Vitamin D Status and Risk of All-Cause and Cause-Specific Mortality in Osteoarthritis Patients: Results from NHANES III and NHANES 2001–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurement of Serum 25(OH)D
2.3. Mortality Ascertainment
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Vitamin D and Mortality
3.3. Stratified and Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Diseases, G.B.D.; Injuries, C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990––2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar]
- Initiative USBaJ. The Burden of Musculoskeletal Diseases in the United States (BMUS), 4th ed.; BMUS: Rosemont, IL, USA, 2018. [Google Scholar]
- Zhao, T.; Ahmad, H.; Winzenberg, T.; Aitken, D.; de Graaff, B.; Jones, G.; Palmer, A.J. Cross-sectional and temporal differences in health-related quality of life of people with and without osteoarthritis: A 10-year prospective study. Rheumatology (Oxford) 2021, 60, 3352–3359. [Google Scholar] [CrossRef]
- Allen, K.D.; Golightly, Y.M. Epidemiology of osteoarthritis: State of the evidence. Curr. Opin. Rheumatol. 2015, 27, 276–283. [Google Scholar] [CrossRef]
- Mabey, T.; Honsawek, S. Role of Vitamin D in Osteoarthritis: Molecular, Cellular, and Clinical Perspectives. Int. J. Endocrinol. 2015, 2015, 383918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Jones, G.; Cicuttini, F.; Wluka, A.; Zhu, Z.; Han, W.; Antony, B.S.E.; Wang, X.; Winzenberg, T.; Blizzard, L.; et al. Effect of Vitamin D Supplementation on Tibial Cartilage Volume and Knee Pain Among Patients with Symptomatic Knee Osteoarthritis. JAMA 2016, 315, 1005. [Google Scholar] [CrossRef] [PubMed]
- McAlindon, T.; LaValley, M.; Schneider, E.; Nuite, M.; Lee, J.Y.; Price, L.L.; Lo, G.; Dawson-Hughes, B. Effect of Vitamin D Supplementation on Progression of Knee Pain and Cartilage Volume Loss in Patients with Symptomatic Osteoarthritis. JAMA 2013, 309, 155. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Jin, X.; Cicuttini, F.; Wang, X.; Zhu, Z.; Wluka, A.; Han, W.; Winzenberg, T.; Antony, B.; Aitken, D.; et al. Maintaining Vitamin D Sufficiency Is Associated with Improved Structural and Symptomatic Outcomes in Knee Osteoarthritis. Am. J. Med. 2017, 130, 1211–1218. [Google Scholar] [CrossRef]
- Manoy, P.; Yuktanandana, P.; Tanavalee, A.; Anomasiri, W.; Ngarmukos, S.; Tanpowpong, T.; Honsawek, S. Vitamin D Supplementation Improves Quality of Life and Physical Performance in Osteoarthritis Patients. Nutrients 2017, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Wang, J.; Song, M.; Giovannucci, E.L.; Ma, H.; Jin, G.; Hu, Z.; Shen, H.; Hang, D. Vitamin D Status and Risk of All-Cause and Cause-Specific Mortality in a Large Cohort: Results from the UK Biobank. J. Clin. Endocrinol. Metab. 2020, 105, e3606–e3619. [Google Scholar] [CrossRef]
- Wan, Z.; Guo, J.; Pan, A.; Chen, C.; Liu, L.; Liu, G. Association of Serum 25-Hydroxyvitamin D Concentrations with All-Cause and Cause-Specific Mortality Among Individuals with Diabetes. Diabetes Care 2021, 44, 350–357. [Google Scholar] [CrossRef] [PubMed]
- March, L.M.; Schwarz, J.M.; Carfrae, B.H.; Bagge, E. Clinical validation of self-reported osteoarthritis. Osteoarthr. Cartil. 1998, 6, 87–93. [Google Scholar] [CrossRef] [Green Version]
- International Statistical Classification of Diseases and Related Health Problems, 5th ed.; 10th revision; World Health Organization: Geneva, Switzerland, 2016.
