RETRACTED: Association of Polyunsaturated Fatty Acid Intake on Inflammatory Gene Expression and Multiple Sclerosis: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Inclusion Criteria
- Studies were of prospective design (prospective cohort, case–cohort, or nested case–control);
- Participants were selected from general populations;
- Multiple sclerosis (MS) and inflammatory gene expression (IGE) were recorded by use of well-defined criteria;
- The association of MS and IGE with n-3 PUFAs was evaluated by the odds ratio (OR), risk ratio (RR), hazard ratio (HR), or standard mean difference (SMD) with the corresponding confidence intervals (CI);
- The blood, serum, or plasma omega-3 levels were considered as the exposure of interest.
2.2. Data Extraction
2.3. Quality Assessment
2.4. Data Analysis
3. Results
3.1. Literature Search
3.2. Study Characteristics
3.3. Omega-3 FA Intake and Inflammatory Gene Expression
3.4. Omega-3 FAs and EDSS Score
3.5. Risk of Bias across Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenstein, J.I. Current Concepts of the Cellular and Molecular Pathophysiology of Multiple Sclerosis. Dev. Neurobiol. 2007, 67, 1248–1265. [Google Scholar] [CrossRef] [PubMed]
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–804. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple Sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Patsopoulos, N.A.; Baranzini, S.E.; Santaniello, A.; Shoostari, P.; Cotsapas, C.; Wong, G.; International Multiple Sclerosis Genetics Consortium. Multiple Sclerosis Genomic Map Implicates Peripheral Immune Cells and Microglia in Susceptibility. Science 2019, 365, eaav7188. [Google Scholar] [CrossRef]
- Hirschberg, S.; Gisevius, B.; Duscha, A.; Haghikia, A. Implications of Diet and the Gut Microbiome in Neuroinflammatory and Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 3109. [Google Scholar] [CrossRef]
- Katz, S.I. The Role of Diet in Multiple Sclerosis: Mechanistic Connections and Current Evidence. Curr. Nutr. Rep. 2018, 7, 150–160. [Google Scholar] [CrossRef]
- Yu, H.; Bai, S.; Hao, Y.; Guan, Y. Fatty Acids Role in Multiple Sclerosis as “Metabokines”. J. Neuroinflammation 2022, 19, 157. [Google Scholar] [CrossRef]
- Holman, R.T.; Johnson, S.B.; Kokmen, E. Deficiencies of Polyunsaturated Fatty Acids and Replacement by Nonessential Fatty Acids in Plasma Lipids in Multiple Sclerosis. Proc. Natl. Acad. Sci. USA 1989, 86, 4720–4724. [Google Scholar] [CrossRef]
- Yatsu, F.M.; Moss, S. Biological Sciences: Brain Fatty Acid Elongation and Multiple Sclerosis. Nature 1970, 227, 1132–1133. [Google Scholar] [CrossRef]
- Torkildsen, Ø.; Wergeland, S.; Bakke, S.; Beiske, A.G.; Bjerve, K.S.; Hovdal, H.; Midgard, R.; Lilleås, F.; Pedersen, T.; Bjørnarå, B.; et al. ω-3 Fatty Acid Treatment in Multiple Sclerosis (OFAMS Study): A Randomized, Double-Blind, Placebo-Controlled Trial. Arch. Neurol. 2012, 69, 1044–1051. [Google Scholar] [CrossRef]
- Weinstock-Guttman, B.; Baier, M.; Park, Y.; Feichter, J.; Lee-Kwen, P.; Gallagher, E.; Venkatraman, J.; Meksawan, K.; Deinehert, S.; Pendergast, D.; et al. Low Fat Dietary Intervention with ω-3 Fatty Acid Supplementation in Multiple Sclerosis Patients. Prostaglandins Leukot. Essent. Fat. Acids 2005, 73, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Harbige, L.S.; Sharief, M.K. Polyunsaturated Fatty Acids in the Pathogenesis and Treatment of Multiple Sclerosis. Br. J. Nutr. 2007, 98, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating Neurologic Impairment in Multiple Sclerosis: An Expanded Disability Status Scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Skjerbæk, A.G.; Boesen, F.; Petersen, T.; Rasmussen, P.V.; Stenager, E.; Nørgaard, M.; Feys, P.; Kjeldgaard-Jørgensen, M.L.; Hvid, L.G.; Dalgas, U. Can we Trust Self-Reported Walking Distance when Determining EDSS Scores in Patients with Multiple Sclerosis? The Danish MS Hospitals Rehabilitation Study. Mult. Scler. 2018, 25, 1653–1660. [Google Scholar] [CrossRef]
