Blackcurrants Reduce the Risk of Postmenopausal Osteoporosis: A Pilot Double-Blind, Randomized, Placebo-Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. Dietary Intake and Physical Activity Assessment
2.4. Bone Density Assessments
2.5. Blood Collection and Pretreatments
2.6. Measurements of Serum Biomarkers of Bone Metabolism
2.7. Statistical Analysis
3. Results
3.1. Participants and Intervention Follow-Up
3.2. Baseline Characteristics and Intervention Compliance
3.3. Bone Mineral Density
3.4. Blood Biomarkers of Bone Metabolism and Immune-Inflammatory Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Raisz, L.G. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J. Clin. Investig. 2005, 115, 3318–3325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf-Maier, K.; Cooper, R.S.; Banegas, J.R.; Giampaoli, S.; Hense, H.-W.; Joffres, M.; Kastarinen, M.; Poulter, N.; Primatesta, P.; Rodríguez-Artalejo, F.; et al. Hypertension Prevalence and Blood Pressure Levels in 6 European Countries, Canada, and the United States. JAMA 2003, 289, 2363–2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarantino, U.; Cariati, I.; Greggi, C.; Iundusi, R.; Gasbarra, E.; Iolascon, G.; Kurth, A.; Akesson, K.E.; Bouxsein, M.; Tranquilli Leali, P.; et al. Gaps and alternative surgical and non-surgical approaches in the bone fragility management: An updated review. Osteoporos. Int. 2022, 33, 2467–2478. [Google Scholar] [CrossRef] [PubMed]
- Pisani, P.; Renna, M.D.; Conversano, F.; Casciaro, E.; Di Paola, M.; Quarta, E.; Muratore, M.; Casciaro, S. Major osteoporotic fragility fractures: Risk factor updates and societal impact. World J. Orthop. 2016, 7, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Nieves, J.W.; Komar, L.; Cosman, F.; Lindsay, R. Calcium potentiates the effect of estrogen and calcitonin on bone mass: Review and analysis. Am. J. Clin. Nutr. 1998, 67, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.; Howard, B.V.; Johnson, K.C.; et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA 2002, 288, 321–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, S.R.; San Martin, J.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 2009, 361, 756–765. [Google Scholar] [CrossRef] [Green Version]
- Foidart, J.M.; Desreux, J.; Pintiaux, A.; Gompel, A. Hormone therapy and breast cancer risk. Climacteric 2007, 10 (Suppl. 2), 54–61. [Google Scholar] [CrossRef]
- McClung, M.R.; Lewiecki, E.M.; Cohen, S.B.; Bolognese, M.A.; Woodson, G.C.; Moffett, A.H.; Peacock, M.; Miller, P.D.; Lederman, S.N.; Chesnut, C.H.; et al. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 2006, 354, 821–831. [Google Scholar] [CrossRef] [PubMed]
- McGreevy, C.; Williams, D. Safety of drugs used in the treatment of osteoporosis. Ther. Adv. Drug Saf. 2011, 2, 159–172. [Google Scholar] [CrossRef]