- The Linkage of National Center for Health Statistics Survey Data to the National Death Index-2019 Linked Mortality File (LMF): Linkage Methodology and Analytic Considerations; National Center for Health Statistics: Hyattsville, MD, USA, 2021.
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dibaba, D.T. Effect of vitamin D supplementation on serum lipid profiles: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 890–902. [Google Scholar] [CrossRef] [PubMed]
- Amirkhizi, F.; Asoudeh, F.; Hamedi-Shahraki, S.; Asghari, S. Vitamin D status is associated with inflammatory biomarkers and clinical symptoms in patients with knee osteoarthritis. Knee 2022, 36, 44–52. [Google Scholar] [CrossRef]
- Nelson, A.; A Shi, X.; A Schwartz, T.; Chen, J.-C.; Renner, J.B.; Caldwell, K.L.; Helmick, C.G.; Jordan, J.M. Whole blood lead levels are associated with radiographic and symptomatic knee osteoarthritis: A cross-sectional analysis in the Johnston County Osteoarthritis Project. Arthritis Res. Ther. 2011, 13, R37. [Google Scholar] [CrossRef] [Green Version]
- Laslett, L.L.; Quinn, S.; Burgess, J.R.; Parameswaran, V.; Winzenberg, T.M.; Jones, G.; Ding, C. Moderate vitamin D deficiency is associated with changes in knee and hip pain in older adults: A 5-year longitudinal study. Ann. Rheum. Dis. 2014, 73, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cicuttini, F.; Jin, X.; Wluka, A.E.; Han, W.; Zhu, Z.; Blizzard, L.; Antony, B.S.E.; Winzenberg, T.; Jones, G.; et al. Knee effusion-synovitis volume measurement and effects of vitamin D supplementation in patients with knee osteoarthritis. Osteoarthr. Cartil. 2017, 25, 1304–1312. [Google Scholar] [CrossRef]
- Arden, N.K.; Cro, S.; Sheard, S.; Doré, C.J.; Bara, A.; Tebbs, S.A.; Hunter, D.J.; James, S.; Cooper, C.; O’Neill, T.; et al. The effect of vitamin D supplementation on knee osteoarthritis, the VIDEO study: A randomised controlled trial. Osteoarthr. Cartil. 2016, 24, 1858–1866. [Google Scholar] [CrossRef] [Green Version]
- Park, C.Y. Vitamin D in the Prevention and Treatment of Osteoarthritis: From Clinical Interventions to Cellular Evidence. Nutrients 2019, 11, 243. [Google Scholar] [CrossRef] [Green Version]
- Ravindrarajah, R.; Hazra, N.C.; Charlton, J.; Jackson, S.H.D.; Dregan, A.; Gulliford, M.C. Incidence and mortality of fractures by frailty level over 80 years of age: Cohort study using UK electronic health records. BMJ Open 2018, 8, e018836. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopic, S.; Geibel, J.P. Gastric acid, calcium absorption, and their impact on bone health. Physiol. Rev. 2013, 93, 189–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cormick, G.; Belizan, J.M. Calcium Intake and Health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef] [Green Version]