- Borch-Johnsen, K.; Wareham, N. The Rise and Fall of the Metabolic Syndrome. Diabetologia 2010, 53, 597–599. [Google Scholar] [CrossRef]
- Kvandova, M.; Majzunova, M.; Dovinova, I. The Role of PPAR [gamma] in Cardiovascular Diseases. Physiol. Res. 2016, 65, S343. [Google Scholar] [CrossRef]
- D’Onofrio, N.; Servillo, L.; Balestrieri, M.L. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxid. Redox Signal. 2018, 28, 711–732. [Google Scholar] [CrossRef]
- Gani, O.A. Are fish oil omega-3 long-chain fatty acids and their derivatives peroxisome proliferator-activated receptor agonists? Cardiovasc. Diabetol. 2008, 7, 6. [Google Scholar] [CrossRef]
- Jamilian, M.; Samimi, M.; Mirhosseini, N.; Afshar Ebrahimi, F.; Aghadavod, E.; Taghizadeh, M.; Asemi, Z. A Randomized Double-Blinded, Placebo- Controlled Trial Investigating the Effect of Fish Oil Supplementation on Gene Expression Related to Insulin Action, Blood Lipids, and Inflammation in Gestational Diabetes Mellitus-Fish Oil Supplementation and Gestational Diabetes. Nutrients 2018, 10, 163. [Google Scholar] [CrossRef]
- Duscha, A.; Gisevius, B.; Hirschberg, S.; Yissachar, N.; Stangl, G.I.; Eilers, E.; Bader, V.; Haase, S.; Kaisler, J.; David, C.; et al. Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell 2020, 180, 1067–1080. [Google Scholar] [CrossRef]
- Radzikowska, U.; Rinaldi, A.O.; Çelebi Sözener, Z.; Karaguzel, D.; Wojcik, M.; Cypryk, K.; Akdis, M.; Skdis, C.A.; Sokolowska, M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019, 11, 2990. [Google Scholar] [CrossRef] [PubMed]
- Bogie, J.F.J.; Haidar, M.; Kooij, G.; Hendriks, J.J.A. Fatty Acid Metabolism in the Progression and Resolution of CNS Disorders. Adv. Drug Deliv. Rev. 2020, 159, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cai, X.; Fei, W.; Ye, Y.; Zhao, M.; Zheng, C. The Role of Short-Chain Fatty Acids in Immunity, Inflammation and Metabolism. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Langer-Gould, A.; Black, L.J.; Waubant, E.; Smith, J.B.; Wu, J.; Gonzales, E.G.; Shao, X.; Koebnick, C.; Lucas, R.M.; Xiang, A.; et al. Seafood, Fatty Acid Biosynthesis Genes, and Multiple Sclerosis Susceptibility. Mult. Scler. J. 2020, 26, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, H.B.; Neves, B.; Guerra, I.M.; Moreira, A.; Melo, T.; Paiva, A.; Rosário Domingues, M. An Overview of Lipidomic Analysis in Different Human Matrices of Multiple Sclerosis. Mult. Scler. Relat. Disord. 2020, 44, 102189. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sasaki, S.; Kawabata, T.; Hasegawa, K.; Akabane, M.; Tsugane, S. Single Measurement of Serum Phospholipid Fatty Acid as a Biomarker of Specific Fatty Acid Intake in Middle-Aged Japanese Men. Eur. J. Clin. Nutr. 2001, 55, 643–650. [Google Scholar] [CrossRef]
- Haase, S.; Haghikia, A.; Gold, R.; Linker, R.A. Dietary Fatty Acids and Susceptibility to Multiple Sclerosis. Mult. Scler. 2018, 24, 12–16. [Google Scholar] [CrossRef]
- Bazinet, R.P.; Laye, S. Polyunsaturated Fatty Acids and Their Metabolites in Brain Function and Disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses 2008. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 23 January 2022).
