Dietary Isorhamnetin Intake Is Associated with Lower Blood Pressure in Coronary Artery Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Narodowy Fundusz Zdrowia. NFZ o Zdrowiu. Nadciśnienie Tętnicze; Narodowy Fundusz Zdrowia: Warsaw, Poland, 2019. [Google Scholar]
- Chow, C.K.; Teo, K.K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R.; et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013, 310, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). Blood Press. 2018, 27, 314–340. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Andres-Lacueva, C.; Lamuela-Raventós, R.M.; Berenguer, T.; Jakszyn, P.; Barricarte, A.; Ardanaz, E.; Amiano, P.; Dorronsoro, M.; Larrañaga, N.; et al. Estimation of Dietary Sources and Flavonoid Intake in a Spanish Adult Population (EPIC-Spain). J. Am. Diet. Assoc. 2010, 110, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Sampson, L.; Rimm, E.; Hollma, P.C.H.; de Vries, J.H.M.; Katan, M.B. Flavonol and Flavone Intakes in US Health Professionals. J. Am. Diet. Assoc. 2002, 102, 1414–1420. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Knaze, V.; Luján-Barroso, L.; Slimani, N.; Romieu, I.; Fedirko, V.; Santucci de Magistris, M.; Ericson, U.; Amiano, P.; Trichopoulou, A.; et al. Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24 hour dietary recall cohort. Br. J. Nutr. 2011, 106, 1915–1925. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, A.; O’Reilly, É.J.; Kay, C.; Sampson, L.; Franz, M.; Forman, J.; Curhan, G.; Rimm, E.B. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am. J. Clin. Nutr. 2011, 93, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Holland, T.M.; Agarwal, P.; Wang, Y.; Leurgans, S.E.; Bennett, D.A.; Booth, S.L.; Morris, M.C. Dietary flavonols and risk of Alzheimer dementia. Neurology 2020, 94, e1749–e1756. [Google Scholar] [CrossRef]
- Conquer, J.A.; Maiani, G.; Azzini, E.; Raguzzini, A.; Holub, B.J. Supplementation with Quercetin Markedly Increases Plasma Quercetin Concentration without Effect on Selected Risk Factors for Heart Disease in Healthy Subjects. J. Nutr. 1998, 128, 593–597. [Google Scholar] [CrossRef] [Green Version]
- Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin Reduces Blood Pressure in Hypertensive Subjects. J. Nutr. 2007, 137, 2405–2411. [Google Scholar] [CrossRef] [Green Version]
- Popiolek-Kalisz, J.; Fornal, E. The Effects of Quercetin Supplementation on Blood Pressure—Meta-Analysis. Curr. Probl. Cardiol. 2022, 47, 101350. [Google Scholar] [CrossRef] [PubMed]
- Popiolek-Kalisz, J.; Fornal, E. The Impact of Flavonols on Cardiovascular Risk. Nutrients 2022, 14, 1973. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, M.; Moreno, L.; Vera, R.; Cogolludo, A.; Duarte, J.; Tamargo, J.; Perez-Vizcaino, F. Effects of the Flavonoid Quercetin and its Methylated Metabolite Isorhamnetin in Isolated Arteries from Spontaneously Hypertensive Rats. Planta Med. 2003, 69, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Yao, R.; Liu, Y.; Wang, Z.; Huang, Z.; Du, B.; Zhang, D.; Wu, L.; Xiao, L.; Zhang, Y. Isorhamnetin protects against cardiac hypertrophy through blocking PI3K–AKT pathway. Mol. Cell. Biochem. 2017, 429, 167–177. [Google Scholar] [CrossRef]
- Gong, G.; Guan, Y.Y.; Zhang, Z.L.; Rahman, K.; Wang, S.J.; Zhou, S.; Luan, X.; Zhang, H. Isorhamnetin: A review of pharmacological effects. Biomed. Pharmacother. 2020, 128, 110301. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, C.; Torres, N.; Gutiérrez-Uribe, J.A.; Noriega, L.G.; Torre-Villalvazo, I.; Leal-Díaz, A.M.; Antunes-Ricardo, M.; Márquez-Mota, C.; Ordaz, G.; Chavez-Santoscoy, R.A.; et al. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity. Food Funct. 2015, 6, 805–815. [Google Scholar] [CrossRef]
