Association of ALDH2 Genotypes and Alcohol Intake with Dietary Patterns: The Bunkyo Health Study
Abstract
:1. Introduction
2. Method
2.1. Study Design and Participants
2.2. Dietary Assessment
2.3. DPs
2.4. Genotyping
2.5. Other Measurements
2.6. Statistical Analyses
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LB, J.A.; Heymsfield, S.; Mayer-Davis, E.; Sabaté, J.; Snetselaar, L.; Van Horn, L. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: PartD_Ch8_DietaryPatterns_. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-07/PartD_Ch8_DietaryPatterns_first-print.pdf (accessed on 10 May 2022).
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R.; Steffen, L.M. Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am. J. Clin. Nutr. 2003, 78, 508S–513S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacques, P.F.; Tucker, K.L. Are dietary patterns useful for understanding the role of diet in chronic disease? Am. J. Clin. Nutr. 2001, 73, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, K.; Shinozaki, N.; Fujiwara, A.; Yuan, X.; Hashimoto, A.; Fujihashi, H.; Wang, H.-C.; Livingstone, M.B.E.; Sasaki, S. A Systematic Review of Principal Component Analysis-Derived Dietary Patterns in Japanese Adults: Are Major Dietary Patterns Reproducible Within a Country? Adv. Nutr. 2019, 10, 237–249. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A review of statistical methods for dietary pattern analysis. Nutr. J. 2021, 20, 37. [Google Scholar] [CrossRef]
- Whelton, P.K.; Appel, L.; Charleston, J.; Dalcin, A.T.; Ewart, C.; Fried, L.; Kaidy, D.; Klag, M.J.; Kumanyika, S.; Steffen, L.; et al. The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the Trials of Hypertension Prevention, Phase I. JAMA 1992, 267, 1213–1220. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, N.; Takase, S.; Yasuhara, M.; Takada, A. Acetaldehyde Metabolism in Different Aldehyde Dehydrogenase-2 Genotypes. Alcohol. Clin. Exp. Res. 1991, 15, 141–144. [Google Scholar] [CrossRef]
- Takeshita, T.; Morimoto, K.; Mao, X.; Hashimoto, T.; Furuyama, J. Characterization of the three genotypes of low Km aldehyde dehydrogenase in a Japanese population. Hum. Genet. 1994, 94, 217–223. [Google Scholar] [CrossRef]
- Hendershot, C.S.; Neighbors, C.; George, W.H.; McCarthy, D.M.; Wall, T.L.; Liang, T.; Larimer, M.E. ALDH2, ADH1B and Alcohol Expectancies: Integrating Genetic and Learning Perspectives. Psychol. Addict. Behav. 2009, 23, 452–463. [Google Scholar] [CrossRef]
- Eng, M.Y.; Luczak, S.E.; Wall, T.L. ALDH2, ADH1B, and ADH1C genotypes in Asians: A literature review. Alcohol. Res. Health 2007, 30, 22–27. [Google Scholar] [PubMed]
- Goedde, H.W.; Agarwal, D.P.; Fritze, G.; Meier-Tackmann, D.; Singh, S.; Beckmann, G.; Bhatia, K.; Chen, L.Z.; Fang, B.; Lisker, R.; et al. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum. Genet. 1992, 88, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Kawafune, K.; Hachiya, T.; Nogawa, S.; Takahashi, S.; Jia, H.; Saito, K.; Kato, H. Strong association between the 12q24 locus and sweet taste preference in the Japanese population revealed by genome-wide meta-analysis. J. Hum. Genet. 2020, 65, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Matoba, N.; Akiyama, M.; Ishigaki, K.; Kanai, M.; Takahashi, A.; Momozawa, Y.; Ikegawa, S.; Ikeda, M.; Iwata, N.; Hirata, M.; et al. GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nat. Hum. Behav. 2020, 4, 308–316. [Google Scholar] [CrossRef]
- Nakamura, Y.; Narita, A.; Sutoh, Y.; Imaeda, N.; Goto, C.; Matsui, K.; Takashima, N.; Kadota, A.; Miura, K.; Nakatochi, M.; et al. A genome-wide association study on meat consumption in a Japanese population: The Japan Multi-Institutional Collaborative Cohort study. J. Nutr. Sci. 2021, 10, e61. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Nakamura, Y.; Matsuo, K.; Imaeda, N.; Goto, C.; Narita, A.; Shimizu, A.; Takashima, N.; Matsui, K.; Miura, K.; et al. A genome-wide association study in Japanese identified one variant associated with a preference for a Japanese dietary pattern. Eur. J. Clin. Nutr. 2021, 75, 937–945. [Google Scholar] [CrossRef]