- Zhang, J.; Yu, K.F. What’s the Relative Risk?A Method of Correcting the Odds Ratio in Cohort Studies of Common Outcomes. JAMA 1998, 280, 1690–1691. [Google Scholar] [CrossRef]
- IntHout, J.; Ioannidis, J.P.; Borm, G.F. The Hartung-Knapp-Sidik-Jonkman Method for Random Effects Meta-Analysis Is Straightforward and Considerably Outperforms the Standard DerSimonian-Laird Method. BMC Med. Res. Methodol. 2014, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Zandi-Esfahan, S.; Fazeli, M.; Shaygannejad, V.; Hasheminia, J.; Badihian, S.; Aghayerashti, M.; Maghzi, H. Evaluating the Effect of Adding Fish Oil to Fingolimod on TNF-α, IL1β, IL6, and IFN-γ in Patients with Relapsing-Remitting Multiple Sclerosis: A Double-Blind Randomized Placebo-Controlled Trial. Clin. Neurol. Neurosurg. 2017, 163, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Ramirez, V.; Macias-Islas, M.; Ortiz, G.G.; Pacheco-Moises, F.; Torres-Sanchez, E.; Sorto-Gomez, T.; Cruz-Gomez, J.A.; Orozco-Aviña, G.; Celis de la Rosa, A.J. Efficacy of Fish Oil on Serum of TNFα, IL-1β, and IL-6 Oxidative Stress Markers in Multiple Sclerosis Treated with Interferon beta-1b. Oxid. Med. Cell Longevity 2013, 2013, 709493. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.J.; Thayne, K.A.; Harris, M.; Shaikh, S.R.; Darden, T.M.; Lark, D.S.; Rodriguez, E. Do Fish Oil Omega-3 Fatty Acids Enhance Antioxidant Capacity and Mitochondrial Fatty Acid Oxidation in Human Atrial Myocardium via PPARγ Activation? Antioxid. Redox Signal. 2014, 21, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Hashemzadeh, A.A.; Nasoohi, N.; Raygan, F.; Aghadavod, E.; Akbari, E.; Taghizadeh, M.; Asemi, Z. Flaxseed Oil Supplementation Improve Gene Expression Levels of PPAR-γ, LP (a), IL-1 and TNF-α in Type 2 Diabetic Patients with Coronary Heart Disease. Lipids 2017, 52, 907–915. [Google Scholar] [CrossRef]
- Nasri, K.; Hantoushzadeh, S.; Aghadavod, E.; Taghizadeh, M.; Asemi, Z. The Effects of Omega-3 Fatty Acids Supplementation on Gene Expression Involved in the Insulin and Lipid Signaling Pathway in Patients with Polycystic Ovary Syndrome. Horm. Metab. Res. 2017, 49, 446–451. [Google Scholar] [CrossRef]
- Rahmani, E.; Jamilian, M.; Dadpour, B.; Nezami, Z.; Vahedpoor, Z.; Mahmoodi, S.; Asemi, Z. The Effects of Fish Oil on Gene Expression in Patients with Polycystic Ovary Syndrome. Eur. J. Clin. Investig. 2018, 48, e12893. [Google Scholar] [CrossRef]
- Toupchian, O.; Sotoudeh, G.; Mansoori, A.; Abdollahi, S.; Ali Keshavarz, S.; Djalali, M.; Koohdani, F. DHA-Enriched Fish Oil Upregulates Cyclin-Dependent Kinase Inhibitor 2A (P16INK) Expression and Downregulates Telomerase Activity without Modulating Effects of PPARγ Pro12Ala Polymorphism in Type 2 Diabetic Patients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Clin. Nutr. 2018, 37, 91–98. [Google Scholar]
