Nutritional Practices and Body Composition of South African National-Level Spinal Cord-Injured Endurance Hand Cyclists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Dietary Intake
2.3. Height and Weight
2.4. Skinfold Thickness
2.5. Bone Mineral Density
2.6. Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Bone Mineral Density
3.3. Dietary Intake
3.4. Nutritional Intake in Relation to Training
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tokyo 2020 Paralympic Games Top Moments from the Opening Ceremony of the Tokyo 2020 Paralympic Games. Available online: https://olympics.com/tokyo-2020/en/paralympics/news/top-moments-from-the-opening-ceremony-of-the-tokyo-2020-paralympic-games (accessed on 30 September 2021).
- Burke, L.M.; Castell, L.M.; Casa, D.J.; Close, G.L.; Costa, R.J.S.; Desbrow, B.; Halson, S.L.; Lis, D.M.; Melin, A.K.; Peeling, P.; et al. International Association of Athletics Federations Consensus Statement 2019: Nutrition for Athletics. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flueck, J.L. Nutritional Considerations for Para-Cycling Athletes: A Narrative Review. Sports 2021, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Van Rensburg, D.C.J.; Schwellnus, M.; Derman, W.; Webborn, N. Illness Among Paralympic Athletes: Epidemiology, Risk Markers, and Preventative Strategies. Phys. Med. Rehabil. Clin. N. Am. 2018, 29, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Rupp, R.; Biering-Sørensen, F.; Burns, S.P.; Graves, D.E.; Guest, J.; Jones, L.; Read, M.S.; Rodriguez, G.M.; Schuld, C.; Tansey, K.E.; et al. International Standards for Neurological Classification of Spinal Cord Injury: Revised 2019. Top. Spinal Cord Inj. Rehabil. 2021, 27, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.; Fedullo, A.L.; Bernardi, E.; Munzi, D.; Peluso, I.; Myers, J.; Lista, F.R.; Sciarra, T. Diet in neurogenic bowel management: A viewpoint on spinal cord injury. World J. Gastroenterol. 2020, 26, 2479–2497. [Google Scholar] [CrossRef] [PubMed]
- Pritchett, R.C.; Al-Nawaiseh, A.M.; Pritchett, K.K.; Nethery, V.; Bishop, P.A.; Green, J.M. Sweat gland density and response during high-intensity exercise in athletes with spinal cord injuries. Biol. Sport 2015, 32, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Fynne, L.; Worsøe, J.; Gregersen, T.; Schlageter, V.; Laurberg, S.; Krogh, K. Gastric and small intestinal dysfunction in spinal cord injury patients. Acta Neurol. Scand. 2012, 125, 123–128. [Google Scholar] [CrossRef]
- Scaramella, J.; Kirihennedige, N.; Broad, E. Key Nutritional Strategies to Optimize Performance in Para Athletes. Phys. Med. Rehabil. Clin. N. Am. 2018, 29, 283–298. [Google Scholar] [CrossRef]
- Ruettimann, B.; Perret, C.; Parnell, J.A.; Flueck, J.L. Carbohydrate Considerations for Athletes with a Spinal Cord Injury. Nutrients 2021, 13, 2177. [Google Scholar] [CrossRef]
- Flueck, J.L.; Parnell, J.A. Protein Considerations for Athletes with a Spinal Cord Injury. Front. Nutr. 2021, 8, 652441. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sport. Nutr. 2018, 15, 38. [Google Scholar]
- Arribalzaga, S.; Viribay, A.; Calleja-González, J.; Fernández-Lázaro, D.; Castañeda-Babarro, A.; Mielgo-Ayuso, J. Relationship of Carbohydrate Intake during a Single-Stage One-Day Ultra-Trail Race with Fatigue Outcomes and Gastrointestinal Problems: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5737. [Google Scholar] [CrossRef] [PubMed]
- Walsh, N.P. Recommendations to maintain immune health in athletes. Eur. J. Sport Sci. 2018, 18, 820–831. [Google Scholar] [CrossRef] [Green Version]