- Suzuki, T.; Nakamura, Y.; Doi, Y.; Narita, A.; Shimizu, A.; Imaeda, N.; Goto, C.; Matsui, K.; Kadota, A.; Miura, K.; et al. A genome-wide association study on confection consumption in a Japanese population: The Japan Multi-Institutional Collaborative Cohort Study. Br. J. Nutr. 2021, 126, 1843–1851. [Google Scholar] [CrossRef]
- Suzuki, T.; Nakamura, Y.; Matsuo, K.; Oze, I.; Doi, Y.; Narita, A.; Shimizu, A.; Imaeda, N.; Goto, C.; Matsui, K.; et al. A genome-wide association study on fish consumption in a Japanese population-the Japan Multi-Institutional Collaborative Cohort study. Eur. J. Clin. Nutr. 2021, 75, 480–488. [Google Scholar] [CrossRef]
- Konishi, K. Associations between healthy Japanese dietary patterns and depression in Japanese women. Public Health Nutr. 2021, 24, 1753–1765. [Google Scholar] [CrossRef]
- Okada, E.; Takahashi, K.; Takimoto, H.; Takabayashi, S.; Kishi, T.; Kobayashi, T.; Nakamura, K.; Ukawa, S.; Nakamura, M.; Sasaki, S.; et al. Dietary patterns among Japanese adults: Findings from the National Health and Nutrition Survey, 2012. Asia Pac. J. Clin. Nutr. 2018, 27, 1120–1130. [Google Scholar]
- Sugawara, N.; Yasui-Furukori, N.; Sato, Y.; Saito, M.; Furukori, H.; Nakagami, T.; Ishioka, M.; Kaneko, S. Dietary patterns are associated with obesity in Japanese patients with schizophrenia. Bmc Psychiatry 2014, 14, 184. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, N.; Yasui-Furukori, N.; Umeda, T.; Tsuchimine, S.; Kaneda, A.; Tsuruga, K.; Iwane, K.; Okubo, N.; Takahashi, I.; Kaneko, S. Relationship Between Dietary Patterns and Cognitive Function in a Community-Dwelling Population in Japan. Asia-Pac. J. Public Health 2015, 27, NP2651–NP2660. [Google Scholar] [CrossRef] [PubMed]
- Tanisawa, K.; Ito, T.; Kawakami, R.; Usui, C.; Kawamura, T.; Suzuki, K.; Sakamoto, S.; Ishii, K.; Muraoka, I.; Oka, K.; et al. Association Between Dietary Patterns and Different Metabolic Phenotypes in Japanese Adults: WASEDA’S Health Study. Front. Nutr. 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Kawakami, R.; Tanisawa, K.; Miyawaki, R.; Ishii, K.; Torii, S.; Suzuki, K.; Sakamoto, S.; Muraoka, I.; Oka, K.; et al. Dietary patterns and abdominal obesity in middle-aged and elderly Japanese adults: Waseda Alumni’s Sports, Exercise, Daily Activity, Sedentariness and Health Study (WASEDA’S Health Study). Nutrition 2019, 58, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Tanisawa, K.; Ito, T.; Kawakami, R.; Usui, C.; Kawamura, T.; Suzuki, K.; Sakamoto, S.; Ishii, K.; Muraoka, I.; Oka, K.; et al. Association between alcohol dietary pattern and prevalence of dyslipidaemia: WASEDA’S Health Study. Br. J. Nutr. 2021, 127, 1712–1722. [Google Scholar] [CrossRef]
- Takeno, K.; Tamura, Y.; Kakehi, S.; Kaga, H.; Kawamori, R.; Watada, H. ALDH2 rs671 Is Associated With Elevated FPG, Reduced Glucose Clearance and Hepatic Insulin Resistance in Japanese Men. J. Clin. Endocrinol. Metab. 2021, 106, e3573–e3581. [Google Scholar] [CrossRef]
- Kato, N.; Takeuchi, F.; Tabara, Y.; Kelly, T.N.; Go, M.J.; Sim, X.; Tay, W.T.; Chen, C.-H.; Zhang, Y.; Yamamoto, K.; et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet. 2011, 43, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, F.; Isono, M.; Nabika, T.; Katsuya, T.; Sugiyama, T.; Yamaguchi, S.; Kobayashi, S.; Ogihara, T.; Yamori, Y.; Fujioka, A.; et al. Confirmation of ALDH2 as a Major Locus of Drinking Behavior and of Its Variants Regulating Multiple Metabolic Phenotypes in a Japanese Population. Circ. J. 2011, 75, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Someya, Y.; Tamura, Y.; Kaga, H.; Nojiri, S.; Shimada, K.; Daida, H.; Ishijima, M.; Kaneko, K.; Aoki, S.; Miida, T.; et al. Skeletal muscle function and need for long-term care of urban elderly people in Japan (the Bunkyo Health Study): A prospective cohort study. BMJ Open 2019, 9, e031584. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S. BDHQ under/over Reporting: Exclusion Criteria. Available online: http://www.nutrepi.m.u-tokyo.ac.jp/dhq/Q&A.pdf (accessed on 25 May 2022).
