The Association between Maternal Sugar-Sweetened Beverage Consumption and Infant/Toddler Added Sugar Intakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Dietary Intake
2.2.1. Maternal Dietary Intake
2.2.2. Infant/Toddler Dietary Intake
2.3. Demographic and Pregnancy History and Feeding Practices Questionnaires
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, K.L.; Burgess, B.; Morris, K.S.; Faith, M.S.; Paluch, R.A. High intake of added sugars is linked to rapid weight gain in infancy, breastfeeding ≥12 months may protect against this: A preliminary investigation. Pediatr. Obes. 2021, 16, e12728. [Google Scholar] [CrossRef] [PubMed]
- Herrick, K.A.; Fryar, C.D.; Hamner, H.C.; Park, S.; Ogden, C.L. Added Sugars Intake among US Infants and Toddlers. J. Acad. Nutr. Diet. 2020, 120, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Magriplis, E.; Michas, G.; Petridi, E.; Chrousos, G.P.; Roma, E.; Benetou, V.; Cholopoulos, N.; Micha, R.; Panagiotakos, D.; Zampelas, A. Dietary Sugar Intake and Its Association with Obesity in Children and Adolescents. Children 2021, 8, 676. [Google Scholar] [CrossRef] [PubMed]
- Armfield, J.M.; Spencer, A.J.; Roberts-Thomson, K.F.; Plastow, K. Water Fluoridation and the Association of Sugar-Sweetened Beverage Consumption and Dental Caries in Australian Children. Am. J. Public Health 2013, 103, 494–500. [Google Scholar] [CrossRef]
- Park, S.; Blanck, H.M.; Sherry, B.; Jones, S.E.; Pan, L. Regular-Soda Intake Independent of Weight Status Is Associated with Asthma among US High School Students. J. Acad. Nutr. Diet. 2013, 113, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Kell, K.P.; I Cardel, M.; Brown, M.M.B.; Fernández, J.R. Added sugars in the diet are positively associated with diastolic blood pressure and triglycerides in children. Am. J. Clin. Nutr. 2014, 100, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Vos, M.B.; Kaar, J.L.; Welsh, J.A.; Van Horn, L.V.; Feig, D.I.; Anderson, C.A.M.; Patel, M.J.; Cruz Munos, J.; Krebs, N.F.; Xanthakos, S.A.; et al. Added Sugars and Cardiovascular Disease Risk in Children: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e1017–e1034. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 9th Edition. December 2020. Available online: DietaryGuidelines.gov (accessed on 10 June 2022).
- Bowman, S.A. Added sugars: Definition and estimation in the USDA Food Patterns Equivalents Databases. J. Food Compos. Anal. 2017, 64, 64–67. [Google Scholar] [CrossRef]
- Bably, M.B.; Paul, R.; Laditka, S.B.; Racine, E.F. Factors Associated with the Initiation of Added Sugar among Low-Income Young Children Participating in the Special Supplemental Nutrition Program for Women, Infants, and Children in the US. Nutrients 2021, 13, 3888. [Google Scholar] [CrossRef]
- Ha, D.H.; Do, L.G.; Spencer, A.J.; Thomson, W.M.; Golley, R.K.; Rugg-Gunn, A.J.; Levy, S.M.; Scott, J.A. Factors Influencing Early Feeding of Foods and Drinks Containing Free Sugars—A Birth Cohort Study. Int. J. Environ. Res. Public Health 2017, 14, 1270. [Google Scholar] [CrossRef]
- Birch, L.L.; Anzman-Frasca, S. Learning to Prefer the Familiar in Obesogenic Environments. Nestle Nutr. Workshop Ser. Pediatr. Program 2011, 68, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastorakou, D.; Ruark, A.; Weenen, H.; Stahl, B.; Stieger, M. Sensory characteristics of human milk: Association between mothers’ diet and milk for bitter taste. J. Dairy Sci. 2019, 102, 1116–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mennella, J.A.; Bobowski, N.K. The sweetness and bitterness of childhood: Insights from basic research on taste preferences. Physiol. Behav. 2015, 152, 502–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forestell, C.A. The Development of Flavor Perception and Acceptance: The Roles of Nature and Nurture. Nestle Nutr. Inst. Workshop Ser. 2016, 85, 135–143. [Google Scholar] [CrossRef]
