Haplotype of ESR1 and PPARD Genes Is Associated with Higher Anthropometric Changes in Han Chinese Obesity by Adjusting Dietary Factors—An 18-Month Follow-Up
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Design
2.2. DNA Genotyping
2.3. Subjects and Data Collection
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Locus | Gene |
---|---|
rs1800763 | ADRA2A |
rs3750625 | ADRA2A |
rs3111873 | ADRA2B |
rs2229169 | ADRA2B |
rs3813662 | ADRA2B |
rs1079596 | DRD2 |
rs2075654 | DRD2 |
rs712221 | ESR1 * |
rs6511720 | LDLR |
rs2228671 | LDLR |
rs1433099 | LDLR |
rs2025804 | LEPR |
rs9324916 | NR3C1 |
rs4684846 | PPARG |
rs1822825 | PPARG |
rs659366 | UCP2 |
rs660339 | UCP2 |
rs643064 | UCP2 |
rs2016520 | PPARD * |
Appendix B
SNP-Gene | Risk Genotype Frequency | OR (95% CI) | |
---|---|---|---|
NW | OB | ||
rs712221-ESR1 | n (%) | ||
TT | 47 (15.12%) | 35 (29.66%) | 2.28 (1.27–4.12) |
TA | 165 (53.05%) | 50 (42.37%) | 0.99 (0.55–1.51) |
AA | 99 (31.83%) | 33 (27.97%) | 1 |
p = 0.039 | |||
rs2016520-PPARD | n (%) | ||
TT | 159 (51.13%) | 65 (55.08%) | 2.74 (1.10–4.27) |
TC | 112 (36.01%) | 47 (39.84%) | 2.86 (1.12–7.27) |
CC | 40 (12.86%) | 6 (5.08%) | 1 |
p = 0.046 |
References
- Tamori, Y.; Kasuga, M. Obesity and insulin resistance. Nihon Rinsho 2009, 67, 236–244. [Google Scholar]
- Formiguera, X.; Canton, A. Obesity: Epidemiology and clinical aspects. Best Pract. Res. Clin. Gastroenterol. 2004, 18, 1125–1146. [Google Scholar] [CrossRef]
- Xing, Z.; Pei, J.; Huang, J.; Hu, X.; Gao, S. Relationship of obesity to adverse events in myocardial infarction patients without primary percutaneous coronary intervention: Results from the Occluded Artery Trial (OAT). Curr. Med Res. Opin. 2019, 35, 1563–1569. [Google Scholar] [CrossRef]
- Kang, M.; Sung, J. A genome-wide search for gene-by-obesity interaction loci of dyslipidemia in Koreans shows diverse genetic risk alleles. J. Lipid Res. 2019, 60, 2090–2101. [Google Scholar] [CrossRef]
- Xi, B.; Mi, J. Genome-wide association studies of common obesity: Now and future. Biomed. Environ. Sci. 2013, 26, 787–791. [Google Scholar]
- Chen, H.H.; Lee, W.-J.; Fann, C.S.J.; Bouchard, C.; Pan, W.-H. Severe obesity is associated with novel single nucleotide polymorphisms of the ESR1 and PPARgamma locus in Han Chinese. Am. J. Clin. Nutr. 2009, 90, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Liou, T.H.; Chen, H.-H.; Wang, W.; Wu, S.-F.; Lee, Y.-C.; Yang, W.-S.; Lee, W.-J. ESR1, FTO, and UCP2 Genes Interact with Bariatric Surgery Affecting Weight Loss and Glycemic Control in Severely Obese Patients. Obes. Surg. 2011, 21, 1758–1765. [Google Scholar] [CrossRef]
- Eschenhagen, T.; Mende, U.; Schmitz, W.; Scholz, H.; Esch, J.S.A.; Sempell, R.; Warnholtz, A.; Wüstel, J.-M. Beta-adrenoceptor stimulation-induced increase in cardiac Gi-protein expression and in carbachol sensitivity. Eur. Hear. J. 1991, 12 (Suppl. F), 127–131. [Google Scholar] [CrossRef]