- Nordvik, I.; Myhr, K.M.; Nyland, H.; Bjerve, K.S. Effect of Dietary Advice and n-3 Supplementation in Newly Diagnosed MS Patients. Acta Neurol. Scand. 2000, 102, 143–149. [Google Scholar] [CrossRef]
- Kouchaki, E.; Afarini, M.; Abolhassani, J.; Mirhosseini, N.; Bahmani, F.; Masoud, S.A.; Asemi, Z. High-Dose Omega-3 Fatty Acid Plus Vitamin D3 Supplementation Affects Clinical Symptoms and Metabolic Status of Patients with Multiple Sclerosis: A Randomized Controlled Clinical Trial. J. Nutr. 2018, 148, 1380–1386. [Google Scholar] [CrossRef]
- Hoare, S.; Lithander, F.; van der Mei, I.; Ponsonby, A.L.; Lucas, R.; Ausimmune Investigator Group. Higher Intake of Omega-3 Polyunsaturated Fatty Acids Is Associated with a Decreased Risk of a First Clinical Diagnosis of Central Nervous System Demyelination: Results from the Ausimmune Study. Mult. Scler. J. 2016, 22, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S. Omega-3 fatty acids and cardiovascular disease: A case for omega-3 index as a new risk factor. Pharmacol. Res. 2007, 55, 217–223. [Google Scholar] [CrossRef]
- del Campo, C.P.; Tunez, I. Crosstalk between Gut Microbiota and the Central Nervous System in Multiple Sclerosis: Strengths, Weaknesses, Opportunities and Threats Analysis of the Use of an Experimental Model. CNS Neurol. Disord. Drug Targets 2017, 16, 971–973. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bi, X.; Wang, S.; Zhang, Z.; Li, F.; Zhao, A.Z. Therapeutic Potential of ω-3 Polyunsaturated Fatty Acids in Human Autoimmune Diseases. Front. Immunol. 2019, 10, 2241. [Google Scholar] [CrossRef] [PubMed]
- Stoiloudis, P.; Kesidou, E.; Bakirtzis, C.; Sintila, S.A.; Konstantinidou, N.; Boziki, M.; Grigoriadis, N. The Role of Diet and Interventions on Multiple Sclerosis: A Review. Nutrients 2022, 14, 1150. [Google Scholar] [CrossRef]
- Sedighiyan, M.; Djafarian, K.; Dabiri, S.; Abdolahi, M.; Shab-Bidar, S. The Effects of Omega-3 Supplementation on the Expanded Disability Status Scale and Inflammatory Cytokines in Multiple Sclerosis Patients: A Systematic Review and Meta-Analysis. CNS Neurol. Disord. -Drug Targets 2019, 18, 1871–5273. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Polyunsaturated Fatty Acids and Inflammatory Processes: Nutrition or Pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef]
- Fleming, J.A.; Kris-Etherton, P.M. The Evidence for Alpha-Linolenic Acid and Cardiovascular Disease Benefits: Comparisons with Eicosapentaenoic Acid and Do-Cosahexaenoic Acid. Adv. Nutr. 2014, 5, 863S–876S. [Google Scholar] [CrossRef]
- Torres-Sánchez, E.D.; Pacheco-Moisés, F.P.; Macias-Islas, M.A.; Morales-Sánchez, E.W.; Ramírez-Ramírez, V.; Celis de la Rosa, A.J.; Cid-Hernández, M.; Sorto-Gómez, T.E.; Ortiz, G.G. Effect of Fish and Olive Oil on Mitochondrial ATPase Activity and Membrane Fluidity in Patients with Relapsing-Remitting Multiple Sclerosis Treated with Interferon beta 1-b. Nutr. Hosp. 2018, 35, 162–168. [Google Scholar]