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both Comprehensive and Brief Self-Administered Diet History Questionnaires Satisfactorily Rank Nutrient Intakes in Japanese Adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoya, N. Standard Tables of Food Composition in Japan; Printed Bureau of Ministry of Finance: Tokyo, Japan, 2005. (In Japanese) [Google Scholar]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.L.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murase, N. International standardization of physical activity. J. Health Welf. Stat. 2002, 49, 1–9. [Google Scholar]
- Nanri, A.; Mizoue, T.; Yoshida, D.; Takahashi, R.; Takayanagi, R. Dietary patterns and A1C in Japanese men and women. Diabetes Care 2008, 31, 1568–1573. [Google Scholar] [CrossRef] [Green Version]
- Nanri, A.; Shimazu, T.; Takachi, R.; Shihara, J.; Mizoue, T.; Noda, M.; Inoue, M.; Tsugane, S.; for the Japan Public Health Center-based Prospective Study Group. Dietary patterns and type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Eur. J. Clin. Nutr. 2013, 67, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Livingstone, M.B.E.; Sasaki, S. Meal-specific dietary patterns and their contribution to overall dietary patterns in the Japanese context: Findings from the 2012 National Health and Nutrition Survey, Japan. Nutrition 2019, 59, 108–115. [Google Scholar] [CrossRef]
- Huang, C.H.; Martins, B.A.; Okada, K.; Matsushita, E.; Uno, C.; Satake, S.; Kuzuya, M. A 3-year prospective cohort study of dietary patterns and frailty risk among community-dwelling older adults. Clin. Nutr. 2021, 40, 229–236. [Google Scholar] [CrossRef]
- Wong, T.H.T.; Buyken, A.E.; Brand-Miller, J.C.; Louie, J.C.Y. Is there a soft drink vs. alcohol seesaw? A cross-sectional analysis of dietary data in the Australian Health Survey 2011-12. Eur. J. Nutr. 2020, 59, 2357–2367. [Google Scholar] [CrossRef]
- Liangpunsakul, S. Relationship between alcohol intake and dietary pattern: Findings from NHANES III. World J. Gastroenterol. 2010, 16, 4055–4060. [Google Scholar] [CrossRef]
- Kesse, E.; Clavel-Chapelon, F.; Slimani, N.; Van Liere, M. Do eating habits differ according to alcohol consumption? Results of a study of the French cohort of the European Prospective Investigation into Cancer and Nutrition (E3N-EPIC). Am. J. Clin. Nutr. 2001, 74, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Stickel, A.; Rohdemann, M.; Landes, T.; Engel, K.; Banas, R.; Heinz, A.; Müller, C.A. Changes in Nutrition-Related Behaviors in Alcohol-Dependent Patients After Outpatient Detoxification: The Role of Chocolate. Subst. Use Misuse 2016, 51, 545–552. [Google Scholar] [CrossRef]
- Braun, T.D.; Kunicki, Z.J.; Blevins, C.E.; Stein, M.D.; Marsh, E.; Feltus, S.; Miranda, R., Jr.; Thomas, J.G.; Abrantes, A.M. Prospective Associations between Attitudes toward Sweet Foods, Sugar Consumption, and Cravings for Alcohol and Sweets in Early Recovery from Alcohol Use Disorders. Alcohol. Treat. Q. 2021, 39, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Kampov-Polevoy, A.B.; Garbutt, J.C.; Janowsky, D.S. Janowsky. Association between Preference for Sweets and Excessive Alcohol Intake: A Review of Animal and Human Studies. Alcohol Alcohol. 1999, 34, 386–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarcon, R.; Tiberghien, M.; Trouillet, R.; Pelletier, S.; Luquiens, A.; Ahmed, S.H.; Nalpas, B.; Alaux-Cantin, S.; Naassila, M.; Perney, P. Sugar intake and craving during alcohol withdrawal in alcohol use disorder inpatients. Addict. Biol. 2021, 26, e12907. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Takahashi, C. Studies on the Preference of Foods: Part 2: Relationship between the attribute and the preference of food. Cook. Sci. 1982, 15, 104–113. [Google Scholar]
- Hendershot, C.S.; Collins, S.E.; George, W.H.; Wall, T.L.; McCarthy, D.M.; Liang, T.; Larimer, M.E. Associations of ALDH2 and ADH1B Genotypes With Alcohol-Related Phenotypes in Asian Young Adults. Alcohol.-Clin. Exp. Res. 2009, 33, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Okubo, H.; Sasaki, S.; Horiguchi, H.; Oguma, E.; Miyamoto, K.; Hosoi, Y.; Kim, M.-K.; Kayama, F. Dietary patterns associated with bone mineral density in premenopausal Japanese farmwomen. Am. J. Clin. Nutr. 2006, 83, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Honma, N.; Tateyama, C. Regional Characteristics of Food in Japan as Seen in a Household Survey: Data from the 2005 Survey. Available online: https://unii.repo.nii.ac.jp/?action=repository_action_common_download&item_id=819&item_no=1&attribute_id=20&file_no=1 (accessed on 15 June 2022). (In Japanese).
- Honma, N.; Tateyama, C. Regional Characteristics of Food in Japan from the Household Survey: A Reconfirmation Based on 2006 Survey Data. Available online: https://www.unii.ac.jp/seikatsubunka/journal/backnumber/15/15-2.pdf (accessed on 15 June 2022). (In Japanese).
- Honma, N.; Tateyama, C. Regional Characteristics of Food in Japan from the Household Survey: Focusing on Quantity and Price. Available online: https://www.unii.ac.jp/seikatsubunka/journal/backnumber/16/16-3.pdf (accessed on 15 June 2022). (In Japanese).