- Papapetrou, P.D. Bisphosphonate-associated adverse events. Hormones 2009, 8, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Strampel, W.; Emkey, R.; Civitelli, R. Safety considerations with bisphosphonates for the treatment of osteoporosis. Drug Saf. 2007, 30, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Thummuri, D.; Jeengar, M.K.; Shrivastava, S.; Nemani, H.; Ramavat, R.N.; Chaudhari, P.; Naidu, V.G. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Pharmacol. Res. 2015, 99, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Putnam, S.E.; Scutt, A.M.; Bicknell, K.; Priestley, C.M.; Williamson, E.M. Natural products as alternative treatments for metabolic bone disorders and for maintenance of bone health. Phytother. Res. 2007, 21, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Kreijkamp-Kaspers, S.; Kok, L.; Grobbee, D.E.; de Haan, E.H.; Aleman, A.; Lampe, J.W.; van der Schouw, Y.T. Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women: A randomized controlled trial. JAMA 2004, 292, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Kenny, A.M.; Mangano, K.M.; Abourizk, R.H.; Bruno, R.S.; Anamani, D.E.; Kleppinger, A.; Walsh, S.J.; Prestwood, K.M.; Kerstetter, J.E. Soy proteins and isoflavones affect bone mineral density in older women: A randomized controlled trial. Am. J. Clin. Nutr. 2009, 90, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Arjmandi, B.H.; Khalil, D.A.; Lucas, E.A.; Georgis, A.; Stoecker, B.J.; Hardin, C.; Payton, M.E.; Wild, R.A. Dried plums improve indices of bone formation in postmenopausal women. J. Womens Health Gend. Based Med. 2002, 11, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hooshmand, S.; Chai, S.C.; Saadat, R.L.; Payton, M.E.; Brummel-Smith, K.; Arjmandi, B.H. Comparative effects of dried plum and dried apple on bone in postmenopausal women. Br. J. Nutr. 2011, 106, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Ho, S.C.; Lam, S.S.; Ho, S.S.; Woo, J.L. Soy isoflavones have a favorable effect on bone loss in Chinese postmenopausal women with lower bone mass: A double-blind, randomized, controlled trial. J. Clin. Endocrinol. Metab. 2003, 88, 4740–4747. [Google Scholar] [CrossRef]
- Horiuchi, T.; Onouchi, T.; Takahashi, M.; Ito, H.; Orimo, H. Effect of soy protein on bone metabolism in postmenopausal Japanese women. Osteoporos. Int. 2000, 11, 721–724. [Google Scholar] [CrossRef]
- Leveille, S.G.; LaCroix, A.Z.; Koepsell, T.D.; Beresford, S.A.; Van Belle, G.; Buchner, D.M. Dietary vitamin C and bone mineral density in postmenopausal women in Washington State, USA. J. Epidemiol. Community Health 1997, 51, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morabito, N.; Crisafulli, A.; Vergara, C.; Gaudio, A.; Lasco, A.; Frisina, N.; D’Anna, R.; Corrado, F.; Pizzoleo, M.A.; Cincotta, M.; et al. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: A randomized double-blind placebo-controlled study. J. Bone Min. Res. 2002, 17, 1904–1912. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.J.; Barrett-Connor, E.L.; Schneider, D.L. Vitamin C supplement use and bone mineral density in postmenopausal women. J. Bone Min. Res. 2001, 16, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Somekawa, Y.; Chiguchi, M.; Ishibashi, T.; Aso, T. Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet. Gynecol. 2001, 97, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Luz Villa, M.; Marcus, R.; Kelsey, J.L. Associations of vitamin C, calcium and protein with bone mass in postmenopausal Mexican American women. Osteoporos. Int. 1997, 7, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shu, X.O.; Li, H.; Yang, G.; Li, Q.; Gao, Y.T.; Zheng, W. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch. Intern. Med. 2005, 165, 1890–1895. [Google Scholar] [CrossRef] [Green Version]