- Beauchamp, G.K.; Moran, M. Acceptance of sweet and salty tastes in 2-year-old children. Appetite 1984, 5, 291–305. [Google Scholar] [CrossRef]
- Pepino, M.Y.; Mennella, J.A. Factors contributing to individual differences in sucrose preference. Chem. Senses 2005, 30 (Suppl. S1), i319–i320. [Google Scholar] [CrossRef]
- Pawellek, I.; Grote, V.; Theurich, M.; Closa-Monasterolo, R.; Stolarczyk, A.; Verduci, E.; Xhonneux, A.; Koletzko, B. European Childhood Obesity Trial Study Group Factors associated with sugar intake and sugar sources in European children from 1 to 8 years of age. Eur. J. Clin. Nutr. 2016, 71, 25–32. [Google Scholar] [CrossRef]
- Wang, Y.; Guglielmo, D.; A Welsh, J. Consumption of sugars, saturated fat, and sodium among US children from infancy through preschool age, NHANES 2009–2014. Am. J. Clin. Nutr. 2018, 108, 868–877. [Google Scholar] [CrossRef] [Green Version]
- Au, L.E.; Gurzo, K.; Paolicelli, C.; Whaley, S.E.; Weinfield, N.S.; Ritchie, L.D. Diet Quality of US Infants and Toddlers 7–24 Months Old in the WIC Infant and Toddler Feeding Practices Study-2. J. Nutr. 2018, 148, 1786–1793. [Google Scholar] [CrossRef] [Green Version]
- Scaglioni, S.; De Cosmi, V.; Ciappolino, V.; Parazzini, F.; Brambilla, P.; Agostoni, C. Factors Influencing Children’s Eating Behaviours. Nutrients 2018, 10, 706. [Google Scholar] [CrossRef]
- Vepsäläinen, H.; on behalf of the DAGIS consortium group; Nevalainen, J.; Fogelholm, M.; Korkalo, L.; Roos, E.; Ray, C.; Erkkola, M. Like parent, like child? Dietary resemblance in families. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paes, V.M.; Ong, K.K.; Lakshman, R. Factors influencing obesogenic dietary intake in young children (0–6 years): Systematic review of qualitative evidence. BMJ Open 2015, 5, e007396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brekke, H.K.; van Odijk, J.; Ludvigsson, J. Predictors and dietary consequences of frequent intake of high-sugar, low-nutrient foods in 1-year-old children participating in the ABIS study. Br. J. Nutr. 2007, 97, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Nutrition Board. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients); National Academy Press: Washington, DC, USA, 2005. [Google Scholar]
- Block, G. A review of validations of dietary assessment methods. Am. J. Epidemiol. 1982, 115, 492–505. [Google Scholar] [CrossRef]
- Anater, A.S.; Catellier, D.J.; A Levine, B.; Krotki, K.P.; Jacquier, E.F.; Eldridge, A.L.; E Bronstein, K.; Harnack, L.J.; Peasley, J.M.L.; Lutes, A.C. The Feeding Infants and Toddlers Study (FITS) 2016: Study Design and Methods. J. Nutr. 2018, 148, 1516S–1524S. [Google Scholar] [CrossRef] [Green Version]
- Raper, N.; Perloff, B.; Ingwersen, L.; Steinfeldt, L.; Anand, J. An overview of USDA’s dietary intake data system. J. Food Compos. Anal. 2004, 17, 545–555. [Google Scholar] [CrossRef]
- Schakel, S.F. Maintaining a Nutrient Database in a Changing Marketplace: Keeping Pace with Changing Food Products—A Research Perspective. J. Food Compos. Anal. 2001, 14, 315–322. [Google Scholar] [CrossRef]
- Schakel, S.F.; Sievert, Y.A.; Buzzard, I.M. Sources of data for developing and maintaining a nutrient database. J. Am. Diet. Assoc. 1988, 88, 1268–1271. [Google Scholar] [CrossRef]
- Schakel, S.F.; Buzzard, I.M.; Gebhardt, S.E. Procedures for estimating nutrient values for food composition databases. J. Food Comp. Anal. 1997, 10, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Fein, S.B.; Labiner-Wolfe, J.; Shealy, K.R.; Li, R.; Chen, J.; Grummer-Strawn, L.M. Infant Feeding Practices Study II: Study Methods. Pediatr. 2008, 122 (Suppl. S2), S28–S35. [Google Scholar] [CrossRef]
