Changes in Dietary Intake of Methionine, Folate/Folic Acid and Vitamin B12 and Survival in Postmenopausal Women with Breast Cancer: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials & Methods
2.1. Study Participants
2.2. Diet Measurement
2.3. Other Covariates Measurement
2.4. Breast Cancer Outcomes Ascertainment
2.5. Death Ascertainment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- American Cancer Society. Breast Cancer Facts & Figures 2021; American Cancer Society, Inc.: Atlanta, GA, USA, 2021. [Google Scholar]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Parkhitko, A.A.; Jouandin, P.; Mohr, S.E.; Perrimon, N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 2019, 18, e13034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavuoto, P.; Fenech, M.F. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat. Rev. 2012, 38, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Hens, J.R.; Sinha, I.; Perodin, F.; Cooper, T.; Sinha, R.; Plummer, J.; Perrone, C.E.; Orentreich, D. Methionine-restricted diet inhibits growth of MCF10AT1-derived mammary tumors by increasing cell cycle inhibitors in athymic nude mice. BMC Cancer 2016, 16, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, H.; Kim, J.H.; Lee, E.; Jang, Y.J.; Son, J.E.; Kwon, J.Y.; Lim, T.G.; Kim, S.; Park, J.H.; Kim, J.E.; et al. Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget 2016, 7, 67223–67234. [Google Scholar] [CrossRef] [PubMed]
- Strekalova, E.; Malin, D.; Good, D.M.; Cryns, V.L. Methionine Deprivation Induces a Targetable Vulnerability in Triple-Negative Breast Cancer Cells by Enhancing TRAIL Receptor-2 Expression. Clin. Cancer Res. 2015, 21, 2780–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, S.Y.; Lee, K.T. “From Patient to Survivor”: Women’s Experience with Breast Cancer after 5 Years. Cancer Nurs. 2016, 39, E40–E48. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Bao, W.; Liu, B.; Caan, B.J.; Lane, D.S.; Millen, A.E.; Simon, M.S.; Thomson, C.A.; Tinker, L.F.; Van Horn, L.V.; et al. Changes in Overall Diet Quality in Relation to Survival in Postmenopausal Women with Breast Cancer: Results from the Women’s Health Initiative. J. Acad. Nutr. Diet. 2018, 118, 1855–1863.e6. [Google Scholar] [CrossRef] [PubMed]
- Ritenbaugh, C.; Patterson, R.E.; Chlebowski, R.T.; Caan, B.; Fels-Tinker, L.; Howard, B.; Ockene, J. The Women’s Health Initiative Dietary Modification trial: Overview and baseline characteristics of participants. Ann. Epidemiol. 2003, 13 (Suppl. 9), S87–S97. [Google Scholar] [CrossRef]
- Chlebowski, R.T.; Anderson, G.L.; Aragaki, A.K.; Manson, J.E.; Stefanick, M.L.; Pan, K.; Barrington, W.; Kuller, L.H.; Simon, M.S.; Lane, D.; et al. Association of Menopausal Hormone Therapy With Breast Cancer Incidence and Mortality During Long-term Follow-up of the Women’s Health Initiative Randomized Clinical Trials. JAMA 2020, 324, 369–380. [Google Scholar] [CrossRef] [PubMed]
- The Women’s Health Initiative Study Group. Design of the Women’s Health Initiative clinical trial and observational study. Control. Clin. Trials 1998, 19, 61–109. [Google Scholar] [CrossRef]
- Patterson, R.E.; Kristal, A.R.; Tinker, L.F.; Carter, R.A.; Bolton, M.P.; Agurs-Collins, T. Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann. Epidemiol. 1999, 9, 178–187. [Google Scholar] [CrossRef]