- Witard, O.C.; Garthe, I.; Phillips, S.M. Dietary Protein for Training Adaptation and Body Composition Manipulation in Track and Field Athletes. Int. J. Sport. Nutr. Exerc. Metab. 2019, 29, 165–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sport. Exerc. 2016, 48, 543–568. [Google Scholar]
- Grams, L.; Garrido, G.; Villacieros, J.; Ferro, A. Marginal Micronutrient Intake in High-Performance Male Wheelchair Basketball Players: A Dietary Evaluation and the Effects of Nutritional Advice. PLoS ONE 2016, 11, e0157931. [Google Scholar] [CrossRef] [Green Version]
- Haakonssen, E.C.; Ross, M.L.; Knight, E.J.; Cato, L.E.; Nana, A.; Wluka, A.E.; Cicuttini, F.M.; Wang, B.H.; Jenkins, D.G.; Burke, L.M. The effects of a calcium-rich pre-exercise meal on biomarkers of calcium homeostasis in competitive female cyclists: A randomised crossover trial. PLoS ONE 2015, 10, e0123302. [Google Scholar] [CrossRef] [Green Version]
- Gorgey, A.S.; Dolbow, D.R.; Dolbow, J.D.; Khalil, R.K.; Castillo, C.; Gater, D.R. Effects of spinal cord injury on body composition and metabolic profile—Part I. J. Spinal Cord Med. 2014, 37, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Madden, R.F.; Shearer, J.; Parnell, J.A. Evaluation of Dietary Intakes and Supplement Use in Paralympic Athletes. Nutrients 2017, 9, 1266. [Google Scholar] [CrossRef] [Green Version]
- Pritchett, K.; DiFolco, A.; Glasgow, S.; Pritchett, R.; Williams, K.; Stellingwerff, T.; Roney, P.; Scaroni, S.; Broad, E. Risk of Low Energy Availability in National and International Level Paralympic Athletes: An Exploratory Investigation. Nutrients 2021, 13, 979. [Google Scholar]
- Wax, B.; Brown, S.P.; Webb, H.E.; Kavazis, A.N. Effects of carbohydrate supplementation on force output and time to exhaustion during static leg contractions superimposed with electromyostimulation. J. Strength Cond. Res. 2012, 26, 1717–1723. [Google Scholar] [CrossRef]
- Wentzel-Viljoen, E.; Laubscher, R.; Kruger, A. Using different approaches to assess the reproducibility of a culturally sensitive quantified food frequency questionnaire. S. Afr. J. Clin. Nutr. 2011, 24, 143–148. [Google Scholar] [CrossRef]
- MacIntyre, U.; Kruger, H.; Venter, C.; Vorster, H. Dietary intakes of an African population in different stages of transition in the North West Province, South Africa: The THUSA study. Nutr. Res. 2002, 22, 239–256. [Google Scholar] [CrossRef]
- SAFOODS. SAMRC Food Quantities Manual for South Africa, 3rd ed.; South African Medical Research Council: Cape Town, South Africa, 2018. [Google Scholar]
- Evans, E.M.; Rowe, D.A.; Misic, M.M.; Prior, B.M.; Arngrímsson, S.A. Skinfold prediction equation for athletes developed using a four-component model. Med. Sci. Sport. Exerc. 2005, 37, 2006–2011. [Google Scholar] [CrossRef] [PubMed]
- Mojtahedi, M.C.; Valentine, R.J.; Evans, E.M. Body composition assessment in athletes with spinal cord injury: Comparison of field methods with dual-energy X-ray absorptiometry. Spinal Cord 2009, 47, 698–704. [Google Scholar] [CrossRef] [PubMed]
- International Society of Clinical Densitometry. 2019 ISCD Official Position Adult 2019. Available online: https://iscd.org/learn/official-positions/adult-positions/ (accessed on 10 October 2021).
- Food and Nutrition Board, Institute of Medicine, National Academies. Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Vitamins. Available online: https://www.ncbi.nlm.nih.gov/books/NBK56068/table/summarytables.t2/?report=objectonly (accessed on 8 September 2021).