- Griffiths, L.J.; Smeeth, L.; Hawkins, S.S.; Cole, T.J.; Dezateux, C. Effects of infant feeding practice on weight gain from birth to 3 years. Arch. Dis. Child. 2009, 94, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Chevinsky, J.R.; Lee, S.H.; Blanck, H.M.; Park, S. Prevalence of Self-Reported Intake of Sugar-Sweetened Beverages Among US Adults in 50 States and the District of Columbia, 2010 and 2015. Prev. Chronic Dis. 2021, 18, E35. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Olendzki, B.; Pagoto, S.; Hurley, T.G.; Magner, R.P.; Ockene, I.S.; Schneider, K.L.; Merriam, P.A.; Hébert, J.R. Number of 24-Hour Diet Recalls Needed to Estimate Energy Intake. Ann. Epidemiol. 2009, 19, 553–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreyeva, T.; Marple, K.; Marinello, S.; Moore, T.E.; Powell, L.M. Outcomes Following Taxation of Sugar-Sweetened Beverages: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2215276. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.; Wright, K.; Dono, J.; Pettigrew, S.; Wakefield, M.; Coveney, J.; Wittert, G.; Roder, D.; Durkin, S.; Martin, J.; et al. “You can’t just eat 16 teaspoons of sugar so why would you drink 16 teaspoons’ worth of sugar?”: A qualitative study of young adults’ reactions to sugary drink warning labels. BMC Public Health 2022, 22, 1241. [Google Scholar] [CrossRef]
- Gowland-Ella, J.; Batchelor, S.; David, M.; Lewis, P.; Kajons, N. The outcomes of Thirsty? Choose Water! Determining the effects of a behavioural and an environmental intervention on water and sugar sweetened beverage consumption in adolescents: A randomised controlled trial. Heal. Promot. J. Aust. 2022. [Google Scholar] [CrossRef]
- Kamin, T.; Seljak, B.K.; Mis, N.F. Water Wins, Communication Matters: School-Based Intervention to Reduce Intake of Sugar-Sweetened Beverages and Increase Intake of Water. Nutrients 2022, 14, 1346. [Google Scholar] [CrossRef]
- Reese, A.C.; Burgos-Gil, R.; Cleary, S.D.; Lora, K.; Rivera, I.; Gittelsohn, J.; Seper, S.; Monge-Rojas, R.; Colón-Ramos, U. Use of a Water Filter at Home Reduces Sugary Drink Consumption among Parents and Toddlers in a Predominantly Hispanic Community: Results from the Water Up!@ Home Intervention Trial. J. Acad. Nutr. Diet. 2022. [Google Scholar] [CrossRef]
- Chiang, W.L.; Azlan, A.; Yusof, B.N.M. Effectiveness of education intervention to reduce sugar-sweetened beverages and 100% fruit juice in children and adolescents: A scoping review. Expert Rev. Endocrinol. Metab. 2022, 17, 179–200. [Google Scholar] [CrossRef]
- Van De Gaar, V.M.; Jansen, W.; Van Grieken, A.; Borsboom, G.J.J.M.; Kremers, S.; Raat, H. Effects of an intervention aimed at reducing the intake of sugar-sweetened beverages in primary school children: A controlled trial. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 98. [Google Scholar] [CrossRef]
- Nezami, B.; Lytle, L.; Ward, D.; Ennett, S.; Tate, D. Effect of the Smart Moms intervention on targeted mediators of change in child sugar-sweetened beverage intake. Public Health 2020, 182, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Nezami, B.T.; Ward, D.S.; Lytle, L.A.; Ennett, S.T.; Tate, D.F. A mHealth randomized controlled trial to reduce sugar-sweetened beverage intake in preschool-aged children. Pediatr. Obes. 2017, 13, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Østbye, T.; Krause, K.M.; Stroo, M.; Lovelady, C.A.; Evenson, K.R.; Peterson, B.L.; Bastian, L.A.; Swamy, G.K.; West, D.G.; Brouwer, R.J.; et al. Parent-focused change to prevent obesity in preschoolers: Results from the KAN-DO study. Prev. Med. 2012, 55, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taveras, E.M.; Gortmaker, S.L.; Hohman, K.H.; Horan, C.M.; Kleinman, K.P.; Mitchell, K.; Price, S.; Prosser, L.A.; Rifas-Shiman, S.L.; Gillman, M.W. Randomized controlled trial to improve primary care to prevent and manage childhood obesity: The High Five for Kids study. Arch Pediatr. Adolesc. Med. 2011, 165, 714–722. [Google Scholar] [CrossRef] [Green Version]
- WIC Eligibility and Coverage Rates-2018. Available online: https://www.fns.usda.gov/wic/eligibility-and-coverage-rates-2018#:~:text=The%20number%20of%20children%20eligible,for%204%2Dyear%2Dolds (accessed on 18 August 2022).