- Block, G.; Hartman, A.M.; Dresser, C.M.; Carroll, M.D.; Gannon, J.; Gardner, L. A data-based approach to diet questionnaire design and testing. Am. J. Epidemiol. 1986, 124, 453–469. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Sampson, L.; Browne, M.L.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Speizer, F.E. The use of a self-administered questionnaire to assess diet four years in the past. Am. J. Epidemiol. 1988, 127, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Rimm, E.B.; Giovannucci, E.L.; Stampfer, M.J.; Colditz, G.A.; Litin, L.B.; Willett, W.C. Reproducibility and Validity of an Expanded Self-Administered Semiquantitative Food Frequency Questionnaire among Male Health-Professionals. Am. J. Epidemiol. 1992, 135, 1114–1126. [Google Scholar] [CrossRef] [PubMed]
- Schakel, S.F.; Sievert, Y.A.; Buzzard, I.M. Sources of data for developing and maintaining a nutrient database. J. Am. Diet. Assoc. 1988, 88, 1268–1271. [Google Scholar] [CrossRef]
- Gavrieli, A.; Karfopoulou, E.; Kardatou, E.; Spyreli, E.; Fragopoulou, E.; Mantzoros, C.S.; Yannakoulia, M. Effect of different amounts of coffee on dietary intake and appetite of normal-weight and overweight/obese individuals. Obesity 2013, 21, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Kozlow, M.; Rock, C.L.; Gilpin, E.A.; Hollenbach, K.A.; Pierce, J.P. Validation of the WHI brief physical activity questionnaire among women diagnosed with breast cancer. Am. J. Health Behav. 2007, 31, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, G.L.; Manson, J.; Wallace, R.; Lund, B.; Hall, D.; Davis, S.; Shumaker, S.; Wang, C.Y.; Stein, E.; Prentice, R.L. Implementation of the Women’s Health Initiative study design. Ann. Epidemiol. 2003, 13 (Suppl. 9), S5–S17. [Google Scholar] [CrossRef]
- US Department of Health and Human Services; Public Health Service National Institutes of Health. SEER Program: Comparative Staging Guide for Cancer; Version 1.1; NIH Publication: Washington, DC, USA, 1993; pp. 93–3640.
- Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; et al. Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 2010, 28, 2784–2795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistical Analysis Software [Computer Program], 9.4, SAS Institute: Cary, NC, USA, 2013.
- Wanders, D.; Hobson, K.; Ji, X. Methionine Restriction and Cancer Biology. Nutrients 2020, 12, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanderson, S.M.; Gao, X.; Dai, Z.; Locasale, J.W. Methionine metabolism in health and cancer: A nexus of diet and precision medicine. Nat. Rev. Cancer 2019, 19, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Lien, E.C.; Ghisolfi, L.; Geck, R.C.; Asara, J.M.; Toker, A. Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Sci. Signal. 2017, 10, eaao6604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Kang, S.; Zhang, D. Association of vitamin B6, vitamin B12 and methionine with risk of breast cancer: A dose-response meta-analysis. Br. J. Cancer 2013, 109, 1926–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, S.; Xu, J.; Li, W.; Chen, Z.; Ma, T.; Zhao, J. Methionine synthase A2756G polymorphism and breast cancer risk: An up-to-date meta-analysis. Gene 2013, 527, 510–515. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Treatment of Breast Cancer by Stage. 2022. Available online: https://www.cancer.org/cancer/breast-cancer/treatment/treatment-of-breast-cancer-by-stage.html (accessed on 9 November 2022).