- Hooshmand, S.; Kern, M.; Metti, D.; Shamloufard, P.; Chai, S.C.; Johnson, S.A.; Payton, M.E.; Arjmandi, B.H. The effect of two doses of dried plum on bone density and bone biomarkers in osteopenic postmenopausal women: A randomized, controlled trial. Osteoporos. Int. 2016, 27, 2271–2279. [Google Scholar] [CrossRef]
- Lee, S.G.; Vance, T.M.; Nam, T.G.; Kim, D.O.; Koo, S.I.; Chun, O.K. Contribution of Anthocyanin Composition to Total Antioxidant Capacity of Berries. Plant. Foods Hum. Nutr. 2015, 70, 427–432. [Google Scholar] [CrossRef]
- Zheng, X.; Mun, S.; Lee, S.G.; Vance, T.M.; Hubert, P.; Koo, S.I.; Lee, S.K.; Chun, O.K. Anthocyanin-Rich Blackcurrant Extract Attenuates Ovariectomy-Induced Bone Loss in Mice. J. Med. Food 2016, 19, 390–397. [Google Scholar] [CrossRef]
- Lee, S.G.; Kim, B.; Yang, Y.; Pham, T.X.; Park, Y.K.; Manatou, J.; Koo, S.I.; Chun, O.K.; Lee, J.Y. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-kappaB independent of NRF2-mediated mechanism. J. Nutr. Biochem. 2014, 25, 404–411. [Google Scholar] [CrossRef]
- Sakaki, J.; Melough, M.; Lee, S.G.; Kalinowski, J.; Koo, S.I.; Lee, S.K.; Chun, O.K. Blackcurrant Supplementation Improves Trabecular Bone Mass in Young but Not Aged Mice. Nutrients 2018, 10, 1671. [Google Scholar] [CrossRef] [Green Version]
- Greendale, G.A.; Sowers, M.; Han, W.; Huang, M.H.; Finkelstein, J.S.; Crandall, C.J.; Lee, J.S.; Karlamangla, A.S. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: Results from the Study of Women’s Health Across the Nation (SWAN). J. Bone Min. Res. 2012, 27, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Sheu, A.; Diamond, T. Bone mineral density: Testing for osteoporosis. Aust. Prescr. 2016, 39, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Mao, W.; Huang, G.; Chen, H.; Xu, L.; Qin, S.; Li, A. Research Progress of the Role of Anthocyanins on Bone Regeneration. Front. Pharmacol. 2021, 12, 773660. [Google Scholar] [CrossRef]
- Devareddy, L.; Hooshmand, S.; Collins, J.K.; Lucas, E.A.; Chai, S.C.; Arjmandi, B.H. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. J. Nutr. Biochem. 2008, 19, 694–699. [Google Scholar] [CrossRef]
- Bu, S.Y.; Hunt, T.S.; Smith, B.J. Dried plum polyphenols attenuate the detrimental effects of TNF-alpha on osteoblast function coincident with up-regulation of Runx2, Osterix and IGF-I. J. Nutr. Biochem. 2009, 20, 35–44. [Google Scholar] [CrossRef]
- Bu, S.Y.; Lerner, M.; Stoecker, B.J.; Boldrin, E.; Brackett, D.J.; Lucas, E.A.; Smith, B.J. Dried plum polyphenols inhibit osteoclastogenesis by downregulating NFATc1 and inflammatory mediators. Calcif. Tissue Int. 2008, 82, 475–488. [Google Scholar] [CrossRef]
- Franklin, M.; Bu, S.Y.; Lerner, M.R.; Lancaster, E.A.; Bellmer, D.; Marlow, D.; Lightfoot, S.A.; Arjmandi, B.H.; Brackett, D.J.; Lucas, E.A.; et al. Dried plum prevents bone loss in a male osteoporosis model via IGF-I and the RANK pathway. Bone 2006, 39, 1331–1342. [Google Scholar] [CrossRef]