- Cabrera-Vera, T.M.; Vanhauwe, J.; Thomas, T.O.; Medkova, M.; Preininger, A.; Mazzoni, M.R.; Hamm, H.E. Insights into G Protein Structure, Function, and Regulation. Endocr. Rev. 2003, 24, 765–781. [Google Scholar] [CrossRef] [Green Version]
- Carmen, G.Y.; Víctor, S.-M. Signalling mechanisms regulating lipolysis. Cell. Signal. 2006, 18, 401–408. [Google Scholar] [CrossRef]
- Pereira, T.V.; Mingroni-Netto, R.C.; Yamada, Y. ADRB2 and LEPR Gene Polymorphisms: Synergistic Effects on the Risk of Obesity in Japanese. Obesity 2011, 19, 1523–1527. [Google Scholar] [CrossRef] [Green Version]
- Vortherms, T.A.; Nguyen, C.H.; Bastepe, M.; Jüppner, H.; Watts, V.J. D2 dopamine receptor-induced sensitization of adenylyl cyclase type 1 is G alpha(s) independent. Neuropharmacology 2006, 50, 576–584. [Google Scholar] [CrossRef]
- Nisoli, E.; Brunnai, A.; Borgomainerio, E.; Tonello, C.; Dioni, L.; Briscini, L.; Redaelli, G.; Molinari, E.; Cavagnini, F.; Carruba, M.O. D2 dopamine receptor (DRD2) gene Taq1A polymorphism and the eating-related psychological traits in eating disorders (anorexia nervosa and bulimia) and obesity. Eat. Weight. Disord. 2007, 12, 91–96. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, T.-H.; Lu, W.-S.; Mu, P.-W.; Yang, Y.-F.; Liang, W.-W.; Li, C.-X.; Lin, G.-P. Estrogen receptor alpha gene polymorphism associated with type 2 diabetes mellitus and the serum lipid concentration in Chinese women in Guangzhou. Chin. Med. J. 2006, 119, 1794–1801. [Google Scholar] [CrossRef]
- Wang, W.; Liou, T.-H.; Lee, W.-J.; Hsu, C.-T.; Lee, M.-F.; Chen, H.-H. ESR1 gene and insulin resistance remission are associated with serum uric acid decline for severely obese patients undergoing bariatric surgery. Surg. Obes. Relat. Dis. 2014, 10, 14–22. [Google Scholar] [CrossRef]
- Okura, T.; Koda, M.; Ando, F.; Niino, N.; Ohta, S.; Shimokata, H. Association of polymorphisms in the estrogen receptor alpha gene with body fat distribution. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- Mattevi, V.S.; Coimbra, C.E., Jr.; Santos, R.V.; Salzano, F.M.; Hutz, M.H. Association of the low-density lipoprotein receptor gene with obesity in Native American populations. Hum. Genet. 2000, 106, 546–552. [Google Scholar] [CrossRef]
- Schreyer, S.A.; Vick, C.; Lystig, T.C.; Mystkowski, P.; LeBoeuf, R.C. LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. Am. J. Physiol. Metab. 2002, 282, E207–E214. [Google Scholar] [CrossRef] [Green Version]
- Cyr, Y.; Bissonnette, S.; LaMantia, V.; Wassef, H.; Loizon, E.; Sock, E.T.N.; Vidal, H.; Mayer, G.; Chrétien, M.; Faraj, M. White Adipose Tissue Surface Expression of LDLR and CD36 is Associated with Risk Factors for Type 2 Diabetes in Adults with Obesity. Obesity 2020, 28, 2357–2367. [Google Scholar] [CrossRef]