- Suzuki, T.; Yukawa, H.; Ishizaki, T.; Kim, H.; Watanabe, S.; Kumagai, S.; Shinkai, S.; Hidenori, A.; Shibata, H. Drinking Status and Changes in Higher Life Functions in Elderly People Living at Home in the Community after 4 Years. Jpn. Geriatr. Soc. 2000, 37, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, N.; Murata, S.; Ono, R. Association between life space and health literacy in community-dwelling older adults. Nihon Ronen Igakkai Zasshi 2018, 55, 650–656. [Google Scholar] [CrossRef]
Food Groups | Men | Women | ||||
---|---|---|---|---|---|---|
DP1 | DP2 | DP3 | DP1 | DP2 | DP3 | |
Law fat milk | 0.193 | −0.154 | 0.188 | |||
Milk/yogurt | −0.155 | |||||
Chicken | 0.183 | 0.179 | 0.194 | |||
Pork/beef | 0.197 | 0.264 | ||||
Ham/sausage/bacon | −0.279 | 0.271 | 0.338 | |||
Liver | ||||||
Squid/octopus/shrimps/shellfish | 0.292 | 0.163 | ||||
Small fish with bone | 0.279 | 0.261 | 0.290 | −0.215 | ||
Canned tuna | ||||||
Dried/salted fish | 0.192 | 0.417 | 0.204 | |||
Oily fish | 0.212 | 0.318 | 0.241 | 0.162 | ||
Lean fish | 0.220 | 0.288 | 0.262 | |||
Egg | 0.193 | 0.162 | 0.219 | |||
Tofu/Deep-fried tofu | 0.360 | 0.215 | 0.442 | 0.167 | ||
Natto † | 0.330 | 0.256 | 0.357 | 0.158 | −0.162 | |
Potatoes | 0.396 | 0.326 | ||||
Pickled green leaves vegetable | 0.277 | 0.279 | ||||
Other pickled vegetables | 0.225 | 0.181 | 0.207 | |||
Lettuces/cabbage (raw) | 0.517 | −0.189 | 0.303 | 0.533 | 0.293 | |
Green leaves vegetable | 0.594 | 0.589 | ||||
Cabbage/Chinese cabbage | 0.548 | 0.594 | ||||
Carrots/pumpkin | 0.650 | 0.629 | ||||
Japanese radish/turnip | 0.553 | 0.492 | ||||
Other root vegetables | 0.627 | 0.605 | ||||
Tomatoes | 0.485 | −0.173 | 0.225 | 0.437 | 0.187 | |
Mushrooms | 0.603 | 0.594 | ||||
Seaweeds | 0.470 | 0.273 | −0.215 | 0.516 | 0.182 | |
Western-type confectioneries | −0.477 | −0.187 | −0.438 | |||
Japanese confectioneries | −0.312 | −0.150 | −0.161 | −0.312 | ||
Rice crackers/rice cake/okonomiyaki ‡ | −0.335 | −0.157 | −0.227 | −0.285 | ||
Ice cream | −0.197 | −0.225 | −0.187 | −0.223 | 0.202 | |
Citrus fruit | 0.353 | −0.232 | 0.156 | −0.179 | ||
Persimmons/strawberries/kiwifruit | 0.330 | −0.225 | 0.243 | −0.194 | ||
Other fruit | 0.361 | −0.316 | −0.195 | 0.294 | −0.307 | |
Mayonnaise/dressing | 0.190 | −0.346 | 0.320 | 0.396 | ||
Bread | −0.550 | −0.177 | −0.387 | 0.262 | ||
Buckwheat noodles | ||||||
Japanese noodles | 0.205 | 0.181 | ||||
Chinese noodles | −0.221 | −0.183 | 0.268 | |||
Pasta | 0.168 | 0.302 | ||||
Green tea | 0.168 | −0.300 | −0.285 | |||
Black tea/oolong tea | −0.294 | −0.172 | 0.163 | |||
Coffee | −0.223 | −0.176 | 0.245 | |||
Cola drink/soft drink | −0.193 | −0.168 | −0.185 | |||
100% fruit and vegetable juice | ||||||
Rice | −0.333 | −0.642 | −0.374 | 0.192 | −0.652 | |
Miso soup | 0.225 | −0.482 | 0.245 | −0.480 | ||
Sake | −0.241 | 0.308 | 0.246 | 0.506 | 0.236 | |
Beer | −0.227 | 0.375 | 0.374 | 0.485 | 0.299 | |
Shochu | −0.238 | 0.369 | 0.324 | 0.539 | 0.276 | |
Whisky | −0.218 | 0.234 | 0.406 | 0.245 | ||
Wine | 0.172 | 0.349 | 0.437 | 0.301 | ||