- Antunes-Ricardo, M.; Guardado-Félix, D.; Rocha-Pizaña, M.R.; Garza-Martínez, J.; Acevedo-Pacheco, L.; Gutiérrez-Uribe, J.A.; Villela-Castrejón, J.; López-Pacheco, F.; Serna-Saldívar, S.O. Opuntia ficus-indica Extract and Isorhamnetin-3-O-Glucosyl-Rhamnoside Diminish Tumor Growth of Colon Cancer Cells Xenografted in Immune-Suppressed Mice through the Activation of Apoptosis Intrinsic Pathway. Plant Foods Hum. Nutr. 2021, 76, 434–441. [Google Scholar] [CrossRef]
- Hansen, L.; Dragsted, L.O.; Olsen, A.; Christensen, J.; Tjønneland, A.; Schmidt, E.B.; Overvad, K. Fruit and vegetable intake and risk of acute coronary syndrome. Br. J. Nutr. 2010, 104, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Bhupathiraju, S.N.; Satija, A.; Van Dam, R.M.; Hu, F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 2014, 129, 643–659. [Google Scholar] [CrossRef] [Green Version]
- Popiolek-Kalisz, J.; Fornal, E. Dietary Isorhamnetin Intake Is Inversely Associated with Coronary Artery Disease Occurrence in Polish Adults. Int. J. Environ. Res. Public Health 2022, 19, 12546. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Kardiol. Pol. 2019, 77, 71–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv. 2014, 32, 1145–1156. [Google Scholar] [CrossRef]
- Galindo, P.; Rodriguez-Gómez, I.; González-Manzano, S.; Dueñas, M.; Jiménez, R.; Menéndez, C.; Vargas, F.; Tamargo, J.; Santos-Buelga, C.; Pérez-Vizcaíno, F.; et al. Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation. PLoS ONE 2012, 7, e32673. [Google Scholar] [CrossRef] [Green Version]
- Cogolludo, A.; Frazziano, G.; Briones, A.M.; Cobeño, L.; Moreno, L.; Lodi, F.; Salaices, M.; Tamargo, J.; Perez-Vizcaino, F. The dietary flavonoid quercetin activates BKCa currents in coronary arteries via production of H2O2. Role in vasodilatation. Cardiovasc. Res. 2007, 73, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Jahan, N.; Rahman, K.-U.; Sultana, B.; Jamil, S. Identification of hypotensive biofunctional compounds of Coriandrum sativum and evaluation of their Angiotensin-Converting Enzyme (ACE) inhibition potential. Oxid. Med. Cell. Longev. 2018, 2018, 4643736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knekt, P.; Jarvinen, R.; Reunanen, A.; Maatela, J. Flavonoid intake and coronary mortality in Finland: A cohort study. BMJ 1996, 312, 478–481. [Google Scholar] [CrossRef] [Green Version]
- Kondratiuk, V.E.; Synytsia, Y.P. Effect of quercetin on the echocardiographic parameters of left ventricular diastolic function in patients with gout and essential hypertension. Wiad. Lek. 2018, 71, 1554–1559. [Google Scholar]
- Hertog, M.G.; Feskens, E.J.; Kromhout, D.; Hertog, M.G.; Hollman, P.C.; Hertog, M.G.; Katan, M. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 1993, 342, 1007–1011. [Google Scholar] [CrossRef]
- Brüll, V.; Burak, C.; Stoffel-Wagner, B.; Wolffram, S.; Nickenig, G.; Müller, C.; Langguth, P.; Alteheld, B.; Fimmers, R.; Naaf, S.; et al. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: A randomised double-blinded placebo-controlled cross-over trial. Br. J. Nutr. 2015, 114, 1263–1277. [Google Scholar] [CrossRef] [Green Version]