- Daraghmeh, A.H.; Bertoia, M.L.; Al-Qadi, M.O.; Abdulbaki, A.M.; Roberts, M.B.; Eaton, C.B. Evidence for the vitamin D hypothesis: The NHANES III extended mortality follow-up. Atherosclerosis 2016, 255, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Wan, Z.; Guo, J.; Liu, L.; Pan, A.; Liu, G. Association Between Serum 25-hydroxyvitamin D Concentrations and Mortality Among Adults with Prediabetes. J. Clin. Endocrinol. Metab. 2021, 106, e4039–e4048. [Google Scholar] [CrossRef]
- Durup, D.; Jørgensen, H.L.; Christensen, J.; Tjonneland, A.; Olsen, A.; Halkjær, J.; Lind, B.; Heegaard, A.-M.; Schwarz, P. A Reverse J-Shaped Association Between Serum 25-Hydroxyvitamin D and Cardiovascular Disease Mortality: The CopD Study. J. Clin. Endocrinol. Metab. 2015, 100, 2339–2346. [Google Scholar] [CrossRef]
- Xiao, Q.; Bin Cai, B.; Yin, A.; Huo, H.; Lan, K.; Zhou, G.; Shen, L.; Ben He, B. L-shaped association of serum 25-hydroxyvitamin D concentrations with cardiovascular and all-cause mortality in individuals with osteoarthritis: Results from the NHANES database prospective cohort study. BMC Med. 2022, 20, 308. [Google Scholar] [CrossRef]
- Tschon, M.; Contartese, D.; Pagani, S.; Borsari, V.; Fini, M. Gender and Sex Are Key Determinants in Osteoarthritis Not Only Confounding Variables. A Systematic Review of Clinical Data. J. Clin. Med. 2021, 10, 3178. [Google Scholar] [CrossRef]
- Fenton, A.; Panay, N. Estrogen, menopause and joints. Climacteric 2016, 19, 107–108. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.P.; Tian, F.M.; Dai, M.W.; Wang, W.Y.; Shao, L.T.; Zhang, L. Are estrogen-related drugs new alternatives for the management of osteoarthritis? Arthritis Res. Ther. 2016, 18, 151. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Bang, C.H.; Song, G.G.; Kim, C.; Kim, J.H.; Choi, S.J. Knee osteoarthritis and menopausal hormone therapy in postmenopausal women: A nationwide cross-sectional study. Menopause 2018, 26, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.M.; Shin, E.A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med. 2018, 50, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heath, A.K.; Kim, I.Y.; Hodge, A.M.; English, D.R.; Muller, D.C. Vitamin D Status and Mortality: A Systematic Review of Observational Studies. Int. J. Environ. Res. Public Health 2019, 16, 383. [Google Scholar] [CrossRef] [Green Version]
- Freedman, D.M.; Looker, A.C.; Chang, S.C.; Graubard, B.I. Prospective study of serum vitamin D and cancer mortality in the United States. J. Natl. Cancer Inst. 2007, 99, 1594–1602. [Google Scholar] [CrossRef]
Characteristic | Serum 25(OH)D Concentrations (nmol/L) a | ||||
---|---|---|---|---|---|
<25.0 (n = 136) | 25.0–49.9 (n = 1054) | 50.0–74.9 (n = 1579) | ≥75.0 (n = 1801) | p | |
Age (years, mean ± SD) | 60.89 ± 13.54 | 59.50 ± 13.96 | 59.89 ± 13.49 | 63.70 ± 11.95 | <0.001 |
Gender, n (%) | |||||
Male | 31 (15.40) | 355 (32.96) | 642 (40.57) | 591 (31.78) | <0.001 |