- Mukohda, M.; Lu, K.-T.; Guo, D.-F.; Wu, J.; Keen, H.L.; Liu, X.; Ketsawatsomkron, P.; Stump, M.; Rahmouni, K.; Quelle, F.W.; et al. Hypertension-Causing Mutation in Peroxisome Proliferator–Activated Receptor γ Impairs Nuclear Export of Nuclear Factor-κB p65 in Vascular Smooth Muscle. Hypertension. p. Hypertensionaha. 2017, 117, 09276. [Google Scholar] [CrossRef]
- Mansoori, A.; Sotoudeh, G.; Djalali, M.; Eshraghian, M.-R.; Keramatipour, M.; Nasli-Esfahani, E.; Shidfar, F.; Alvandi, E.; Toupchian, O.; Koohdani, F. Effect of DHA-Rich Fish Oil on PPARγ Target Genes Related to Lipid Metabolism in Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Clin. Lipidol. 2015, 9, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.D.; Dziedzic, A.; Saluk-Bijak, J.; Bijak, M. A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis. Nutrients 2019, 11, 1528. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, E.H.; et al. Natural Product Agonists of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ): A Review. Biochem. Pharmacol. 2014, 92, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Fang, I.M.; Yang, C.H.; Yang, C.M. Docosahexaenoic Acid Reduces Linoleic Acid Induced Monocyte Chemoattractant Protein-1 Expression via PPARγ and Nuclear Factor-κB Pathway in Retinal Pigment Epithelial Cells. Mol. Nutr. Food Res. 2014, 58, 2053–2065. [Google Scholar] [CrossRef]
- Zhao, G.; Etherton, T.D.; Martin, K.R.; Vanden Heuvel, J.P.; Gillies, P.J.; West, S.G.; Kris-Etherton, P.M. Anti-Inflammatory Effects of Polyunsaturated Fatty Acids in THP-1 Cells. Biochem. Biophys. Res. Commun. 2005, 336, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Antonietta Ajmone-Cat, M.; Lavinia Salvatori, M.; de Simone, M.; Mancini, R.; Biagioni, S.; Bernardo, A.; Cacci, E.; Minghetti, L. Docosahexaenoic Acid Modulates Inflammatory and Antineurogenic Functions of Activated Microglial Cells. J. Neurosci. Res. 2012, 90, 575–587. [Google Scholar] [CrossRef]
- Soliman, M.L.; Combs, C.K.; Rosenberger, T.A. Modulation of Inflammatory Cytokines and Mitogen-Activated Protein Kinases by Acetate in Primary Astrocytes. J. Neuroimmune Pharmacol. 2013, 8, 287–300. [Google Scholar] [CrossRef]
- Drehmer, E.; Platero, J.L.; Carrera-Juliá, S.; Moreno, M.L.; Tvarijonaviciute, A.; Navarro, M.Á.; López-Rodríguez, M.M.; Ortí, J.E.d.L.R. The Relation between Eating Habits and Abdominal Fat, Anthropometry, PON1 and IL-6 Levels in Patients with Multiple Sclerosis. Nutrients 2020, 12, 744. [Google Scholar] [CrossRef]
- Folkerts, J.; Redegeld, F.; Folkerts, G.; Blokhuis, B.; van den Berg, M.P.M.; de Bruijn, M.J.W.; van Ijcken, W.F.J.; Junt, T.; Tam, S.-Y.; Galli, S.J.; et al. Butyrate Inhibits Human Mast Cell Activation via Epigenetic Regulation of FcεRI-Mediated Signaling. Allergy Eur. J. Allergy Clin. Immunol. 2020, 75, 1962–1974. [Google Scholar] [CrossRef]