- Flueck, J.L.; Mettler, S.; Perret, C. Influence of caffeine and sodium citrate ingestion on 1500-m exercise performance in elite wheelchair athletes: A pilot study. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.; Costa de Silva, A.A.; Faria, F.R.; Santos, A.O.; Ramos, C.D.; Gorla, J.I. Segmental Body Composition in Athletes with Spinal Cord Injury: A Pilot Study. Apunt. Educ. Fósica Y Deportes 2021, 146, 24–31. [Google Scholar] [CrossRef]
- Slater, G. Assessing body composition of athletes. In Sports Nutrition for Paralympic Athletes; Broad, E., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 189–216. [Google Scholar]
- Cavedon, V.; Sandri, M.; Peluso, I.; Zancanaro, C.; Milanese, C. Body composition and bone mineral density in athletes with a physical impairment. PeerJ 2021, 9, e11296. [Google Scholar] [CrossRef]
- Maggioni, M.; Bertoli, S.; Margonato, V.; Merati, G.; Veicsteinas, A.; Testolin, G. Body composition assessment in spinal cord injury subjects. Acta Diabetol. 2003, 40 (Suppl. 1), S183–S186. [Google Scholar] [CrossRef]
- Lips, P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr. Rev. 2001, 22, 477–501. [Google Scholar] [CrossRef]
- Islamoglu, A.H.; Kenger, E.B. Nutrition Considerations for Athletes with Physical Disabilities. Curr. Sport. Med. Rep. 2019, 18, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Eskici, G.; Ersoy, G. An evaluation of wheelchair basketball players’ nutritional status and nutritional knowledge levels. J. Sport. Med. Phys. Fit. 2016, 56, 259–268. [Google Scholar]
- Son, H.; Kim, H. Influence of Living Arrangements and Eating Behavior on the Risk of Metabolic Syndrome: A National Cross-Sectional Study in South Korea. Int. J. Environ. Res. Public Health 2019, 16, 919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, R.E.; Scrooby, B.; Havemann-Nel, L. Physiological and Nutrition-Related Challenges as Perceived by Spinal Cord-Injured Endurance Hand Cyclists; Department of Human Nutrition and Dietetics, Sefako Makgatho Health Sciences University; Pretoria 0208; Gauteng, South Africa, 2022; manuscript in preparation. [Google Scholar]
- Breslow, R.A.; Bergstrom, N. Nutritional prediction of pressure ulcers. J. Am. Diet. Assoc. 1994, 94, P1301–P1304. [Google Scholar] [CrossRef]
- Ormsbee, M.J.; Bach, C.W.; Baur, D.A. Pre-exercise nutrition: The role of macronutrients, modified starches and supplements on metabolism and endurance performance. Nutrients 2014, 6, 1782–1808. [Google Scholar] [CrossRef] [Green Version]
- Ivy, J.L.; Katz, A.L.; Cutler, C.L.; Sherman, W.M.; Coyle, E.F. Muscle glycogen synthesis after exercise: Effect of time of carbohydrate ingestion. J. Appl. Physiol. 1988, 64, 1480–1485. [Google Scholar] [CrossRef] [Green Version]
- Mosler, S.; Braun, H.; Carlsohn, A.; Großhauser, M.; König, D.; Lampen, A.; Nieß, A.; Oberritter, H.; Schäbethal, K.; Schek, A.; et al. Position of the Working Group Sports Nutrition of the German Nutrition Society (DGE): Fluid Replacement in Sports/Position der Arbeitsgruppe Sporternährung der Deutschen Gesellschaft für Ernährung (DGE): Flüssigkeitsmanagement im Sport. Ger. J. Sport. Med. Dtsch. Z. Fur Sportmed. 2020, 71, 178–183. [Google Scholar] [CrossRef]