- Kalus, U.; Pindur, G.; Jung, F.; Mayer, B.; Radtke, H.; Bachmann, K.; Mrowietz, C.; Koscielny, J.; Kiesewetter, H. Influence of the onion as an essential ingredient of the mediterranean diet on arterial blood pressure and blood fluidity. Arzneimittelforschung 2000, 50, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Mennen, L.I.; Sapinho, D.; De Bree, A.; Arnault, N.; Bertrais, S.; Galan, P.; Hercberg, S. Consumption of Foods Rich in Flavonoids Is Related to A Decreased Cardiovascular Risk in Apparently Healthy French Women. J. Nutr. 2004, 134, 923–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamoto, E.; Sakai, Y.; Okamura, Y.; Yamamoto, Y. Effects of boiling on the antihypertensive and antioxidant activities of onion. J. Nutr. Sci. Vitaminol. 2004, 50, 171–176. [Google Scholar] [CrossRef] [PubMed]
Systolic Blood Pressure | Diastolic Blood Pressure | |||||
---|---|---|---|---|---|---|
R | 95% CI | p | R | 95% CI | p | |
Quercetin daily intake | −0.23 | −0.506; 0.087 | 0.15 | 0.05 | −0.264; 0.357 | 0.75 |
Kaempferol daily intake | 0.02 | −0.292; 0.331 | 0.89 | 0.19 | −0.125; 0.477 | 0.23 |
Isorhamnetin daily intake | −0.36 | −0.602; −0.052 | 0.02 | 0.05 | −0.263; 0.359 | 0.74 |
Myricetin daily intake | −0.08 | −0.379; 0.241 | 0.64 | 0.09 | −0.230; 0.388 | 0.59 |
Total flavonol daily intake | −0.18 | −0.462; 0.143 | 0.28 | 0.10 | −0.222; 0.396 | 0.55 |
Quercetin daily intake/body mass | −0.28 | −0.542; 0.037 | 0.08 | 0.04 | −0.272; 0.350 | 0.79 |
Kaempferol daily intake/body mass | −0.05 | −0.354; 0.268 | 0.77 | 0.18 | −0.138; 0.466 | 0.26 |
Isorhamnetin daily intake/body mass | −0.38 | −0.617; −0.076 | 0.02 | 0.07 | −0.250; 0.370 | 0.68 |
Myricetin daily intake/body mass | −0.13 | −0.426; 0.187 | 0.41 | 0.07 | −0.247; 0.374 | 0.67 |
Total flavonol daily intake/body mass | −0.23 | −0.503; 0.091 | 0.16 | 0.09 | −0.232; 0.387 | 0.60 |
Systolic Blood Pressure | Diastolic Blood Pressure | |||||
---|---|---|---|---|---|---|
R | 95% CI | p | R | 95% CI | p | |
Quercetin daily intake | −0.32 | −0.661; 0.128 | 0.16 | −0.14 | −0.542; 0.307 | 0.53 |
Kaempferol daily intake | 0.11 | −0.340; 0.515 | 0.64 | 0.01 | −0.422; 0.441 | 0.96 |
Isorhamnetin daily intake | −0.65 | −0.844; −0.302 | 0.001 | −0.12 | −0.515; 0.340 | 0.64 |
Myricetin daily intake | −0.06 | −0.478; 0.383 | 0.80 | −0.11 | −0.518; 0.336 | 0.63 |
Total flavonol daily intake | −0.27 | −0.626; 0.187 | 0.24 | −0.13 | −0.530; 0.323 | 0.58 |
Quercetin daily intake/body mass | −0.27 | −0.628; 0.183 | 0.24 | −0.08 | −0.497; 0.361 | 0.72 |
Kaempferol daily intake/body mass | 0.16 | −0.292; 0.554 | 0.49 | 0.11 | −0.338; 0.517 | 0.63 |
Isorhamnetin daily intake/body mass | −0.63 | −0.837; −0.280 | 0.002 | −0.07 | −0.491; 0.369 | 0.75 |
Myricetin daily intake/body mass | −0.03 | −0.457; 0.405 | 0.89 | −0.08 | −0.491; 0.369 | 0.75 |
Total flavonol daily intake/body mass | −0.21 | −0.585; 0.248 | 0.37 | −0.05 | −0.470; 0.392 | 0.84 |
Systolic Blood Pressure | Diastolic Blood Pressure | |||||
---|---|---|---|---|---|---|
R | 95% CI | p | R | 95% CI | p | |
Quercetin daily intake | −0.17 | −0.580; 0.308 | 0.49 | 0.30 | −0.180; 0.663 | 0.21 |
Kaempferol daily intake | −0.09 | −0.521; 0.381 | 0.72 | 0.34 | −0.136; 0.687 | 0.16 |
Isorhamnetin daily intake | 0.01 | −0.447; 0.461 | 0.97 | 0.34 | −0.130; 0.691 | 0.15 |
Myricetin daily intake | −0.14 | −0.556; 0.339 | 0.58 | 0.37 | −0.101; 0.706 | 0.12 |
Total flavonol daily intake | −0.14 | −0.556; 0.339 | 0.58 | 0.32 | −0.157; 0676 | 0.18 |
Quercetin daily intake / body mass | −0.27 | −0.643; 0.213 | 0.27 | 0.27 | −0.206; 0.647 | 0.26 |