Female | 105 (84.60) | 699 (67.04) | 937 (59.43) | 1210 (68.22) | |
Race/ethnicity, n (%) | |||||
Non-Hispanic white | 45 (53.21) | 558 (71.70) | 1068 (81.44) | 1392 (88.78) | <0.001 |
Non-Hispanic black | 57 (26.47) | 255 (13.15) | 190 (5.48) | 145 (3.29) | |
Mexican American | 22 (11.86) | 137 (5.68) | 121 (2.69) | 89 (1.51) | |
Others | 12 (8.45) | 104 (9.47) | 200 (10.38) | 175 (6.41) | |
Education level, n (%) | |||||
Below high school | 49 (27.09) | 325 (19.84) | 359 (13.54) | 310 (10.32) | <0.001 |
High school or equivalent | 35 (22.50) | 270 (28.13) | 391 (24.78) | 420 (22.70) | |
Above high school | 52 (50.40) | 459 (52.03) | 829 (61.68) | 1071 (66.98) | |
Family poverty income ratio, n (%) | |||||
≤1 | 33 (18.19) | 192 (15.49) | 218 (9.40) | 194 (7.59) | <0.001 |
1< to ≤3 | 58 (45.14) | 465 (39.33) | 645 (34.74) | 725 (31.37) | |
>3 | 45 (36.68) | 397 (45.19) | 716 (55.85) | 882 (61.04) | |
Body mass index, n (%) | |||||
Normal | 18 (10.72) | 177 (15.42) | 340 (20.93) | 475 (22.74) | <0.001 |
Overweight | 36 (27.67) | 326 (30.33) | 495 (29.01) | 609 (33.86) | |
Obese | 82 (61.62) | 551 (54.26) | 744 (50.06) | 717 (43.40) | |
Physical activity, n (%) | |||||
Inactive | 112 (84.55) | 675 (59.63) | 816 (46.96) | 962 (48.79) | <0.001 |
Insufficient | 7 (3.90) | 157 (15.05) | 296 (19.64) | 259 (15.84) | |
Active | 17 (11.55) | 222 (25.32) | 467 (33.39) | 580 (35.37) | |
Smoking status, n (%) | |||||
Never smoker | 66 (37.58) | 506 (45.41) | 730 (44.55) | 890 (51.50) | <0.001 |
Current smoker | 35 (30.94) | 216 (24.13) | 242 (15.35) | 220 (13.40) | |
Past smoker | 35 (31.49) | 332 (30.46) | 607 (40.10) | 691 (35.09) | |
Drinking status, n (%) | |||||
Never drinker | 30 (18.71) | 188 (13.48) | 226 (10.23) | 221 (8.37) | <0.001 |
Current drinker | 74 (63.13) | 574 (59.82) | 1065 (72.22) | 1229 (73.97) | |
Abstainer | 32 (18.16) | 292 (26.70) | 288 (17.55) | 351 (17.67) | |
Comorbidities, n (%) | |||||
Diabetes mellitus | 44 (24.23) | 312 (26.38) | 363 (20.01) | 373 (19.44) | <0.001 |
Hypertension | 88 (67.56) | 693 (61.84) | 1006 (58.90) | 1229 (63.56) | 0.049 |
Cardiovascular disease | 29 (24.87) | 226 (18.75) | 293 (18.16) | 386 (18.87) | 0.154 |
Cancer | 15 (12.44) | 178 (19.57) | 299 (19.69) | 438 (25.67) | <0.001 |
Chronic lung disease | 31 (33.28) | 147 (12.93) | 207 (13.79) | 219 (10.11) | 0.004 |
Renal disease | 38 (28.21) | 224 (18.18) | 271 (13.05) | 277 (13.10) | <0.001 |
Whole-blood biochemical markers (GM, 95% CI) | |||||
Total cholesterol (n = 4529), mmol/L | 5.130 (1.941, 5.325) | 5.168 (5.096, 5.240) | 5.083 (5.030, 5.137) | 5.003 (4.952, 5.053) | <0.001 |
HDL (n = 4526), mmol/L | 1.349 (1.283, 1.417) | 1.297 (1.274, 1.320) | 1.325 (1.305, 1.344) | 1.419 (1.399, 1.439) | <0.001 |
LDL (n = 2149), mmol/L | 2.651 (2.431, 2.891) | 2.980 (2.893, 3.071) | 2.925 (2.856, 2.997) | 2.772 (2.711, 2.835) | 0.002 |