- De Souza, M.J.; Strock, N.C.A.; Williams, N.I.; Lee, H.; Koltun, K.J.; Rogers, C.; Ferruzzi, M.G.; Nakatsu, C.H.; Weaver, C. Prunes preserve hip bone mineral density in a 12-month randomized controlled trial in postmenopausal women: The Prune Study. Am. J. Clin. Nutr. 2022, 116, 897–910. [Google Scholar] [CrossRef]
- Gaffen, D.; Tunstall, A.; Fajardo, J.; Ramachandran, P.; Kern, M.; Hooshmand, S. Effects of Dried Plum on Bone Biomarkers in Men (P01-028-19). Curr. Dev. Nutr. 2019, 3, nzz028-P01. [Google Scholar] [CrossRef]
- George, K.S.; Munoz, J.; Ormsbee, L.T.; Akhavan, N.S.; Foley, E.M.; Siebert, S.C.; Kim, J.S.; Hickner, R.C.; Arjmandi, B.H. The Short-Term Effect of Prunes in Improving Bone in Men. Nutrients 2022, 14, 276. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.H.; Zhong, Z.M.; Li, X.D.; Wu, Q.; Zheng, S.; Zhou, J.; Ye, W.B.; Xie, F.; Wu, X.H.; Huang, Z.P.; et al. Advanced oxidation protein products accelerate bone deterioration in aged rats. Exp. Gerontol. 2014, 50, 64–71. [Google Scholar] [CrossRef] [PubMed]
Control | Low BC | High BC | p-Value b | |
---|---|---|---|---|
(Placebo, n = 13) | (392 mg/Day, n = 16) | (784 mg/Day, n = 11) | (ANOVA/Chi-Sq or Fisher) | |
Age (year) | 54.4 ± 3.8 | 53.7 ± 4.5 | 50.9 ± 4.2 | 0.128 |
Weight (kg) | 73.2 ± 17.7 | 72.4 ± 15.2 | 71.4 ± 14.6 | 0.965 |
Height (cm) | 164.9 ± 4.9 | 164.0 ± 6.5 | 166.1 ± 6.1 | 0.658 |
BMI (kg/m2) | 27.0 ± 7.2 | 26.8 ± 4.9 | 25.8 ± 4.9 | 0.866 |
Waist circumference (cm) | 85.5 ± 15.6 | 85.2 ± 11.6 | 81.8 ± 12.0 | 0.747 |
Physical activity (MET-min/day) | 457.5 ± 350.5 | 472.7 ± 353.2 | 386.4 ± 309.4 | 0.814 |
Systolic blood pressure (mm Hg) | 115.7 ± 14.1 | 118.8 ± 15.0 | 109.9 ± 13.5 | 0.318 |
Diastolic blood pressure (mm Hg) | 80.5 ± 7.1 | 81.0 ± 7.5 | 76.5 ± 7.4 | 0.274 |
Race/ethnicity (n, %) | 0.373 | |||
Caucasian | 13, 100% | 13, 81.3% | 11, 100% | |
Hispanic | 0 | 1, 6.3% | 0 | |
Asian-American/Pacific Islander | 0 | 1, 6.3% | 0 | |
African American | 0 | 0 | 0 | |
Native American | 0 | 0 | 0 | |
Other | 0 | 0 | 0 | |
Marital status (n, %) | 0.104 | |||
Single | 0 | 0 | 2, 18.2% | |
Married | 10, 76.9% | 15, 93.8% | 7, 63.6% | |
Divorced | 3, 23.1% | 1, 6.3% | 1, 9.1% | |
Widowed | 0 | 0 | 1, 9.1% | |
Other | 0 | 0 | 0 | |
Annual household income | 0.583 | |||
<$20,000 | 0 | 0 | 0 | |
$20,000–$45,000 | 1, 7.7% | 0 | 0 | |
$45,000–$65,000 | 2, 15.4% | 0 | 0 | |
$65,000–$90,000 | 2, 15.4% | 1, 6.3% | 2, 18.2% | |
$90,000–$125,000 | 3, 23.1% | 6, 37.5% | 4, 36.4% | |
>$125,000 | 5, 38.5% | 9, 56.3% | 5, 45.5% | |
Highest educational attainment (n, %) | 0.398 | |||
Attended high school | 0 | 0 | 0 | |
Graduated high school | 1, 7.7% | 1, 6.3 | 1, 9.1% | |
Attended college | 3, 23.1% | 1, 6.3% | 1, 9.1% | |
Undergraduate degree | 6, 46.1% | 5, 31.3% | 2, 18.2% | |
Graduate degree | 3, 23.1% | 9, 56.3% | 7, 63.6% | |
Menopause (n, %) | 8, 61.5% | 13, 81.3% | 7, 63.6% | 0.058 |
Energy intake (kcal/day) | 1539.0 ± 481.4 | 1638.8 ± 550.1 | 1460.7 ± 375.4 | 0.640 |
Serum creatinine (mg/dL) c | 0.84 ± 0.10 | 0.82 ± 0.12 | 0.80 ± 0.15 | 0.663 |