- Borger, C.; Paolicelli, C.; Sun, B.; Zimmerman, T.P.; Dixit-Joshi, S. Duration of WIC Participation and Early Feeding Practices Are Associated with Meeting the Added Sugars Recommendation at Age 3 Years. J. Nutr. Educ. Behav. 2022, 54, 670–676. [Google Scholar] [CrossRef]
- Robinson, S.; Marriott, L.; Poole, J.; Crozier, S.; Borland, S.; Lawrence, W.; Law, C.; Godfrey, K.; Cooper, C.; Inskip, H.; et al. Dietary patterns in infancy: The importance of maternal and family influences on feeding practice. Br. J. Nutr. 2007, 98, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Birch, L.L.; Doub, A.E. Learning to eat: Birth to age 2 y. Am. J. Clin. Nutr. 2014, 99, 723S–728S. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.O.; Butte, N.F.; Mendoza, P.M.; A Wilson, T.; A Hodges, E.; Reidy, K.C.; Deming, D. Overestimation of infant and toddler energy intake by 24-h recall compared with weighed food records. Am. J. Clin. Nutr. 2008, 88, 407–415. [Google Scholar] [CrossRef]
Mean (SD) | N (%) | Range | |
---|---|---|---|
Child | |||
Sex, male | 45 (44.6) | ||
Age, mo | 11.9 ± 1.9 | 9.1–15.8 | |
Race, white | 87 (78.0) | ||
Refuse to answer | 0(0.0) | ||
Gestational age, weeks | 39.4 (1.2) | 37–42 | |
Birth weight, kg | 3.5 ± 0.5 | 2.4–5.2 | |
Weight-for-length z-score a | 0.5 ± 0.9 | −1.7–3.1 | |
Weight-for-age z-score a | 0.2 ± 0.9 | −2.4–2.6 | |
Length-for-age z-score a | −0.3 ± 1.2 | −3.1–2.9 | |
Conditional weight gain ᵇ | 0 ± 1.0 | −2.8–2.3 | |
Breastfeeding duration | 8.1 (4.6) | 0–12.0 | |
≥6 mo | 69 (68.3) | ||
First introduction to solid foods | 5.3 ± 1.0 | 2.0–9.0 | |
<4 mo | 3 (3.0) | ||
4–5 mo | 42 (41.6) | ||
≥6 mo | 74 (55.4) | ||
Mother | |||
Age, y | 32.6 ± 4.3 | 22.8–46.3 | |
Education level | |||
Some college or below | 28 (27.7) | ||
College graduate or higher | 73 (72.3) | ||
Refuse to answer | 0 (0.0) | ||
Parity | |||
Nulliparous | 56 (55.4) | ||
Parous ≥ 1 | 45 (44.6) | ||
Current BMI, kg/m2 | 30.2 ± 7.7 | 19.6–49.3 | |
Normal weight | 33 (33.3) | ||
Overweight/obese (≥25 BMI) | 68 (67.30) | ||
Household total income | USD 91,386 (41,328) | ||
<USD 30,000 | 6 (5.9) | ||
USD 30,000–USD 69,999 | 24 (23.8) | ||
USD 70,000–USD 109,999 | 43 (42.6) | ||
≥USD 110,000 | 28 (27.7) | ||
Refuse to answer | 0 (0.0) |
Effect | R2 | ΔR2 | β | t | p-Value |
---|---|---|---|---|---|
Step 1 | |||||
Child sex | 0.731 | 0.313 | 0.755 | ||
Child age (mo) | −0.119 | −0.192 | 0.848 | ||
Birthweight (kg) | −4.418 | −1.754 | 0.083 | ||
Parity | 0.248 | 0.227 | 0.821 | ||