- van Rossum, E.F.; Roks, P.H.M.; De Jong, F.H.; Brinkmann, A.O.; Pols, H.A.P.; Koper, J.W.; Lamberts, S.W.J. Characterization of a promoter polymorphism in the glucocorticoid receptor gene and its relationship to three other polymorphisms. Clin. Endocrinol. 2004, 61, 573–581. [Google Scholar] [CrossRef]
- Rosmond, R.; Chagnon, Y.C.; Holm, G.; Chagnon, M.; Pérusse, L.; Lindell, K.; Carlsson, B.; Bouchard, C.; Björntorp, P. A Glucocorticoid Receptor Gene Marker Is Associated with Abdominal Obesity, Leptin, and Dysregulation of the Hypothalamic-Pituitary-Adrenal Axis. Obes. Res. 2000, 8, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Picard, F.; Auwerx, J. PPAR(gamma) and glucose homeostasis. Annu. Rev. Nutr. 2002, 22, 167–197. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; Maffioli, P. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists on glycemic control, lipid profile and cardiovascular risk. Curr. Mol. Pharmacol. 2012, 5, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.F.; Liou, T.-H.; Wang, W.; Pan, W.-H.; Lee, W.-J.; Hsu, C.-T.; Wu, S.-F.; Chen, H.-H. Gender, body mass index, and PPARgamma polymorphism are good indicators in hyperuricemia prediction for Han Chinese. Genet. Test. Mol. Biomark. 2013, 17, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Szkup, M.; Owczarek, A.J.; Schneider-Matyka, D.; Brodowski, J.; Łój, B.; Grochans, E. Associations between the components of metabolic syndrome and the polymorphisms in the peroxisome proliferator-activated receptor gamma (PPAR-gamma), the fat mass and obesity-associated (FTO), and the melanocortin-4 receptor (MC4R) genes. Aging 2018, 10, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Sluse, F.E.; Jarmuszkiewicz, W.; Navet, R.; Douette, P.; Mathy, G.; Sluse-Goffart, C.M. Mitochondrial UCPs: New insights into regulation and impact. Biochim. Biophys. Acta 2006, 1757, 480–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.H.; Lee, W.-J.; Wang, W.; Huang, M.-T.; Lee, Y.-C.; Pan, W.-H. Ala55Val Polymorphism on UCP2 Gene Predicts Greater Weight Loss in Morbidly Obese Patients Undergoing Gastric Banding. Obes. Surg. 2007, 17, 926–933. [Google Scholar] [CrossRef]
- Wang, W.; Fann, C.S.; Yang, S.-H.; Chen, H.-H.; Chen, C.-Y. Weight loss and metabolic improvements in obese patients undergoing gastric banding and gastric banded plication: A comparison. Nutrition 2019, 57, 290–299. [Google Scholar] [CrossRef]
- Perusse, L.; Chagnon, Y.C.; Dionne, F.T.; Bouchard, C. The Human Obesity Gene Map: The 1996 Update. Obes. Res. 1997, 5, 49–61. [Google Scholar]
- Rankinen, T.; Zuberi, A.; Chagnon, Y.C.; Weisnagel, S.J.; Argyropoulos, G.; Walts, B.; Perusse, L.; Bouchard, C. The Human Obesity Gene Map: The 2005 Update. Obesity 2006, 14, 529–644. [Google Scholar]
