg | |
Ca | 40–150 mg | Sour regurgitation | 0.5–1.5 μg | |
Fe | 20–50 mg | Inositol | ≥2 μg | |
Placebo capsules | Edible starch | 100 g |
Phase | Exercise Items | Frequency | Description |
---|---|---|---|
Warm up | Jogging | Every training day | Start from jogging, the speed which induced the HR of participants increases to 60% HRmax. |
Whole-body Dynamic Stretch, contain crawling, lunge, and shoulder and hip mobility exercises. | / | A 20-min whole body dynamic stretch exercise, the HR in the dynamic stretch will be maintained from 50–60% HRmax, and the time in which the HR less than 50% HRmax should be no longer than 2 min. | |
Workout | Skill | Every training day | Start from progressing with the ball; the speed which induced the HR of participants increased to 60% HRmax. |
Personal skill training, passing and catching drills. | / | A 15-min Personal skill training, a 15-min passing and catching drills training and a 15-min team cooperation training. The HR during the training will be maintained from 60–70% HRmax and the time in which the HR less than 50% HRmax should be no longer than 5 min. | |
Competition time | Match and instruct. | 3 times a week | Starting from 3v3, the training which induced the HR of participants increases to 90% HRmax. |
3–11/3–11 training, cooperation training, teamwork training. | / | After a short rest to 50%HRmax, start a 5v5/8v8/11 match or friendly match. The coach will instruct tactics. | |
Strength/endurance training | Jumping or running. | Once a week | Start from a squat jump/shuttle run, the training which induced the HR of participants increases to >90% HRmax |
Squat jump, lunge jump, tuck jump. Varied pace running, shuttle run. | / | After a short rest to 60%HRmax, perform training lunges; jump and tuck; jump/varied pace running. The time between sets less than 3 min, 90% HRmax. | |
Cool-down | Stretching/jogging. | Every training day | A 20–30 min cooldown to close at resting heart rate (RHR). |
Static stretching, respiratory training. | / | ||
Total time | 150 min |
Group | Item | Leukocyte | Neutrophil | Lymphocyte | Monocyte | Eosinophil | Basophil |
---|---|---|---|---|---|---|---|
PB | before | 6.71 ± 1.56 | 52.44 ± 8.41 | 37.89 ± 5.65 | 5.99 ± 0.91 | 2.30 ± 1.26 | 0.28 ± 0.17 |
after | 5.60 ± 0.92 | 52.44 ± 6.24 | 38.83 ± 5.50 | 3.47 ± 1.24 | 3.06 ± 0.83 | 0.15 ± 0.05 | |
p | 0.04 * | 0.99 | 0.80 | 0.01 * | 0.18 | 0.12 | |
SP | before | 6.05 ± 1.09 | 51.97 ± 7.91 | 37.36 ± 10.35 | 5.79 ± 1.12 | 1.61 ± 0.76 | 0.29 ± 0.12 |
after | 5.42 ± 0.98 | 54.39 ± 5.59 | 37.05 ± 7.46 | 5.52 ± 1.26 | 2.41 ± 1.06 | 0.25 ± 0.24 | |
p | 0.14 | 0.23 | 0.92 | 0.59 | 0.01 * | 0.55 |
Variables/ Group | SP Group (n = 20) | PB Group (n = 19) | p |
---|---|---|---|
Leukocyte | −0.63 ± 1.45 | −1.11 ± 1.24 | 0.45 |
Neutrophil | 2.41 ± 6.26 | −0.01 ± 12.72 | 0.58 |
Lymphocyte | −0.31 ± 10.96 | 0.94 ± 9.30 | 0.80 |
Monocyte | −0.27 ± 1.74 | −2.51 ± 1.37 | 0.01 * |
Eosinophil | 0.88 ± 0.80 | 0.76 ± 1.43 | 0.84 |
Basophil | −0.05 ± 0.25 | −0.13 ± 0.18 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, Y.; Wu, W.; Xu, Y.; Li, X.; Qiu, Q.; Chen, H. Effects on Spirulina Supplementation on Immune Cells’ Parameters of Elite College Athletes. Nutrients 2022, 14, 4346. https://doi.org/10.3390/nu14204346
Zhang Y, Zhang Y, Wu W, Xu Y, Li X, Qiu Q, Chen H. Effects on Spirulina Supplementation on Immune Cells’ Parameters of Elite College Athletes. Nutrients. 2022; 14(20):4346. https://doi.org/10.3390/nu14204346
Chicago/Turabian StyleZhang, Yuting, Yan Zhang, Wei Wu, Yining Xu, Xiaohan Li, Qiner Qiu, and Haimin Chen. 2022. "Effects on Spirulina Supplementation on Immune Cells’ Parameters of Elite College Athletes" Nutrients 14, no. 20: 4346. https://doi.org/10.3390/nu14204346
APA StyleZhang, Y., Zhang, Y., Wu, W., Xu, Y., Li, X., Qiu, Q., & Chen, H. (2022). Effects on Spirulina Supplementation on Immune Cells’ Parameters of Elite College Athletes. Nutrients, 14(20), 4346. https://doi.org/10.3390/nu14204346