Variance explained (%) | 9.054 | 5.127 | 4.070 | 8.407 | 4.866 | 4.193 |
Men | Women | |||||
---|---|---|---|---|---|---|
ALDH2 rs671 (G/G) | ALDH2 rs671 (G/A or A/A) | p Value | ALDH2 rs671 (G/G) | ALDH2 rs671 (G/A or A/A) | p Value | |
Number of Subjects | 371 (55%) | 306 G/A: 254 (37%), A/A: 52 (8%) | 520 (56%) | 415 G/A: 355 (38%), A/A: 60 (6%) | ||
Age (years) | 72 (68–77) | 73 (69–77) | 0.503 | 73 (69–78) | 72 (68–77) | 0.111 |
BMI (kg/m2) | 23.5 (21.9–25.2) | 23.2 (21.6–25.1) | 0.282 | 22.0 (20.1–24.1) | 22.0 (19.9–24.2) | 0.849 |
Physical activity (MET h/week) | 5.5 (0.0–21.4) | 8.9 (0.0–24.1) | 0.093 | 5.3 (0.0–13.9) | 4.8 (0.0–13.2) | 0.426 |
Education (years) | 16 (12–16) | 16 (13–16) | 0.123 | 12 (12–14) | 12 (12–14) | 0.332 |
Brinkman index | 320.0 (0.0–760.0) | 445.0 (0.8–888.8) | 0.009 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.631 |
Smoking history (n/%) | 263 (71%) | 230 (75%) | 0.213 | 92 (18%) | 70 (17%) | 0.741 |
Systolic BP (mmHg) | 137.0 (126.0–149.0) | 133.0 (124.0–144.3) | 0.005 | 135.0 (123.0–148.0) | 136.0 (126.0–148.0) | 0.484 |
Diastolic BP (mmHg) | 86.0 (80.0–93.0) | 85.0 (80.0–91.0) | 0.033 | 82.0 (76.0–89.0) | 83.0 (76.0–90.0) | 0.652 |
Fasting plasma glucose (mg/dL) | 100.0 (93.0–111.0) | 98.0 (92.0–107.0) | 0.047 | 95.0 (90.0–103.0) | 94.0 (88.0–100.0) | 0.004 |
HbA1c (%) | 5.7 (5.4–6.1) | 5.8 (5.5–6.1) | 0.141 | 5.7 (5.5–6.0) | 5.7 (5.5–6.0) | 0.652 |
Triglycerides (mg/dL) | 88.0 (67.0–124.0) | 93.5 (68.0–126.0) | 0.692 | 80.0 (62.0–110.0) | 85.0 (64.0–116.0) | 0.064 |
HDL-C (mg/dL) | 58.0 (49.0–68.0) | 56.0 (47.0–66.0) | 0.011 | 67.5 (58.0–79.0) | 66.0 (57.0–77.0) | 0.042 |
LDL-C (mg/dL) | 109.0 (88.0–128.0) | 117.0 (96.8–140.0) | <0.001 | 124.0 (104.0–143.8) | 128.0 (108.0–150.0) | 0.036 |
AST (IU/L) | 22 (19–27) | 21 (18–25) | 0.003 | 22 (19–25) | 22 (19–25) | 0.549 |
ALT (IU/L) | 18 (14–24) | 17 (14–21) | 0.019 | 16 (13–21) | 16 (13–20) | 0.609 |
γ-GTP (IU/L) | 30 (20–47) | 24 (18–37) | <0.001 | 19 (15–28) | 18 (14–24) | 0.005 |
Men | Women | |||||
---|---|---|---|---|---|---|
ALDH2 rs671 (G/G) | ALDH2 rs671 (G/A or A/A) | p Value | ALDH2 rs671 (G/G) | ALDH2 rs671 (G/A or A/A) | p Value | |
Number of Subjects | 371 (55%) | 306 G/A:254 (37%), A/A: 52 (8%) | 520 (56%) | 415 G/A: 355 (38%), A/A: 60 (6%) | ||
DP1 score | −0.16 (−0.74 to 0.48) | 0.10 (−0.60 to 0.81) | <0.001 | −0.13 (−0.69 to 0.55) | −0.04 (−0.69 to 0.56) | 0.652 |
DP2 score | 0.25 ± 0.93 | −0.31 ± 1.00 | <0.001 | 0.04 (−0.45 to 0.72) | −0.32 (−0.77 to 0.15) | <0.001 |
DP3 score | 0.19 ± 0.99 | −0.24 ± 0.96 | <0.001 | 0.09 ± 0.99 | −0.11 ± 1.00 | 0.004 |
Total energy intake (kcal) | 2087 (1722–2538) | 2012 (1635–2422) | 0.176 | 1771 (1470–2144) | 1798 (1469–2153) | 0.686 |
Protein intake (% energy) | 15.4 (13.5–17.2) | 15.6 (13.7–17.9) | 0.069 | 17.7 (15.5–19.8) | 17.5 (15.6–19.9) | 0.844 |
Fat intake (% energy) | 25.8 (21.9–29.7) | 27.8 (24.0–31.0) | <0.001 | 29.1 ± 5.4 | 29.9 ± 5.6 | 0.031 |
Carbohydrate intake (% energy) | 46.3 (40.5–53.0) | 52.3 (46.2–56.9) | <0.001 | 49.2 ± 7.8 | 51.3 ± 7.5 | <0.001 |