- Ding, Y.; Guo, Z.-R.; Wu, M.; Chen, Q.; Zhou, Z.-Y.; Yu, H.; Zhang, L.-J.; Liu, J.-C.; Luo, W.-S. Effects of PPARD-87T > C and interactions with single nucleotide polymorphisms in PPARA and PPARG on abdominal obesity. Zhonghua Yi Xue Za Zhi 2012, 92, 1517–1521. [Google Scholar] [PubMed]
- Flores-Dorantes, M.T.; Díaz-López, Y.E.; Gutiérrez-Aguilar, R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front. Neurosci. 2020, 14, 863. [Google Scholar] [CrossRef] [PubMed]
- Dixon, B.N.; Ugwoaba, U.A.; Brockmann, A.N.; Ross, K.M. Associations between the built environment and dietary intake, physical activity, and obesity: A scoping review of reviews. Obes. Rev. 2021, 22, e13171. [Google Scholar] [CrossRef]
- Sun, J.W.; Collins, J.M.; Ling, D.; Wang, D. Highly Variable Expression of ESR1 Splice Variants in Human Liver: Implication in the Liver Gene Expression Regulation and Inter-Person Variability in Drug Metabolism and Liver Related Diseases. J. Mol. Genet. Med. 2019, 13, 434. [Google Scholar] [PubMed]
- Mendez, J.P.; Rojano-Mejía, D.; Coral-Vázquez, R.M.; Coronel, A.; Pedraza, J.; Casas, M.J.; Soriano, R.; García-García, E.; Vilchis, F.; Canto, P. Impact of genetic variants of IL-6, IL6R, LRP5, ESR1 and SP7 genes on bone mineral density in postmenopausal Mexican-Mestizo women with obesity. Gene 2013, 528, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Guclu-Geyik, F.; Coban, N.; Can, G.; Erginel-Unaltuna, N. The rs2175898 Polymorphism in the ESR1 Gene has a Significant Sex-Specific Effect on Obesity. Biochem. Genet. 2020, 58, 935–952. [Google Scholar] [CrossRef]
- Ardlie, K.G.; Kruglyak, L.; Seielstad, M. Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 2002, 3, 299–309. [Google Scholar] [CrossRef]
- Huang, W.H.; Hwang, L.-C.; Chan, H.-L.; Lin, H.-Y.; Lin, Y.-H. Study of seven single-nucleotide polymorphisms identified in East Asians for association with obesity in a Taiwanese population. BMJ Open 2016, 6, e011713. [Google Scholar] [CrossRef] [Green Version]
- Elton, R.A.; Duffy, S.W. Correcting for the effect of misclassification bias in a case-control study using data from two different questionnaires. Biometrics 1983, 39, 659–663. [Google Scholar] [CrossRef]
- Austin, H.; Flanders, W.D.; Rothman, K.J. Bias Arising in Case-Control Studies from Selection of Controls from Overlapping Groups. Int. J. Epidemiol. 1989, 18, 713–716. [Google Scholar] [CrossRef]
- Chen, H.Y.; Kittles, R.; Zhang, W. Bias correction to secondary trait analysis with case-control design. Stat. Med. 2013, 32, 1494–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, H.T.; Crombie, I.K. Bias in case-control studies. Hosp. Med. 2000, 61, 279–281. [Google Scholar] [CrossRef]
- World Health Organization. Men, Ageing and Health: Achieving Health across the Life Span; World Health Organization. Available online: https://apps.who.int/iris/handle/10665/66941?locale-attribute=en& (accessed on 11 October 2022).