- Tian, Y.; Katsuki, A.; Romanazzi, D.; Miller, M.R.; Adams, S.L.; Miyashita, K.; Hosokawa, M. Docosapentaenoic Acid (22:5n–3) Downregulates mrna Expression of Pro-Inflammatory Factors in LPS-Activated Murine Macrophage Like RAW264.7 Cells. J. Oleo Sci. 2017, 66, 1149–1156. [Google Scholar] [CrossRef]
- Huang, S.; Rutkowsky, J.M.; Snodgrass, R.G.; Ono-Moore, K.D.; Schneider, D.A.; Newman, J.W.; Adams, S.H.; Hwang, D.H. Saturated Fatty Acids Activate TLR-Mediated Proinflammatory Signaling Pathways. J. Lipid Res. 2012, 53, 2002–2013. [Google Scholar] [CrossRef] [PubMed]
- Abdolahi, M.; Sarraf, P.; Javanbakht, M.H.; Honarvar, N.M.; Hatami, M.; Soveyd, N.; Tafakhori, A.; Sedighiyan, M.; Djalali, M.; Jafaried, A.; et al. A Novel Combination of ω-3 Fatty Acids and Nano-Curcumin Modulates Interleukin-6 Gene Expression and High Sensitivity Creactive Protein Serum Levels in Patients with Migraine: A Randomized Clinical Trial Study. CNS Neurol. Disord. Drug Targets 2018, 17, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Abdolahi, M.; Tafakhori, A.; Togha, M.; Okhovat, A.A.; Siassi, F.; Eshraghian, M.R.; Sedighiyan, M.; Djalali, M.; Honarvar, N.M.; Djalali, M. The Synergistic Effects of ω-3 Fatty Acids and Nano-Curcumin Supplementation on Tumor Necrosis Factor (TNF)-α Gene Expression and Serum Level in Migraine Patients. Immunogenetics 2017, 69, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian-Rizi, T.; Khanahmad, H.; Jahanian-Najafabadi, A. Therapeutic Targeting of Chemokines and Chemokine Receptors in Multiple Sclerosis: Opportunities and Challenges. CNS Neurol. Disord. Drug Targets 2018, 17, 496–508. [Google Scholar] [CrossRef]
- Arshad, N.; Lin, T.S.; Yahaya, M.F. Metabolic Syndrome and Its Effect on the Brain: Possible Mechanism. CNS Neurol. Disord. Drug Targets 2018, 17, 595–603. [Google Scholar] [CrossRef]
- Trebble, T.; Arden, N.K.; Stroud, M.A.; Wootton, S.A.; Burdge, G.C.; Miles, E.A.; Calder, P.C. Inhibition of Tumour Necrosis Factor-α and Interleukin 6 Production by Mononuclear Cells Following Dietary Fish-Oil Supple-Mentation in Healthy Men and Response to Antioxidant Co-supplementation. Br. J. Nutr. 2003, 90, 405–412. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 Polyunsaturated Fatty Acids: Dietary Sources, Metabolism, and Significance—A Review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Gheita, T.; Kamel, S.; Helmy, N.; El-Laithy, N.; Monir, A. Omega-3 Fatty Acids in Juvenile Idiopathic Arthritis: Effect on Cytokines (IL-1 and TNF-α), Disease Activity and Response Criteria. Clin. Rheumatol. 2012, 31, 363–366. [Google Scholar] [CrossRef]
- Volpato, M.; Ingram, N.; Perry, S.L.; Spencer, J.; Race, A.D.; Marshall, C.; Coletta, P.L. Cyclooxygenase Activity Mediates Colorectal Cancer Cell Resistance to the Omega-3 Polyunsaturated Fatty Acid Eicosapentaenoic Acid. Cancer Chemother. Pharmacol. 2020, 87, 173–184. [Google Scholar] [CrossRef]