Triglyceride (n = 4549), mmol/L | 1.306 (1.144, 1.491) | 1.436 (1.377, 1.497) | 1.391 (1.341, 1.443) | 1.320 (1.275, 1.367) | 0.016 |
CRP (n = 3440), mg/dL | 0.423 (0.341, 0.526) | 0.334 (0.311, 0.359) | 0.269 (0.253, 0.287) | 0.230 (0.215, 0.245) | <0.001 |
Lead (n = 4023), umol/L | 0.105 (0.090, 0.122) | 0.095 (0.090, 0.099) | 0.080 (0.077, 0.083) | 0.068 (0.066, 0.071) | <0.001 |
Serum 25(OH)D Concentrations (nmol/L) | Per One-Unit Increment in Natural Log-Transformed 25(OH)D | ||||
---|---|---|---|---|---|
<25.0 | 25.0–49.9 | 50.0–74.9 | ≥75.0 | ||
All-cause mortality | |||||
Number of deaths/total | 58/136 | 429/1054 | 510/1579 | 391/1801 | |
Model 1 a | Ref. | 0.43 (0.27, 0.67) | 0.36 (0.23, 0.56) | 0.32 (0.20, 0.53) | 0.66 (0.53, 0.83) |
Model 2 b | Ref. | 0.46 (0.30, 0.71) | 0.40 (0.26, 0.62) | 0.39 (0.24, 0.63) | 0.76 (0.61, 0.94) |
Model 3 c | Ref. | 0.49 (0.31, 0.75) | 0.45 (0.29, 0.68) | 0.43 (0.27, 0.69) | 0.81 (0.65, 1.00) |
CVD mortality | |||||
Number of deaths | 22 | 138 | 156 | 111 | |
Model 1 a | Ref. | 0.27 (0.12, 0.57) | 0.20 (0.09, 0.41) | 0.17 (0.08, 0.38) | 0.47 (0.30, 0.73) |
Model 2 b | Ref. | 0.27 (0.13, 0.57) | 0.23 (0.11, 0.47) | 0.22 (0.10, 0.48) | 0.59 (0.37, 0.95) |
Model 3 c | Ref. | 0.28 (0.14, 0.59) | 0.25 (0.12, 0.51) | 0.24 (0.11, 0.49) | 0.61 (0.40, 0.94) |
Cancer mortality | |||||
Number of deaths | 8 | 75 | 96 | 89 | |
Model 1 a | Ref. | 0.70 (0.29, 1.73) | 0.56 (0.23, 1.37) | 0.65 (0.27, 1.59) | 0.85 (0.58, 1.26) |
Model 2 b | Ref. | 0.77 (0.31, 1.91) | 0.69 (0.27, 1.73) | 0.83 (0.34, 2.03) | 1.00 (0.70, 1.43) |
Model 3 c | Ref. | 0.74 (0.29, 1.87) | 0.68 (0.26, 1.73) | 0.81 (0.32, 2.04) | 1.00 (0.71, 1.42) |
Other mortality | |||||
Number of deaths | 28 | 216 | 258 | 191 | |
Model 1 a | Ref. | 0.52 (0.30, 0.90) | 0.47 (0.28, 0.78) | 0.39 (0.23, 0.68) | 0.73 (0.57, 0.94) |
Model 2 b | Ref. | 0.56 (0.32, 0.98) | 0.51 (0.31, 0.86) | 0.45 (0.26, 0.78) | 0.80 (0.63, 1.02) |
Model 3 c | Ref. | 0.64 (0.35, 1.15) | 0.61 (0.36, 1.03) | 0.54 (0.30, 0.96) | 0.88 (0.68, 1.14) |
Serum 25(OH)D Concentrations (nmol/L) | pinteractionb | ||||
---|---|---|---|---|---|
<25.0 a | 25.0–49.9 a | 50.0–74.9 a | ≥75.0 a | ||
Age (years) | 0.46 | ||||
≤60 (n = 1624) | Ref. | 0.13 (0.07, 0.25) | 0.15 (0.08, 0.26) | 0.19 (0.08, 0.43) | |
>60 (n = 2946) | Ref. | 0.71 (0.40, 1.24) | 0.58 (0.33, 1.03) | 0.57 (0.31, 1.04) | |
Gender | 0.83 | ||||
Male (n = 1619) | Ref. | 0.22 (0.09, 0.54) | 0.20 (0.08, 0.50) | 0.21 (0.08, 0.52) | |
Female (n = 2951) | Ref. | 0.58 (0.33, 1.02) | 0.53 (0.31, 0.91) | 0.51 (0.28, 0.92) | |
Race/ethnicity | 0.32 | ||||
Non-Hispanic white (n = 3063) | Ref. | 0.46 (0.26, 0.82) | 0.44 (0.26, 0.75) | 0.44 (0.24, 0.79) | |
Others (n = 1507) | Ref. | 0.56 (0.31, 1.01) | 0.44 (0.23, 0.83) | 0.28 (0.14, 0.56) | |
Body mass index | 0.63 | ||||