- Salfeld, K. On the problem of energy producing metabolism and amino acid metabolism in older human epidermis. 3. Enzyme studies of the blister substance in cantharidin blisters. Arch. Klin. Exp. Dermatol. 1969, 234, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Orimo, H. Reviewing the definition of elderly. Nihon Ronen Igakkai Zasshi 2006, 43, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Hoeymans, N.; Feskens, E.; Kromhout, D.; Bos, G.V.D. Ageing and the relationship between functional status and self-rated health in elderly men. Soc. Sci. Med. 1997, 45, 1527–1536. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Guo, Z.; Wu, M.; Hao, C.; Hu, X.; Zhou, Z.; Zhou, Z.; Yao, X.; Zhang, L.; Liu, J. Association of peroxisome proliferator-activated receptor alpha/delta/gamma with obesity, and gene-gene interaction, in the Chinese Han population. J. Epidemiol. 2013, 23, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Guo, Z.-R.; Wu, M.; Chen, Q.; Yu, H.; Luo, W.-S. Gene-gene interaction between PPARdelta and PPARgamma is associated with abdominal obesity in a Chinese population. J. Genet. Genom. 2012, 39, 625–631. [Google Scholar] [CrossRef]
- Huang, Y.; Nie, S.; Zhou, S.; Li, K.; Sun, J.; Zhao, J.; Fei, B.; Wang, Z.; Ye, H.; Hong, Q.; et al. PPARD rs2016520 polymorphism and circulating lipid levels connect with brain diseases in Han Chinese and suggest sex-dependent effects. Biomed. Pharmacother. 2015, 70, 7–11. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Follis, J.L.; Ngwa, J.S.; Smith, C.E.; Ahmad, S.; Tanaka, T.; Wojczynski, M.K.; Voortman, T.; Lemaitre, R.N.; Kristiansson, K.; et al. Gene x dietary pattern interactions in obesity: Analysis of up to 68 317 adults of European ancestry. Hum. Mol. Genet. 2015, 24, 4728–4738. [Google Scholar] [CrossRef] [Green Version]
- Hosseini-Esfahani, F.; Koochakpoor, G.; Daneshpour, M.S.; Sedaghati-Khayat, B.; Mirmiran, P.; Azizi, F. Mediterranean Dietary Pattern Adherence Modify the Association between FTO Genetic Variations and Obesity Phenotypes. Nutrients 2017, 9, 1064. [Google Scholar] [CrossRef] [Green Version]
- Doo, M.; Kim, Y. Association betweenESR1rs1884051 polymorphism and dietary total energy and plant protein intake on obesity in Korean men. Nutr. Res. Pract. 2011, 5, 527–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsunoda, T.; Lathrop, G.M.; Sekine, A.; Yamada, R.; Takahashi, A.; Ohnishi, Y.; Tanaka, T.; Nakamura, Y. Variation of gene-based SNPs and linkage disequilibrium patterns in the human genome. Hum. Mol. Genet. 2004, 13, 1623–1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cariou, B.; Zaïr, Y.; Steals, B.; Bruckert, E. Effects of the new dual PPAR alpha/delta agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care 2011, 34, 2008–2014. [Google Scholar] [CrossRef] [PubMed]
NW | OB | p-Value | |
---|---|---|---|
Male/Female, n | 132/179 | 46/72 | 0.247 + |
Age, y/o | 43.1 ± 8.5 | 44.5 ± 7.8 | 0.243 |
BW, kg | 54.6 ± 6.1 | 84.1 ± 5.8 | <0.01 |
BMI | 21.7 ± 1.4 | 30.9 ± 1.6 | <0.01 |