Kaempferol daily intake / body mass | −0.19 | −0.591; 0.292 | 0.44 | 0.30 | −0.179; 0.664 | 0.21 |
Isorhamnetin daily intake / body mass | −0.06 | −0.502; −0.404 | 0.80 | 0.37 | −0.105; 0.703 | 0.12 |
Myricetin daily intake / body mass | −0.23 | −0.618; 0.252 | 0.35 | 0.32 | −0.161; 0.674 | 0.19 |
Total flavonol daily intake / body mass | −0.24 | −0.625; 0.242 | 0.33 | 0.29 | −0.192; 0.656 | 0.23 |
Systolic Blood Pressure | Diastolic Blood Pressure | |||||
---|---|---|---|---|---|---|
p | 95% CI | R | p | 95% CI | R | |
White onion | 0.01 | −0.624; −0.088 | −0.39 | 0.87 | −0.335; 0.288 | −0.03 |
Red onion | 0.15 | 0.508; 0.084 | −0.23 | 0.34 | −0.166; 0.444 | 0.15 |
Onion (total) | 0.02 | −0.616; −0.073 | −0.38 | 0.76 | −0.265; 0.357 | 0.05 |
Tomatoes | 0.31 | −0.454; 0.153 | −0.17 | 0.04 | −0.581; −0.020 | −0.33 |
Blueberry | 0.21 | −0.483; 0.116 | −0.20 | 0.79 | −0.349; 0.273 | −0.04 |
Apples | 0.39 | −0.431; 0.181 | −0.14 | 0.68 | −0.371; 0.249 | −0.07 |
Black tea | 0.58 | −0.228; 0.391 | 0.09 | 0.22 | −0.121; 0.480 | 0.20 |
Green tea | 0.57 | −0.393; 0.225 | −0.09 | 0.25 | −0.132; 0.472 | 0.19 |
Coffee | 0.97 | −0.306; 0.317 | 0.01 | 0.96 | −0.318; 0.305 | −0.01 |
Wine | 0.89 | −0.337; 0.294 | −0.02 | 0.52 | −0.215; 0.409 | 0.11 |
Systolic Blood Pressure | |||||
---|---|---|---|---|---|
<140 mmHg | ≥140 mmHg | ||||
Mean | SD | Mean | SD | p | |
Quercetin [mg/day] | 42.02 | ±24.81 | 36.73 | ±17.24 | 0.61 |
Kaempferol [mg/day] | 13.91 | ±8.66 | 16.14 | ±8.24 | 0.39 |
Isorhamnetin [mg/day] | 2.88 | ±2.20 | 1.90 | ±1.53 | 0.08 |
Myricetin [mg/day] | 5.66 | ±4.80 | 5.39 | ±3.02 | 0.59 |
Total flavonols [mg/day] | 72.09 | ±39.77 | 67.57 | ±30.94 | 0.94 |
Quercetin [mg/kg*day] | 0.55 | ±0.33 | 0.45 | ±0.22 | 0.55 |
Kaempferol [mg/kg*day] | 0.18 | ±0.12 | 0.20 | ±0.10 | 0.52 |
Isorhamnetin [mg/kg*day] | 0.04 | ±0.03 | 0.02 | ±0.02 | 0.048 |
Myricetin [mg/kg*day] | 0.07 | ±0.06 | 0.07 | ±0.04 | 0.94 |
Total flavonols [mg/kg*day] | 0.94 | ± 0.54 | 0.83 | ±0.40 | 0.68 |
White onion [portion/day] | 0.31 | ±0.25 | 0.17 | ±0.25 | 0.01 |
Red onion [portion/day] | 0.09 | ±0.21 | 0.07 | ±0.06 | 0.51 |
Tomatoes [portion/day] | 0.58 | ±0.82 | 0.34 | ±0.27 | 0.64 |
Blueberries [portion/day] | 0.24 | ±0.31 | 0.06 | ±0.06 | 0.04 |
Apples [portion/day] | 0.68 | ±0.51 | 0.56 | ±0.47 | 0.65 |
Black tea [portion/day] | 1.26 | ±1.22 | 2.27 | ±2.03 | 0.10 |
Green tea [portion/day] | 0.49 | ±0.77 | 0.45 | ±1.08 | 0.44 |
Coffee [portion/day] | 0.76 | ±0.88 | 0.39 | ±0.47 | 0.37 |
Wine [portion/day] | 0.05 | ±0.10 | 0.11 | ±0.29 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popiolek-Kalisz, J.; Blaszczak, P.; Fornal, E. Dietary Isorhamnetin Intake Is Associated with Lower Blood Pressure in Coronary Artery Disease Patients. Nutrients 2022, 14, 4586. https://doi.org/10.3390/nu14214586
Popiolek-Kalisz J, Blaszczak P, Fornal E. Dietary Isorhamnetin Intake Is Associated with Lower Blood Pressure in Coronary Artery Disease Patients. Nutrients. 2022; 14(21):4586. https://doi.org/10.3390/nu14214586
Chicago/Turabian StylePopiolek-Kalisz, Joanna, Piotr Blaszczak, and Emilia Fornal. 2022. "Dietary Isorhamnetin Intake Is Associated with Lower Blood Pressure in Coronary Artery Disease Patients" Nutrients 14, no. 21: 4586. https://doi.org/10.3390/nu14214586
APA StylePopiolek-Kalisz, J., Blaszczak, P., & Fornal, E. (2022). Dietary Isorhamnetin Intake Is Associated with Lower Blood Pressure in Coronary Artery Disease Patients. Nutrients, 14(21), 4586. https://doi.org/10.3390/nu14214586