- Yang, M.; Bair, J.A.; Hodges, R.R.; Serhan, C.N.; Dartt, D.A. Resolvin E1 Reduces Leukotriene B4–Induced Intracellular Calcium Increase and Mucin Secretion in Rat Conjunctival Goblet Cells. Am. J. Pathol. 2020, 190, 1823–1832. [Google Scholar] [CrossRef]
- Bersch-Ferreira, A.C.; Sampaio, G.R.; Gehringer, M.O.; Torres, E.A.F.d.S.; Ross-Fernandes, M.B.; da Silva, J.T.; Rogero, M.M. Association between Plasma Fatty Acids and Inflammatory Markers in Patients with and without Insulin Resistance and in Secondary Prevention of Cardiovascular Disease, a Cross-Sectional Study. Nutr. J. 2018, 17, 26. [Google Scholar] [CrossRef] [PubMed]
- Youdim, K.A.; Martin, A.; Joseph, J.A. Essential Fatty Acids and the Brain: Possible Health Implications. Int. J. Dev. Neurosci. 2000, 18, 383–399. [Google Scholar] [CrossRef]
- Innis, S.M. Dietary (n-3) Fatty Acids and Brain Development. J. Nutr. 2007, 137, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. n−3 Polyunsaturated Fatty Acids, Inflammation, and Inflammatory Diseases. Am. J. Clin. Nutr. 2006, 83, 1505S–1519S. [Google Scholar] [CrossRef] [PubMed]
- Jump, D.B.; Botolin, D.; Wang, Y.; Xu, J.; Demeure, O.; Christian, B. Docosahexaenoic acid (DHA) and Hepatic Gene Transcription. Chem. Phys. Lipids 2008, 153, 3–13. [Google Scholar] [CrossRef]
Study | Country | Age | Sample Size | Duration (Week) | Number and Gender (Male/Female) | BMI (kg/m2) | n-3 Fatty Acid Type | Main Outcome |
---|---|---|---|---|---|---|---|---|
Zandi et al. [33] | Iran | 33.30 ± 1.2 | 41 | 48 | 12/29 | 26.4 ± 5.3 | EPA DHA | ↔EDSS ↓IL-1 ↔TNFα ↔IL-6 |
Ramirez et al. [34] | Mexico | 34.9 ± 2.3 | 50 | 48 | (41/9) | 28.1 ± 6.3 | EPA DHA | ↔EDSS ↓IL-1 ↓TNFα ↓IL-6 |
Anderson et al. [35] | United States | 65.8 ± 9.9 | 24 | 3 | 16/8 | 30.1 ± 6.0 | EPA DHA | ↑PPAR-γ |
Hashemzadeh et al. [36] | Iran | 59.2 ± 11.1 | 60 | 12 | 45/15 | 30.9 ± 4.2 | ALA | ↑PPAR-γ ↓TNF-α ↔IL-8 |
Torkildsen et al. [10] | Norway | 38.6 ± 9.2 | 91 | 96 | 32/59 | 28.1 ± 5.6 | EPA DHA | ↔EDSS ↓IL-1 |
Jamilian et al. [19] | Iran | 25.4 ± 1.2 | 40 | 6 | 0/40 | 27.0 ± 3.1 | EPA DHA | ↑PPAR-γ ↓IL-1 ↓TNF-α ↔IL-8 |
Weinstock et al. [11] | United States | 42.5 ± 10.11 | 27 | 48 | 4/23 | 25.1 ± 5.3 | EPA DHA | ↓EDSS |
Nasri et al. [37] | Iran | 27.5 ± 5.7 | 60 | 12 | 0/60 | 28.1 ± 6.3 | ALA | ↑PPAR-γ |
Rahmani et al. [38] | Iran | 25.6 ± 4.8 | 40 | 12 | 0/40 | 25.1 ± 4.3 | EPA DHA ALA | ↑PPAR-γ ↔TNF-α ↓IL-8 ↓IL-1 |
Toupchian et al. [39] | Iran | 55.9 ± 7.8 | 67 | 8 | 34/33 | 29.2 ± 2.8 | EPA DHA ALA | ↔TNF-α ↔IL-6 |
Nordvik et al. [40] | Norway | 45.0 ± 6.29 | 16 | 96 | 8/8 | 26.2 ± 6.3 | EPA DHA ALA | ↓EDSS |
Kouchaki et al. [41] | Iran | 26.2 ± 6.5 | 53 | 12 | 53/0 | 27.1 ± 4.3 | EPA DHA | ↓EDSS |