- Kaiser, P. Methionine Dependence of Cancer. Biomolecules 2020, 10, 568. [Google Scholar] [CrossRef]
Change in Dietary Methionine Intake | ||||
---|---|---|---|---|
Increase (≥20%) | No Change or Stable (±19.9%) | Decrease (≥20%) | p Vales | |
Number of participants | 454 | 658 | 441 | |
Age at diagnosis, years | 65.6 (7.1) | 66.1 (6.9) | 66.3 (6.5) | 0.29 |
Race/Ethnicity, n (%) | 0.19 | |||
Non-Hispanic white | 399 (87.9) | 591(89.8) | 391 (88.7) | |
Nom-Hispanic black | 24 (5.3) | 37 (5.6) | 22 (5.0) | |
Hispanic | 13 (2.9) | 10 (1.5) | 16 (3.6) | |
Other (American Indian or Alaskan Native, Asian or Pacific Islander and others) | 18 (4.0) | 17 (2.6) | 12 (2.7) | |
Unknown | 0 (0.0) | 3 (0.5) | 0 (0.0) | |
Pre-diagnosis total energy intake, kcal/day | 1367 (470) | 1622 (563) | 1825 (677) | <0.001 |
Post-diagnosis total energy intake, kcal/day | 1768 (594) | 1564 (529) | 1297 (470) | <0.001 |
Education, n (%) | 0.08 | |||
High school or less | 98 (21.6) | 151 (23.0) | 128 (29.0) | |
Some college | 126 (27.8) | 175 (26.6) | 123 (27.9) | |
College degree | 74 (16.3) | 86 (13.1) | 48 (10.9) | |
Postgraduate | 153 (33.7) | 239 (36.3) | 140 (31.8) | |
Missing | 3 (0.7) | 7 (1.1) | 2 (0.5) | |
Annual income, n (%) | 0.63 | |||
<$20,000 | 48 (10.6) | 82 (12.5) | 51 (11.6) | |
$20,000–49,999 | 190 (41.9) | 278 (42.3) | 188 (42.6) | |
>$50,000 | 191 (42.1) | 268 (40.7) | 171 (38.8) | |
Missing | 25 (5.5) | 30 (4.6) | 31 (7.0) | |
WHI component/arm, n (%) | 0.35 | |||
Observational study | 273 (60.1) | 397 (60.3) | 248 (56.2) | |
DM-control | 181 (39.9) | 261 (39.7) | 193 (43.8) | |
Stage of breast cancer, n (%) | 0.17 | |||
Localized | 348 (76.7) | 495 (75.2) | 312 (70.8) | |
Regional | 100 (22.0) | 149 (22.6) | 122 (27.7) | |
Distant | 4 (0.9) | 4 (0.6) | 4 (0.9) | |
Unknown | 2 (0.4) | 10 (1.5) | 3 (0.7) | |
Estrogen receptor status, n (%) | 0.87 | |||
Positive | 343 (75.6) | 497 (75.5) | 324 (73.5) | |
Negative | 61 (13.4) | 95 (14.4) | 69 (15.7) | |
Unknown | 50 (11.0) | 66 (10.0) | 48 (10.9) | |
Progesterone receptor status, % | 0.68 | |||
Positive | 286 (63.0) | 417 (63.4) | 263 (59.6) | |
Negative | 112 (24.0) | 157 (23.9) | 122 (27.7) | |
Unknown | 56 (12.3) | 84 (12.8) | 56 (12.7) | |
Postmenopausal hormone therapy, n (%) | 0.04 | |||
Never | 135 (29.7) | 200 (30.4) | 141 (32.0) | |
Past | 48 (10.6) | 67 (10.2) | 68 (15.4) | |
Current | 271 (59.7) | 391 (59.4) | 232 (52.6) | |
Time from diagnosis to post-diagnosis FFQ assessment, years | 0.26 | |||
Had female relatives that had breast cancer, n (%) | 0.36 | |||
No | 128 (28.2) | 167 (25.4) | 117 (26.5) | |
Yes | 101 (22.3) | 176 (26.8) | 99 (22.5) | |
Unknown | 225 (49.6) | 315 (47.9) | 225 (51.0) | |
Pre-diagnosis smoking status, n (%) | 0.09 | |||
Non-current smoker | 424 (93.4) | 629 (95.6) | 414 (93.9) | |
Current smoker | 29 (6.4) | 25 (3.8) | 21 (4.8) | |
Missing | 1 (0.2) | 4 (0.6) | 6 (1.4) | |
Post-diagnosis smoking status, n (%) | 0.77 | |||