- McDermott, B.P.; Anderson, S.A.; Armstrong, L.E.; Casa, D.J.; Cheuvront, S.N.; Cooper, L.; Kenney, W.L.; O’Connor, F.G.; Roberts, W.O. National Athletic Trainers’ Association Position Statement: Fluid Replacement for the Physically Active. J. Athl. Train. 2017, 52, 877–895. [Google Scholar] [CrossRef] [Green Version]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sport. Exerc. 2007, 39, 377–390. [Google Scholar]
- Flueck, J.; Perret, C. Supplement use in swiss wheelchair athletes. Schweiz. Z. Fur Sportmed. Und Sport. 2017, 65, 22–27. [Google Scholar]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sport. Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.A.; Zello, G.A.; Bandy, B.; Ko, J.; Bertrand, L.; Chilibeck, P.D. Dietary Supplementation for Para-Athletes: A Systematic Review. Nutrients 2021, 13, 2016. [Google Scholar] [CrossRef] [PubMed]
- Larson-Meyer, E. Calcium and vitamin D. In Sports Nutrition; Maughan, R., Ed.; International Olympic Committee: Chichester, UK, 2014; pp. 242–262. [Google Scholar]
- Henríquez-Sánchez, P.; Sánchez-Villegas, A.; Doreste-Alonso, J.; Ortiz-Andrellucchi, A.; Pfrimer, K.; Serra-Majem, L. Dietary assessment methods for micronutrient intake: A systematic review on vitamins. Br. J. Nutr. 2009, 102, S10–S37. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [Green Version]
- Larson-Meyer, D.E. Nutrition Assessment of the Athlete. Curr. Sport. Med. Rep. 2019, 18, 105–108. [Google Scholar] [CrossRef] [PubMed]
- SAFOODS. Frequently Asked Questions. Available online: https://safoods.mrc.ac.za/faq.html (accessed on 22 March 2022).
- Pineau, J.C.; Frey, A. Comparison of skinfold thickness models with DEXA: Impact of visceral adipose tissue. J. Sport. Med. Phys. Fit. 2016, 56, 541–545. [Google Scholar]
- Hume, P.; Marfell-Jones, M. The importance of accurate site location for skinfold measurement. J. Sport. Sci. 2008, 26, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Males and Females (n = 12) Combined. Mean ± Standard Deviation (Range) | Males (n = 10) Mean ± Standard Deviation (Range) | Females (n = 2) Individual Values |
---|---|---|---|
Age (years) | 44.0 ± 9.3 (29.0–54.0) | 45.0 ± 9.2 (29.0–54.0) | 31.0; 48.0 |
Mean time since injury (years) | 20.3 ± 10.2 (5–36) | 20.8 ± 9.4 (5–36) | 17.5 ± 17.7 (5–30) |
Self-reported weight (kg) | 72.5 ± 9.0 (55.0–81.0) | 72.7 ± 6.1 (62.0–81.0) | 55.0; 88.0 |
Supine height (m) | 1.79 ± 0.07 (1.69–1.92) | 1.81 ± 0.06 (1.71–1.92) | 1.69; 1.69 |
BMI (kg/m2) | 22.9 ± 3.8 (17.9–30.8) | 22.3 ± 3.1 (17.9–26.8) | 19.3; 30.8 |
Sum of three skinfolds (mm) * | 60.9 ± 18.2 (37.9–100.8) | 59.3 ± 12.8 (39.3–78.5) | 37.9; 100.8 |
Body fat percentage ** | 18.4 ± 5.1 (12.3–31.9) | 17.1 ± 3.1 (12.3–22.0) | 18.3; 31.9 |
Training programme | Males and Females (n = 9) combined. Mean ± standard deviation (range) | Males (n = 8) Mean ± standard deviation (range) | Females (n = 1) |