Hoare et al. [42] | Australia | 30.9 ± 4.2 | 784 | 144 | 434/350 | 28.1 ± 5.1 | EPA DHA ALA | ↓EDSS |
Study | Year | Selection | Comparability | Outcome | |||||
---|---|---|---|---|---|---|---|---|---|
Representativeness of the Exposed Cohort | Selection of the Non Exposed Cohort | Ascertainment of Exposure | Demonstration That Outcome of Interest Was Not Present at Start of Study | Comparability of Cohorts on the Basis of the Design or Analysis | Assessment of Outcome | Was Follow-Up Long Enough for Outcomes to Occur | Adequacy of Follow-Up of Cohorts | ||
Zandi et al. [33] | 2017 | * | * | * | * | * | * | * | * |
Anderson et al. [35] | 2014 | * | * | * | * | * | * | - | * |
Ramirez et al. [34] | 2013 | * | * | * | * | * | * | - | * |
Hashemzadeh et al. [36] | 2017 | * | * | * | * | * | - | - | * |
Torkildsen et al. [10] | 2012 | * | * | * | * | * | * | - | * |
Jamilian et al. [19] | 2018 | * | * | * | * | * | - | - | - |
Weinstock et al. [11] | 2005 | * | * | * | * | * | * | - | - |
Nasri et al. [37] | 2017 | * | * | * | * | * | - | - | * |
Rahmani et al. [38] | 2018 | * | * | * | * | * | * | - | * |
Toupchian et al. [39] | 2018 | * | * | * | * | * | * | - | * |
Nordvik et al. [40] | 2000 | * | * | * | * | * | - | - | - |
Kouchaki et al. [41] | 2018 | * | * | * | * | * | * | - | * |
Hoare et al. [42] | 2012 | * | * | * | * | * | - | - | * |
Zandi et al. [33] | 2016 | * | * | * | * | * | * | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasemi Darestani, N.; Bahrami, A.; Mozafarian, M.R.; Esmalian Afyouni, N.; Akhavanfar, R.; Abouali, R.; Moradian, A. RETRACTED: Association of Polyunsaturated Fatty Acid Intake on Inflammatory Gene Expression and Multiple Sclerosis: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4627. https://doi.org/10.3390/nu14214627
Ghasemi Darestani N, Bahrami A, Mozafarian MR, Esmalian Afyouni N, Akhavanfar R, Abouali R, Moradian A. RETRACTED: Association of Polyunsaturated Fatty Acid Intake on Inflammatory Gene Expression and Multiple Sclerosis: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(21):4627. https://doi.org/10.3390/nu14214627
Chicago/Turabian StyleGhasemi Darestani, Nadia, Abolfazl Bahrami, Mohammad Reza Mozafarian, Nazgol Esmalian Afyouni, Roozbeh Akhavanfar, Reza Abouali, and Arsalan Moradian. 2022. "RETRACTED: Association of Polyunsaturated Fatty Acid Intake on Inflammatory Gene Expression and Multiple Sclerosis: A Systematic Review and Meta-Analysis" Nutrients 14, no. 21: 4627. https://doi.org/10.3390/nu14214627
APA StyleGhasemi Darestani, N., Bahrami, A., Mozafarian, M. R., Esmalian Afyouni, N., Akhavanfar, R., Abouali, R., & Moradian, A. (2022). RETRACTED: Association of Polyunsaturated Fatty Acid Intake on Inflammatory Gene Expression and Multiple Sclerosis: A Systematic Review and Meta-Analysis. Nutrients, 14(21), 4627. https://doi.org/10.3390/nu14214627