Non-current smoker | 421 (92.8) | 613 (93.2) | 414 (93.9) | |
Current smoker | 19 (4.2) | 21 (3.2) | 12 (2.7) | |
Missing | 14 (3.1) | 24 (3.7) | 15 (3.4) | |
Pre-diagnosis physical activity levels, MET-hours/week, n (%) | 0.52 | |||
<10 | 223 (49.1) | 318 (48.3) | 235 (53.3) | |
≥10 | 215 (47.4) | 320 (48.6) | 191 (43.3) | |
Missing | 16 (3.5) | 20 (3.0) | 15 (3.4) | |
Post-diagnosis physical activity levels, MET-hours/week, n (%) | 0.10 | |||
<10 | 227 (50.0) | 343 (52.1) | 258 (58.5) | |
≥10 | 213 (46.9) | 290 (44.1) | 169 (38.3) | |
Missing | 14 (3.1) | 25 (3.8) | 14 (3.2) | |
Pre-diagnosis alcohol intake, g/day | 5.9 (12.0) | 6.2 (11.6) | 6.3 (12.7) | 0.29 |
Post-diagnosis alcohol intake, g/day | 5.3 (10.1) | 5.5 (11.7) | 4.1 (9.3) | 0.08 |
Pre-diagnosis folate/folic acid intake, mcg DFE/day | 299 (170) | 336 (194) | 351 (194) | <0.001 |
Post-diagnosis folate/folic acid intake, mcg DFE/day | 507 (203) | 471 (193) | 391 (165) | <0.001 |
Pre-diagnosis vitamin B12 intake, mcg/day | 4.8 (2.7) | 6.1 (3.2) | 6.9 (3.6) | <0.001 |
Post-diagnosis vitamin B12 intake, mcg/day | 7.2 (3.9) | 6.0 (3.2) | 4.7 (2.4) | <0.001 |
Pre-diagnosis total protein intake, g/day | 54.6 (19.7) | 68.0 (23.7) | 80.0 (31.3) | <0.001 |
Post-diagnosis total protein intake, g/day | 79.9 (28.4) | 66.7 (22.7) | 51.7 (19.8) | <0.001 |
Pre-diagnosis BMI status, n (%) | 0.01 | |||
≤24.9 | 173 (38.1) | 252 (38.3) | 133 (30.2) | |
25.0–29.9 | 151 (33.3) | 219 (33.3) | 145 (32.9) | |
≥ 30.0 | 125 (27.5) | 185 (28.1) | 161 (36.5) | |
Missing | 5 (1.1) | 2 (0.3) | 2 (0.5) | |
Post-diagnosis BMI status, n (%) | 0.56 | |||
≤24.9 | 145 (31.9) | 234 (35.6) | 141 (32.0) | |
25.0–29.9 | 145 (31.9) | 213 (32.4) | 136 (30.8) | |
≥30.0 | 119 (26.2) | 157 (23.9) | 126 (28.6) | |
Missing | 45 (9.9) | 54 (8.2) | 38 (8.6) |
Change in Dietary Methionine Intake | |||
---|---|---|---|
Increase (≥20%) | No Change or Stable (±19.9%) | Decrease (≥20%) | |
NO. of deaths/participants | 209/454 | 341/658 | 222/441 |
Model 1 a | 1.00 (0.82, 1.21) | ref | 0.88 (0.73 to 1.06) |
p = 0.97 | p = 0.18 | ||
Model 2 b | 1.00 (0.80, 1.25) | ref | 0.79 (0.64 to 0.98) |
p = 0.99 | p = 0.03 | ||
Model 3 c | 0.97 (0.78, 1.21) | ref | 0.78 (0.62 to 0.97) |
p = 0.78 | p = 0.02 | ||
Change in dietary folate/folic acid intake | |||
Increase (≥20%) | No change or stable (±19.9%) | Decrease (≥20%) | |
NO. of deaths/participants | 484/986 | 179/363 | 109/204 |
Model 1 a | 0.93 (0.78, 1.11) | ref | 1.10 (0.86 to 1.40) |
p = 0.41 | p = 0.47 | ||
Model 2 b | 0.94 (0.78, 1.14) | ref | 1.05 (0.82 to 1.36) |
p = 0.53 | p = 0.69 | ||
Model 3 c | 0.97 (0.80, 1.17) | ref | 1.02 (0.79 to 1.32) |
p = 0.74 | p = 0.85 | ||
Change in dietary vitamin B12 intake | |||
Increase (≥20%) | No change or stable (±19.9%) | Decrease (≥20%) | |
NO. of deaths/participants | 254/537 | 259/528 | 259/488 |
Model 1 a | 1.11 (0.93, 1.33) | ref | 1.09 (0.91 to 1.30) |
p = 0.25 | p = 0.37 | ||