Grain energy (% energy) | 30.1 (24.2–38.1) | 33.7 (26.3–41.5) | <0.001 | 28.3 (21.5–35.3) | 28.3 (23.1–35.6) | 0.148 |
Animal protein (% energy) | 59.0 ± 9.3 | 57.5 ± 9.8 | 0.037 | 61.7 (55.2–67.1) | 60.4 (53.4–66.2) | 0.035 |
SFA (g/1000 kcal) | 7.67 (6.29–8.83) | 8.28 (6.96–9.73) | <0.001 | 8.79 ± 2.04 | 9.08 ± 2.05 | 0.032 |
MUFA (g/1000 kcal) | 10.02 (8.53–11.82) | 10.82 (9.28–12.40) | <0.001 | 11.35 ± 2.41 | 11.67 ± 2.55 | 0.052 |
Cholesterol (mg/1000 kcal) | 204 (159–254) | 211 (158–270) | 0.268 | 249 (186–296) | 244 (192–295) | 0.870 |
n-6 PUFA (g/1000 kcal) | 5.41 (4.59–6.46) | 5.72 (4.86–6.68) | 0.025 | 5.94 ± 1.33 | 6.13 ± 1.37 | 0.034 |
n-3 PUFA (g/1000 kcal) | 1.53 (1.21–1.81) | 1.50 (1.22–1.84) | 0.923 | 1.66 (1.41–2.05) | 1.68 (1.4–2.05) | 0.991 |
Total dietary fiber (g/1000 kcal) | 6.5 (5.3–7.8) | 7.2 (5.9–8.7) | <0.001 | 8.4 (6.9–9.9) | 8.4 (7.2–10.0) | 0.184 |
Salt (g/1000 kcal) | 6.1 (5.4–6.8) | 6.3 (5.5–7.1) | 0.011 | 6.5 (5.7–7.5) | 6.5 (5.6–7.4) | 0.579 |
Sugar (sucrose) (g/1000 kcal) | 5.2 (3.2–8.0) | 7.4 (4.4–10.5) | <0.001 | 6.8 (4.3–10.0) | 8.1 (4.7–11.3) | 0.002 |
Alcohol (g/1000 kcal) | 12.2 (4.4–22.9) | 0.5 (0.0–7.2) | <0.001 | 0.6 (0.0–6.2) | 0.0 (0.0–0.1) | <0.001 |
Alcohol (g) | 24.7 (8.8–49.6) | 0.9 (0.0–14.7) | <0.001 | 1.1 (0.0–10.4) | 0.0 (0.0–0.2) | <0.001 |
Grains (g/1000 kcal) | 171.5 (134.1–220.5) | 187.4 (147.0–233.2) | 0.003 | 155.5 (114.9–198.2) | 159.6 (125.5–198.0) | 0.266 |
Potatoes (g/1000 kcal) | 15.1 (8.2–30.3) | 17.0 (7.6–33.4) | 0.325 | 25.1 (12.0–41.2) | 25.8 (12.2–44.4) | 0.634 |
Sugars and sweeteners (g/1000 kcal) | 2.1 (1.2–3.3) | 2.5 (1.5–4.3) | <0.001 | 2.8 (1.7–4.2) | 2.7 (1.7–4.2) | 0.539 |
Beans (g/1000 kcal) | 31.0 (18.8–50.2) | 30.4 (16.9–48.9) | 0.412 | 39.3 (24.3–58.1) | 40.0 (23.3–60.1) | 0.970 |
Green and yellow vegetables (g/1000 kcal) | 55.4 (32.6–82.7) | 65.0 (41.7–94.8) | 0.004 | 77.6 (55.3–112.8) | 79.6 (57.1–109.2) | 0.471 |
Other vegetables (g/1000 kcal) | 80.7 (57.1–112.4) | 90.5 (62.4–122.6) | 0.076 | 119.1 (88.9–154.5) | 119.0 (88.5–156.9) | 0.958 |
Fruits (g/1000 kcal) | 55.0 (32.4–89.9) | 73.7 (39.3–119.3) | <0.001 | 85.1 (51.4–123.4) | 92.4 (55.5–135.2) | 0.050 |
Fish and shellfish (g/1000 kcal) | 44.5 (33.0–63.5) | 41.5 (27.8–62.0) | 0.086 | 52.5 (36.4–75.0) | 50.7 (34.6–72.7) | 0.423 |
Meats (g/1000 kcal) | 34.1 (25.7–45.9) | 36.8 (25.8–48.0) | 0.347 | 41.3 (28.7–54.7) | 39.4 (28.4–54.2) | 0.390 |
Eggs (g/1000 kcal) | 17.9 (10.5–30.5) | 18.6 (9.7–32.2) | 0.824 | 23.7 (12.6–33.9) | 22.6 (12.8–33.4) | 0.993 |
Dairy products (g/1000 kcal) | 81.7 (45.3–111.0) | 86.2 (45.0–123.6) | 0.183 | 93.2 (58.7–129.9) | 92.8 (64.5–131.6) | 0.850 |
Fats and oils (g/1000 kcal) | 5.5 (3.9–7.0) | 5.3 (4.1–7.0) | 0.822 | 5.2 (3.7–6.7) | 5.4 (3.8–7.2) | 0.079 |
Confectioneries (g/1000 kcal) | 14.9 (7.2–29.0) | 23.0 (12.3–35.6) | <0.001 | 24.4 (12.0–37.5) | 27.0 (14.4–44.3) | 0.021 |
Beverages (g/1000 kcal) | 420.7(316.5–553.9) | 371.0 (266.8–506.1) | <0.001 | 389.4 (276.3–513.4) | 375.8 (262.4–511.6) | 0.384 |