Maternal BMI (kg/m2) | 0.378 | 2.508 | 0.014 * | ||
Gestational age | 0.004 | 0.004 | 0.997 | ||
Maternal Education (y) | −1.265 | −2.082 | 0.040 * | ||
Household income (USD 10K) | 0.422 | 1.473 | 0.144 | ||
0.152 | |||||
Step 2 | |||||
Breastfeeding duration (mo) | −1.356 | −5.898 | <0.001 * | ||
First introduction to solid foods (mo) | 0.695 | 0.672 | 0.503 | ||
Finc (2,90) =18.07, p < 0.0001 | 0.395 | 0.240 | |||
Step 3 | |||||
Maternal total sugar intakes | 0.442 | 0.030 | 0.046 | 1.904 | 0.060 |
Finc (1,89) =7.49, p = 0.007 |
Effect | R2 | ΔR2 | β | t | p-Value |
---|---|---|---|---|---|
Step 1 | |||||
Child sex | 0.731 | 0.313 | 0.755 | ||
Child age (mo) | −0.119 | −0.192 | 0.848 | ||
Birthweight (kg) | −4.418 | −1.754 | 0.083 | ||
Parity | 0.248 | 0.227 | 0.821 | ||
Maternal BMI (kg/m2) | 0.378 | 2.508 | 0.014 * | ||
Gestational age | 0.004 | 0.004 | 0.997 | ||
Maternal Education (y) | −1.265 | −2.082 | 0.040 * | ||
Household income (USD 10K) | 0.422 | 1.473 | 0.144 | ||
0.151 | |||||
Step 2 | |||||
Breastfeeding duration (mo) | −1.356 | −5.898 | <0.001 * | ||
First introduction to solid foods (mo) | 0.695 | 0.672 | 0.503 | ||
Finc (2,90) =18.07, p < 0.0001 | 0.395 | 0.240 | |||
Step 3 | |||||
Maternal sugar sweetened beverage intakes | 0.445 | 0.054 | 0.010 | 2.831 | 0.006 * |
Finc (1,89) = 8.02, p = 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griebel-Thompson, A.K.; Murray, A.; Morris, K.S.; Paluch, R.A.; Jacobson, L.; Kong, K.L. The Association between Maternal Sugar-Sweetened Beverage Consumption and Infant/Toddler Added Sugar Intakes. Nutrients 2022, 14, 4359. https://doi.org/10.3390/nu14204359
Griebel-Thompson AK, Murray A, Morris KS, Paluch RA, Jacobson L, Kong KL. The Association between Maternal Sugar-Sweetened Beverage Consumption and Infant/Toddler Added Sugar Intakes. Nutrients. 2022; 14(20):4359. https://doi.org/10.3390/nu14204359
Chicago/Turabian StyleGriebel-Thompson, Adrianne K., Abigail Murray, Katherine S. Morris, Rocco A. Paluch, Lisette Jacobson, and Kai Ling Kong. 2022. "The Association between Maternal Sugar-Sweetened Beverage Consumption and Infant/Toddler Added Sugar Intakes" Nutrients 14, no. 20: 4359. https://doi.org/10.3390/nu14204359
APA StyleGriebel-Thompson, A. K., Murray, A., Morris, K. S., Paluch, R. A., Jacobson, L., & Kong, K. L. (2022). The Association between Maternal Sugar-Sweetened Beverage Consumption and Infant/Toddler Added Sugar Intakes. Nutrients, 14(20), 4359. https://doi.org/10.3390/nu14204359