Model 2 b | 1.11 (0.92, 1.34) | ref | 1.04 (0.85 to 1.26) |
p = 0.30 | p = 0.72 | ||
Model 3 c | 1.11 (0.91, 1.34) | ref | 1.01 (0.83 to 1.23) |
p = 0.30 | p = 0.89 |
Change in Dietary Methionine Intake | |||
---|---|---|---|
Increase (≥20%) | No Change or Stable (±19.9%) | Decrease (≥20%) | |
NO. of deaths/participants | 60/454 | 84/658 | 51/441 |
Model 1 a | 1.21 (0.84, 1.75) | ref | 0.76 (0.51 to 1.12) |
p = 0.32 | p = 0.17 | ||
Model 2 b | 1.31 (0.85, 2.03) | ref | 0.58 (0.37 to 0.91) |
p = 0.22 | p = 0.02 | ||
Model 3 c | 1.27 (0.82, 1.97) | ref | 0.58 (0.37 to 0.91) |
p = 0.29 | p = 0.02 | ||
Change in dietary folate/folic acid intake | |||
Increase (≥20%) | No change or stable (±19.9%) | Decrease (≥20%) | |
NO. of deaths/participants | 129/986 | 39/363 | 27/204 |
Model 1 a | 1.20 (0.83, 1.72) | ref | 1.21 (0.73 to 2.00) |
p = 0.34 | p = 0.45 | ||
Model 2 b | 1.13 (0.77, 1.67) | ref | 1.06 (0.62 to 1.82) |
p = 0.52 | p = 0.83 | ||
Model 3 c | 1.17 (0.80, 1.73) | ref | 1.08 (0.63 to 1.85) |
p = 0.42 | p = 0.79 | ||
Change in dietary vitamin B12 intake | |||
Increase (≥20%) | No change or stable (±19.9%) | Decrease (≥20%) | |
NO. of deaths/participants | 67/537 | 69/528 | 59/488 |
Model 1 a | 1.01 (0.71, 1.43) | ref | 0.88 (0.61 to 1.28) |
p = 0.96 | p = 0.51 | ||
Model 2 b | 1.03 (0.71, 1.50) | ref | 0.93 (0.64 to 1.37) |
p = 0.85 | p = 0.58 | ||
Model 3 c | 1.01 (0.69, 1.47) | ref | 0.89 (0.60 to 1.31) |
p = 0.76 | p = 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Fowke, J.H.; Liang, X.; Mozhui, K.; Sen, S.; Bao, W.; Liu, B.; Snetselaar, L.G.; Wallace, R.B.; Shadyab, A.H.; et al. Changes in Dietary Intake of Methionine, Folate/Folic Acid and Vitamin B12 and Survival in Postmenopausal Women with Breast Cancer: A Prospective Cohort Study. Nutrients 2022, 14, 4747. https://doi.org/10.3390/nu14224747
Sun Y, Fowke JH, Liang X, Mozhui K, Sen S, Bao W, Liu B, Snetselaar LG, Wallace RB, Shadyab AH, et al. Changes in Dietary Intake of Methionine, Folate/Folic Acid and Vitamin B12 and Survival in Postmenopausal Women with Breast Cancer: A Prospective Cohort Study. Nutrients. 2022; 14(22):4747. https://doi.org/10.3390/nu14224747
Chicago/Turabian StyleSun, Yangbo, Jay H. Fowke, Xiaoyu Liang, Khyobeni Mozhui, Saunak Sen, Wei Bao, Buyun Liu, Linda G. Snetselaar, Robert B. Wallace, Aladdin H. Shadyab, and et al. 2022. "Changes in Dietary Intake of Methionine, Folate/Folic Acid and Vitamin B12 and Survival in Postmenopausal Women with Breast Cancer: A Prospective Cohort Study" Nutrients 14, no. 22: 4747. https://doi.org/10.3390/nu14224747
APA StyleSun, Y., Fowke, J. H., Liang, X., Mozhui, K., Sen, S., Bao, W., Liu, B., Snetselaar, L. G., Wallace, R. B., Shadyab, A. H., Saquib, N., Cheng, T. -Y. D., & Johnson, K. C. (2022). Changes in Dietary Intake of Methionine, Folate/Folic Acid and Vitamin B12 and Survival in Postmenopausal Women with Breast Cancer: A Prospective Cohort Study. Nutrients, 14(22), 4747. https://doi.org/10.3390/nu14224747