Seasonings (g/1000 kcal) | 125.3 (90.0–169.6) | 127.4 (96.6–168.7) | 0.228 | 106.5 (75.2–152.4) | 106.8 (79.2–148.7) | 0.733 |
Dependent Variable | Independent Variable | B | Std. Error | β | p |
---|---|---|---|---|---|
DP1 | Age (years) | 0.031 | 0.007 | 0.163 | <0.001 |
Model 1 | BMI (kg/m2) | 0.013 | 0.014 | 0.035 | 0.354 |
(R2 = 0.067) | Physical activity (MET h/week) | 0.009 | 0.002 | 0.163 | <0.001 |
Education (years) | 0.039 | 0.015 | 0.098 | 0.011 | |
Smoking history (n/%) | −0.132 | 0.084 | −0.059 | 0.116 | |
ALDH2 rs671 (G/G or G/A and A/A) | 0.219 | 0.075 | 0.109 | 0.004 | |
DP1 | Age (years) | 0.024 | 0.007 | 0.129 | <0.001 |
Model 2 | BMI (kg/m2) | 0.007 | 0.013 | 0.019 | 0.600 |
(R2 = 0.167) | Physical activity (MET h/week) | 0.009 | 0.002 | 0.156 | <0.001 |
Education (years) | 0.043 | 0.015 | 0.106 | 0.003 | |
Smoking history (n/%) | −0.020 | 0.080 | −0.009 | 0.807 | |
ALDH2 rs671 (G/G or G/A and A/A) | −0.054 | 0.077 | −0.027 | 0.483 | |
Alcohol (g/day) | −0.027 | 0.003 | −0.349 | <0.001 | |
DP2 | Age (years) | 0.000 | 0.007 | 0.000 | 0.990 |
Model 1 | BMI (kg/m2) | 0.004 | 0.013 | 0.012 | 0.754 |
(R2 = 0.089) | Physical activity (MET h/week) | 0.002 | 0.002 | 0.038 | 0.309 |
Education (years) | −0.048 | 0.015 | −0.120 | 0.002 | |
Smoking history (n/%) | 0.135 | 0.083 | 0.060 | 0.103 | |
ALDH2 rs671 (G/G or G/A and A/A) | −0.555 | 0.074 | −0.276 | <0.001 | |
DP2 | Age (years) | 0.009 | 0.006 | 0.046 | 0.174 |
Model 2 | BMI (kg/m2) | 0.012 | 0.012 | 0.034 | 0.310 |
(R2 = 0.275) | Physical activity (MET h/week) | 0.003 | 0.002 | 0.047 | 0.151 |
Education (years) | −0.053 | 0.014 | −0.131 | <0.001 | |
Smoking history (n/%) | −0.018 | 0.075 | −0.008 | 0.814 | |
ALDH2 rs671 (G/G or G/A and A/A) | −0.184 | 0.072 | −0.092 | 0.011 | |
Alcohol (g/day) | 0.037 | 0.003 | 0.475 | <0.001 | |
DP3 | Age (years) | −0.024 | 0.007 | −0.129 | <0.001 |
Model 1 | BMI (kg/m2) | −0.007 | 0.013 | −0.019 | 0.610 |
(R2 = 0.091) | Physical activity (MET h/week) | 0.002 | 0.002 | 0.031 | 0.400 |
Education (years) | 0.063 | 0.015 | 0.157 | <0.001 | |
Smoking history (n/%) | 0.102 | 0.083 | 0.045 | 0.220 | |
ALDH2 rs671 (G/G or G/A and A/A) | −0.454 | 0.074 | −0.226 | <0.001 | |
DP3 | Age (years) | −0.015 | 0.006 | −0.080 | 0.015 |
Model 2 | BMI (kg/m2) | 0.002 | 0.012 | 0.004 | 0.897 |
(R2 = 0.296) | Physical activity (MET h/week) | 0.002 | 0.002 | 0.041 | 0.203 |
Education (years) | 0.059 | 0.013 | 0.146 | <0.001 | |
Smoking history (n/%) | −0.059 | 0.074 | −0.026 | 0.425 | |
ALDH2 rs671 (G/G or G/A and A/A) | −0.065 | 0.071 | −0.032 | 0.361 | |
Alcohol (g/day) | 0.039 | 0.003 | 0.499 | <0.001 |
Dependent Variable | Independent Variable | B | Std. Error | β | p |
---|---|---|---|---|---|
DP1 | Age (years) | 0.016 | 0.006 | 0.087 | 0.012 |
Model 1 | BMI (kg/m2) | −0.012 | 0.010 | −0.037 | 0.264 |
(R2 = 0.024) | Physical activity (MET h/week) | 0.005 | 0.003 | 0.059 | 0.073 |
Education (years) | 0.057 | 0.016 | 0.124 | <0.001 | |
Smoking history (n/%) | −0.210 | 0.086 | −0.080 | 0.015 | |