WC, cm | 73.5 ± 6.3 | 89.5 ± 8.2 | <0.01 |
SNP (Gene) | Genotype Frequency | OR (95% CI) | |
---|---|---|---|
NW | OB | ||
rs712221-ESR1 | n (%) | n (%) | |
TT | 47 (15.12%) | 35(29.66%) | 2.42 [1.46–4.01] |
TA/AA | 264 (84.88%) | 83 (70.34%) | 1 |
rs2016520-PPARD | n (%) | n (%) | |
TT/TC | 271 (87.14%) | 112 (94.92%) | 2.80 [1.14–6.85] |
CC | 40 (12.86%) | 6 (5.08%) | 1 |
SNP (Gene) | Genotype Frequency | OR (95% CI) | |
---|---|---|---|
NW | OB | ||
Haplotype risk | n (%) | n (%) | |
2-RGH | 40 (12.86%) | 33 (27.97%) | 7.00 [2.23–21.99] |
1-RGH | 238 (76.53%) | 80 (67.80%) | 2.62 [1.00–8.25] |
NRGH | 33 (10.61%) | 5 (4.23%) | 1 |
2-RGH | 1-RGH | NRGH | |
---|---|---|---|
35 > BMI ≥ 27 | |||
n (Male/Female) | 10/17 | 25/45 | 2/3 |
Age, y/o | 45.6 ± 8.2 | 46.8 ± 9.1 | 49.1 ± 8.1 |
BMI change, % | 5.2 ± 4.4 a | 2.5 ± 4.6 ab | 0.5 ± 1.6 b |
BW change, % | 5.9 ± 5.2 a | 2.7 ± 5.7 ab | 1.3 ± 3.5 b |
WC change, % | 5.0 ± 8.5 a | 2.1 ± 5.4 ab | 0.6 ± 4.5 b |
* Energy intake, kcal | 2367.2 ± 954.2 b | 2184.1 ± 710.6 b | 3040.8 ± 1182.0 a |
CHO proportion, % | 54.1 ± 13.1 | 54.3 ± 9.9 | 56.1 ± 11.9 |
Fat proportion, % | 30.2 ± 12.0 | 31.3 ± 9.4 | 28.9 ± 10.0 |
Protein proportion, % | 13.3 ± 1.8 b | 13.6 ± 3.3 b | 16.6 ± 4.3 a |
Fiber proportion, % | 1.0 ± 0.5 a | 0.8 ± 0.4 ab | 0.4 ± 0.2 b |
24 > BMI > 18.5 | |||
n (Male/Female) | 17/23 | 94/144 | 21/12 |
Age, y/o | 43.4 ± 8.8 | 42.9 ± 8.4 | 44.7 ± 9.3 |
BMI change, % | 0.8 ± 5.0 | 1.5 ± 10.1 | 1.5 ± 3.9 |
BW change, % | 1.8 ± 4.9 | 2.0 ± 5.6 | 2.3 ± 4.3 |
WC change, % | 1.0 ± 7.8 | 2.5 ± 7.1 | 2.2 ± 5.9 |
* Energy intake, kcal | 2119.4 ± 521.7 b | 2118.4 ± 644.0 b | 2485.4 ± 874.1 a |
CHO proportion, % | 55.0 ± 10.2 | 56.4 ± 9.4 | 57.8 ± 9.6 |
Fat proportion, % | 29.9 ± 9.2 | 29.1 ± 9.2 | 28.3 ± 9.1 |
Protein proportion, % | 14.2 ± 3.0 | 13.6 ± 2.7 | 13.1 ± 3.0 |
Fiber proportion, % | 1.0 ± 0.3 a | 0.8 ± 0.4 ab | 0.6 ± 0.2 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-M.; Wang, W.; Hsieh, P.-P.; Chen, H.-H. Haplotype of ESR1 and PPARD Genes Is Associated with Higher Anthropometric Changes in Han Chinese Obesity by Adjusting Dietary Factors—An 18-Month Follow-Up. Nutrients 2022, 14, 4425. https://doi.org/10.3390/nu14204425
Huang Y-M, Wang W, Hsieh P-P, Chen H-H. Haplotype of ESR1 and PPARD Genes Is Associated with Higher Anthropometric Changes in Han Chinese Obesity by Adjusting Dietary Factors—An 18-Month Follow-Up. Nutrients. 2022; 14(20):4425. https://doi.org/10.3390/nu14204425
Chicago/Turabian StyleHuang, Yu-Min, Weu Wang, Po-Pin Hsieh, and Hsin-Hung Chen. 2022. "Haplotype of ESR1 and PPARD Genes Is Associated with Higher Anthropometric Changes in Han Chinese Obesity by Adjusting Dietary Factors—An 18-Month Follow-Up" Nutrients 14, no. 20: 4425. https://doi.org/10.3390/nu14204425
APA StyleHuang, Y. -M., Wang, W., Hsieh, P. -P., & Chen, H. -H. (2022). Haplotype of ESR1 and PPARD Genes Is Associated with Higher Anthropometric Changes in Han Chinese Obesity by Adjusting Dietary Factors—An 18-Month Follow-Up. Nutrients, 14(20), 4425. https://doi.org/10.3390/nu14204425