Mean number of training sessions/week | 4.6 ± 1.4 (2–6) | 4.4 ± 1.4 (2–6) | 6 |
Mean training duration per session (minutes) | 95.7 ± 34.1 (60–179) | 98.3 ± 35.5 (60–179) | 75 |
Sub-Sample Characteristics | ||||
---|---|---|---|---|
Age | Sex | Level of Injury | Years Since Injury | |
Participant A | 54 | Male | T5 | 18 |
Participant B | 48 | Female | C6 | 30 |
Participant C | 51 | Male | T12 | 30 |
Participant D | 39 | Male | C6-C7 | 20 |
Bone mineral density scan results | ||||
Bone mineral density (g/cm2) | T-score/Z-score | T-score/Z-score cut-off * | Interpretation * | |
Left hip | ||||
Participant A | 0.671 | T-score = −2.7 | T-score: ≤ −2.5 | Osteoporosis |
Participant B | 0.654 | Z-score = −2.0 | Z-score: ≤ −2.0 | Below the expected range for age |
Participant C | - | - | - | - |
Participant D | 0.719 | Z-score = −1.9 | Z-score: > −2.0 | Just within the expected range for age |
Right hip | ||||
Participant A | 0.630 | T-score = −3.0 | T-score: ≤ −2.5 | Osteoporosis |
Participant B | 0.600 | Z-score = −2.4 | Z-score: ≤ −2.0 | Below the expected range for age |
Participant C | 0.679 | T-score = −2.3 | T-score: −1 to −2.5 | Osteopenia |
Participant D | 0.566 | Z-score = −2.9 | Z-score: < −2.0 | Below the expected range for age |
Lumbar spine | ||||
Participant A (L2-L4) | 1.185 | T-score = −0.1 | T-score: −1.0 to +1.0 | Normal |
Participant B (L1-L4) | 1.102 | Z-score = 1.1 | Z-score: > −2.0 | Within the expected range for age |
Participant C (L3-L4 | 1.050 | T-score = −0.7 | T-score: −1.0 to +1.0 | Normal |
Participant D (L1-L4) | 1.225 | Z-score = 1.3 | Z-score: > −2.0 | Within the expected range for age |
Nutrient | Males (n = 10) | Females (n = 2) | ||
---|---|---|---|---|
Median (p25, p75) | Recommended Intake | Median (p25, p75) | Recommended Intake | |
Energy (kJ) | 9679 (8 791–14 643) | 7 531–10 042 * | 6473 (5750–7196) | 7531–10 042 * |
Energy (kJ/kg BW) | 135.8 (123.8–182.6) | 105–146 * | 100.6 (78.8–122.3) | 105–146 * |
Carbohydrate % TE | 40.6 (38.5–44.7) | 55–65 * | 42.5 (38.9–46.0) | 55–65 * |
Carbohydrate (g/kg BW) | 3.8 (2.9–4.1) | 6–10** | 2.4 (2.0–2.7) | 6–10 ** |
Protein intake % TE | 17.2 (15.9–18.7) | 13.5 (12.8–14.1) | ||
Protein (g/kg BW) | 1.3 (1.1–2.1) | 1.2–1.7 *** | 0.8 (0.6–0.9) | 1.2–1.7 *** |
Fat intake % TE | 39.7 (37.4–41.6) | 30 * | 42.1 (39.0–45.3) | 30 * |
Fat (g/kg BW) | 1.3 (1.1–2.2) | 1.2 (0.9–1.5) |
Nutrient | Males (n = 10) | Females (n = 2) | |||
---|---|---|---|---|---|
Median (p25, p75) | %RDA/AI | Median (p25, p75) | %RDA/AI | ||
Vitamin A RE (mcg) | 1810.5 (956.5–2166.4) | 201.7 | 2886.9 (2188.2–3585.6) | 412.4 | |
Folic acid (mcg) | 282.8 (209.6–402.1) | 83.6 | 256.7 (225.9–287.5) | 64.2 | |
Niacin (mg) | 30.5 (22.5–40.5) | 222.5 | 16.2 (15.1–17.2) | 115.6 | |
Pantothenic acid (mg) | 8.6 (7.5–10.9) | 195.9 | 4.7 (3.6–5.8) | 94.4 | |
Riboflavin (mg) | 1.8 (1.4–2.7) | 219.0 | 0.9 (0.9–1.0) | 82.6 | |
Thiamin (mg) | 1.5 (1.1–2.2) | 152.8 | 0.7 (0.7–0.7) | 64.5 | |