<30 (n = 2476) | Ref. | 0.67 (0.36, 1.26) | 0.71 (0.38, 1.32) | 0.61 (0.32, 1.17) | |
≥30 (n = 2094) | Ref. | 0.35 (0.20, 0.61) | 0.28 (0.15, 0.50) | 0.33 (0.17, 0.62) | |
Smoking status | 0.12 | ||||
Never smoker (n = 2192) | Ref. | 0.66 (0.38, 1.14) | 0.68 (0.40, 1.17) | 0.68 (0.39, 1.21) | |
Current smoker (n = 713) | Ref. | 0.18 (0.07, 0.45) | 0.19 (0.07, 0.54) | 0.16 (0.06, 0.43) | |
Past smoker (n = 1665) | Ref. | 0.57 (0.23, 1.46) | 0.43 (0.17, 1.08) | 0.42 (0.17, 1.03) | |
Drinking status | 0.27 | ||||
Never drinker (n = 665) | Ref. | 0.70 (0.29, 1.68) | 0.70 (0.30, 1.64) | 0.41 (0.17, 1.00) | |
Current drinker (n = 2942) | Ref. | 0.30 (0.14, 0.62) | 0.27 (0.13, 0.57) | 0.29 (0.13, 0.66) | |
Abstainer (n = 963) | Ref. | 0.83 (0.41, 1.70) | 0.68 (0.31, 1.47) | 0.64 (0.29, 1.40) | |
Physical activity | 0.98 | ||||
Inactive (n = 2565) | Ref. | 0.53 (0.30, 0.93) | 0.50 (0.29, 0.87) | 0.52 (0.28, 0.98) | |
Insufficient or active (n = 2005) | Ref. | 0.38 (0.18, 0.79) | 0.32 (0.15, 0.68) | 0.29 (0.13, 0.63) | |
Chronic lung disease | 0.73 | ||||
Yes (n = 604) | Ref. | 0.45 (0.15, 1.34) | 0.33 (0.10, 1.09) | 0.28 (0.08, 0.99) | |
No (n = 3966) | Ref. | 0.48 (0.31, 0.75) | 0.46 (0.29, 0.72) | 0.44 (0.27, 0.71) | |
Renal disease | 0.18 | ||||
Yes (n = 810) | Ref. | 0.71 (0.32, 1.58) | 0.78 (0.35, 1.70) | 0.68 (0.31, 1.49) | |
No (n = 3760) | Ref. | 0.42 (0.24, 0.73) | 0.37 (0.21, 0.65) | 0.37 (0.19, 0.71) | |
Any type of comorbidities | <0.001 | ||||
Yes (n = 3704) | Ref. | 0.53 (0.32, 0.88) | 0.47 (0.29, 0.77) | 0.44 (0.25, 0.77) | |
No (n = 866) | Ref. | 0.08 (0.03, 0.24) | 0.11 (0.04, 0.30) | 0.11 (0.03, 0.34) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Fan, J.; Yang, Y.; Moazzen, S.; Chen, D.; Sun, L.; He, F.; Li, Y. Vitamin D Status and Risk of All-Cause and Cause-Specific Mortality in Osteoarthritis Patients: Results from NHANES III and NHANES 2001–2018. Nutrients 2022, 14, 4629. https://doi.org/10.3390/nu14214629
Wang J, Fan J, Yang Y, Moazzen S, Chen D, Sun L, He F, Li Y. Vitamin D Status and Risk of All-Cause and Cause-Specific Mortality in Osteoarthritis Patients: Results from NHANES III and NHANES 2001–2018. Nutrients. 2022; 14(21):4629. https://doi.org/10.3390/nu14214629
Chicago/Turabian StyleWang, Jing, Jiayao Fan, Ye Yang, Sara Moazzen, Dingwan Chen, Lingling Sun, Fan He, and Yingjun Li. 2022. "Vitamin D Status and Risk of All-Cause and Cause-Specific Mortality in Osteoarthritis Patients: Results from NHANES III and NHANES 2001–2018" Nutrients 14, no. 21: 4629. https://doi.org/10.3390/nu14214629
APA StyleWang, J., Fan, J., Yang, Y., Moazzen, S., Chen, D., Sun, L., He, F., & Li, Y. (2022). Vitamin D Status and Risk of All-Cause and Cause-Specific Mortality in Osteoarthritis Patients: Results from NHANES III and NHANES 2001–2018. Nutrients, 14(21), 4629. https://doi.org/10.3390/nu14214629