ALDH2 rs671 (G/G or G/A and A/A) | 0.015 | 0.065 | 0.007 | 0.818 | |
DP1 | Age (years) | 0.014 | 0.006 | 0.077 | 0.026 |
Model 2 | BMI (kg/m2) | −0.011 | 0.010 | −0.035 | 0.277 |
(R2 = 0.042) | Physical activity (MET h/week) | 0.005 | 0.003 | 0.064 | 0.046 |
Education (years) | 0.055 | 0.016 | 0.121 | <0.001 | |
Smoking history (n/%) | −0.132 | 0.087 | −0.050 | 0.131 | |
ALDH2 rs671 (G/G or G/A and A/A) | −0.076 | 0.068 | −0.038 | 0.264 | |
Alcohol (g/day) | −0.022 | 0.005 | −0.150 | <0.001 | |
DP2 | Age (years) | 0.005 | 0.006 | 0.028 | 0.403 |
Model 1 | BMI (kg/m2) | 0.013 | 0.010 | 0.042 | 0.185 |
(R2 = 0.093) | Physical activity (MET h/week) | −0.001 | 0.002 | −0.018 | 0.576 |
Education (years) | −0.052 | 0.015 | −0.113 | <0.001 | |
Smoking history (n/%) | 0.384 | 0.083 | 0.145 | <0.001 | |
ALDH2 rs671 (G/G or G/A and A/A) | −0.475 | 0.063 | −0.236 | <0.001 | |
DP2 | Age (years) | 0.014 | 0.004 | 0.079 | <0.001 |
Model 2 | BMI (kg/m2) | 0.011 | 0.007 | 0.035 | 0.102 |
(R2 = 0.575) | Physical activity (MET h/week) | −0.004 | 0.002 | −0.047 | 0.028 |
Education (years) | −0.044 | 0.010 | −0.097 | <0.001 | |
Smoking history (n/%) | −0.007 | 0.058 | −0.003 | 0.907 | |
ALDH2 rs671 (G/G or G/A and A/A) | −0.022 | 0.045 | −0.011 | 0.630 | |
Alcohol (g/day) | 0.111 | 0.003 | 0.746 | <0.001 | |
DP3 | Age (years) | −0.026 | 0.006 | −0.142 | <0.001 |
Model 1 | BMI (kg/m2) | 0.012 | 0.010 | 0.037 | 0.251 |
(R2 = 0.068) | Physical activity (MET h/week) | 0.004 | 0.003 | 0.052 | 0.102 |
Education (years) | 0.051 | 0.015 | 0.111 | <0.001 | |
Smoking history (n/%) | 0.333 | 0.084 | 0.126 | <0.001 | |
ALDH2 rs671 (G/G or G/A and A/A) | −0.215 | 0.064 | −0.107 | <0.001 | |
DP3 | Age (years) | −0.021 | 0.006 | −0.114 | <0.001 |
Model 2 | BMI (kg/m2) | 0.010 | 0.009 | 0.033 | 0.260 |
(R2 = 0.212) | Physical activity (MET h/week) | 0.003 | 0.002 | 0.036 | 0.222 |
Education (years) | 0.055 | 0.014 | 0.120 | <0.001 | |
Smoking history (n/%) | 0.119 | 0.079 | 0.045 | 0.133 | |
ALDH2 rs671 (G/G or G/A and A/A) | 0.033 | 0.062 | 0.017 | 0.588 | |
Alcohol (g/day) | 0.061 | 0.005 | 0.408 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugimoto, M.; Tabata, H.; Kaga, H.; Someya, Y.; Kakehi, S.; Abudurezake, A.; Naito, H.; Ito, N.; Shi, H.; Otsuka, H.; et al. Association of ALDH2 Genotypes and Alcohol Intake with Dietary Patterns: The Bunkyo Health Study. Nutrients 2022, 14, 4830. https://doi.org/10.3390/nu14224830
Sugimoto M, Tabata H, Kaga H, Someya Y, Kakehi S, Abudurezake A, Naito H, Ito N, Shi H, Otsuka H, et al. Association of ALDH2 Genotypes and Alcohol Intake with Dietary Patterns: The Bunkyo Health Study. Nutrients. 2022; 14(22):4830. https://doi.org/10.3390/nu14224830
Chicago/Turabian StyleSugimoto, Mari, Hiroki Tabata, Hideyoshi Kaga, Yuki Someya, Saori Kakehi, Abulaiti Abudurezake, Hitoshi Naito, Naoaki Ito, Huicong Shi, Hikaru Otsuka, and et al. 2022. "Association of ALDH2 Genotypes and Alcohol Intake with Dietary Patterns: The Bunkyo Health Study" Nutrients 14, no. 22: 4830. https://doi.org/10.3390/nu14224830