Vitamin B6 (mg) | 2.8 (2.1–5.4) | 251.9 | 1.4 (1.3–1.4) | 90.4 | |
Vitamin B12 (mcg) | 4.8 (3.2–10.7) | 199.6 | 6.3 (4.5–8.1) | 261.3 | |
Vitamin C (mg) | 140.4 (65.6–203.3) | 201.7 | 102.3 (98.1–106.4) | 136.4 | |
Vitamin D (mcg) | 2.4 (2.0–5.8) | 69.0 | 5.1 (4.0–6.3) | 102.5 | |
Vitamin E (mg) | 15.1 (14.0–19.4) | 116.6 | 18.1 (14.4–21.8) | 120.7 | |
Calcium (mg) | 890.2 (623.0–934.4) | 73.2 | 423.1 (404.9–442.3) | 42.3 | |
Iron (mg) | 15.7 (13.7–22.8) | 232.7 | 10.7 (10.5–11.0) | 59.6 | |
Magnesium (mg) | 360.3 (284.9–548.6) | 115.6 | 282.1 (276.5–287.7) | 88.2 | |
Phosphorus (mg) | 1321.0 (1181.2–2329.9) | 244.0 | 828.3 (808.5–848.2) | 118.3 | |
Potassium (mg) | 3528.7 (2862.2–4784.8) | 89.1 | 2569.1 (2542.3–2595.9) | 54.7 | |
Selenium (mcg) | 68.0 (48.7–99.9) | 173.0 | 18.95 (13.0–24.9) | 34.5 | |
Zinc (mg) | 12.0 (10.0–24.5) | 153.5 | 6.7 (6.3–7.1) | 84.1 |
Macronutrient | Before Training Median (p25, p75) | During Training Median (p25, p75) | After Training Median (p25, p75) |
---|---|---|---|
Carbohydrate (g) | 43.9 (36.2–97.4) | 72.0 (55.8–79.5) | 49.7 (34.4–96.8) |
Carbohydrate (g/kg BW) | 0.7 (0.5–1.3) (recommended: 1–4) * | 1.10 (0.8–1.14) | 0.8 (0.5–1.3) (recommended: 1–1.2) *** |
Carbohydrate (g/hour) during training | - | 45.6 (35.3–50.3) (recommended: 30–60) ** | - |
Fat (g) | 15.0 (5.0–20.1) | 1.2 (0–6.0) | 36.6 (21.3–52.8) |
Fat (g/kg BW) | 0.2 (0.1–0.3) | 0.02 (0–0.08) | 0.6 (0.3–0.7) |
Protein (g) | 17.7 (8.0–26.4) | 2.6 (0–9.0) | 53.5 (29.8–69.0) |
Protein (g/kg BW) | 0.2 (0.1–0.3) | 0.03 (0–0.13) | 0.7 (0.5–1.0) (recommended: 0.3–0.5) * |
Supplement Use | Before Training: n (%) | During Training: n (%) | After Training: n (%) |
---|---|---|---|
Prevalence of supplement use | 4 (40%) | 10 (100%) | 6 (60%) |
Type of supplements used | |||
Sports drinks | 1 (25%) | 8 (80%) | 2 (33%) |
Sports bars | 2 (50%) | 4 (40%) | 1 (17%) |
Energy gels | - | 3 (30%) | - |
Protein shakes | 2 (50%) | - | - |
Protein powders | - | - | 4 (67%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordon, R.E.; Potgieter, S.; Havemann-Nel, L. Nutritional Practices and Body Composition of South African National-Level Spinal Cord-Injured Endurance Hand Cyclists. Nutrients 2022, 14, 4949. https://doi.org/10.3390/nu14234949
Gordon RE, Potgieter S, Havemann-Nel L. Nutritional Practices and Body Composition of South African National-Level Spinal Cord-Injured Endurance Hand Cyclists. Nutrients. 2022; 14(23):4949. https://doi.org/10.3390/nu14234949
Chicago/Turabian StyleGordon, Reno Eron, Sunita Potgieter, and Lize Havemann-Nel. 2022. "Nutritional Practices and Body Composition of South African National-Level Spinal Cord-Injured Endurance Hand Cyclists" Nutrients 14, no. 23: 4949. https://doi.org/10.3390/nu14234949
APA StyleGordon, R. E., Potgieter, S., & Havemann-Nel, L. (2022). Nutritional Practices and Body Composition of South African National-Level Spinal Cord-Injured Endurance Hand Cyclists. Nutrients, 14(23), 4949. https://doi.org/10.3390/nu14234949