Bone mineral density, BMD | ||||
Whole body BMD (g/cm2) | 1.17 ± 0.13 | 1.14 ± 0.13 | 1.15 ± 0.08 | 0.738 |
Head BMD (g/cm2) | 2.30 ± 0.32 | 2.30 ± 0.35 | 2.40 ± 0.22 | 0.644 |
Arms BMD (g/cm2) | 0.88 ± 0.12 | 0.85 ± 0.13 | 0.80 ± 0.12 | 0.265 |
Legs BMD (g/cm2) | 1.20 ± 0.15 | 1.13 ± 0.11 | 1.14 ± 0.06 | 0.265 |
Trunk BMD (g/cm2) | 0.95 ± 0.12 | 0.93 ± 0.13 | 0.96 ± 0.08 | 0.863 |
Ribs BMD (g/cm2) | 0.75 ± 0.09 | 0.76 ± 0.11 | 0.78 ± 0.14 | 0.847 |
Spine BMD (g/cm2) | 1.11 ± 0.16 | 1.10 ± 0.21 | 1.12 ± 0.11 | 0.947 |
Pelvis BMD (g/cm2) | 1.04 ± 0.13 | 1.00 ± 0.13 | 1.03 ± 0.13 | 0.712 |
Biomarkers of bone metabolism | ||||
P1NP (ng/mL) | 32.53 ± 20.93 | 26.55 ± 10.43 | 21.21 ± 10.09 | 0.184 |
BALP (U/L) | 17.52 ± 6.18 | 19.43 ± 8.77 | 17.57 ± 7.30 | 0.753 |
OC (ng/mL) | 10.05 ± 3.96 | 9.07 ± 3.66 | 9.04 ± 2.00 | 0.693 |
CTX1 (ng/mL) | 1.11 ± 0.59 | 0.96 ± 1.02 | 1.13 ± 0.85 | 0.842 |
Sclerostin (ng/mL) | 0.72 ± 0.22 | 0.70 ± 0.22 | 0.75 ± 0.33 | 0.863 |
Control | Low BC | High BC | p-Value * | ||
---|---|---|---|---|---|
(Placebo, n = 13) | (392 mg/Day, n = 16) | (784 mg/Day, n = 11) | |||
Energy (kcal) | baseline | 1539.0 ± 481.4 | 1638.8 ± 550.1 | 1460.7 ± 375.4 | 0.201 |
3 months | 1538.5 ± 532.2 | 1658.7 ± 481.1 | 1509.2 ± 449.6 | ||
6 months | 1678.5 ± 553.2 | 1554.6 ± 490.5 | 1728.9 ± 524.3 | ||
Fat (g) | baseline | 67.0 ± 31.0 | 66.7 ± 28.1 | 64.4 ± 29.7 | 0.468 |
3 months | 70.8 ± 34.0 | 67.9 ± 28.7 | 62.3 ± 25.7 | ||
6 months | 72.0 ± 32.4 | 65.6 ± 34.4 | 79.4 ± 47.3 | ||
Carbohydrate (g) | baseline | 171.9 ± 42.5 | 194.7 ± 64.7 | 154.7 ± 38.2 | 0.162 |
3 months | 162.6 ± 60.3 | 201.3 ± 63.5 | 169.3 ± 59.4 | ||
6 months | 183.7 ± 76.9 | 181.1 ± 49.3 | 183.3 ± 60.7 | ||
Fiber (g) | baseline | 17.6 ± 4.2 | 20.9 ± 8.3 | 18.8 ± 4.9 | 0.375 |
3 months | 16.8 ± 4.9 | 22.0 ± 7.7 | 22.4 ± 8.2 | ||
6 months | 16.7 ± 7.4 | 22.2 ± 8.4 | 22.9 ± 8.2 | ||
Protein (g) | baseline | 60.3 ± 14.4 | 66.3 ± 22.6 | 59.6 ± 16.2 | 0.421 |
3 months | 62.8 ± 24.7 | 68.3 ± 22.1 | 66.6 ± 19.3 | ||
6 months | 70.8 ± 16.3 | 64.6 ± 26.6 | 71.4 ± 18.1 | ||
Saturated fatty acids (g) | baseline | 26.5 ± 14.4 | 23.4 ± 13.0 | 21.4 ± 10.9 | 0.599 |
3 months | 27.2 ± 14.2 | 24.0 ± 12.2 | 20.6 ± 9.0 | ||
6 months | 29.1 ± 16.4 | 22.0 ± 12.7 | 25.3 ± 14.8 | ||
Trans-fatty acids (g) | baseline | 1.8 ± 1.4 | 1.7 ± 2.0 | 1.4 ± 0.7 | 0.913 |
3 months | 1.7 ± 1.3 | 1.7 ± 1.7 | 1.1 ± 0.6 | ||
6 months | 1.7 ± 1.4 | 1.4 ± 0.9 | 1.4 ± 0.9 | ||
Linoleic acids (g) | baseline | 9.2 ± 4.9 | 11.6 ± 6.6 | 12.6 ± 8.2 | 0.246 |
3 months | 10.8 ± 6.7 | 11.2 ± 4.8 | 12.4 ± 7.4 | ||
6 months | 9.7 ± 4.0 | 11.1 ± 6.0 | 17.8 ± 15.0 | ||
Alpha-linolenic acids (g) | baseline | 0.9 ± 0.4 | 1.4 ± 1.0 | 1.6 ± 1.0 | 0.245 |
3 months | 1.3 ± 0.7 | 1.1 ± 0.5 | 1.7 ± 1.3 | ||
6 months | 1.2 ± 0.5 | 1.1 ± 0.5 | 2.1 ± 1.9 | ||
Vitamin A (µg RAE) | baseline | 610.0 ± 255.8 | 790.8 ± 507.3 | 842.3 ± 349.8 | 0.585 |
3 months | 607.8 ± 158.0 | 860.1 ± 424.7 | 791.8 ± 654.5 | ||
6 months | 850.9 ± 493.9 | 1019.3 ± 805.2 | 734.4 ± 320.8 | ||
Vitamin C (mg) | baseline | 66.0 ± 40.3 | 86.7 ± 51.4 | 72.7 ± 40.7 | 0.788 |
3 months | 58.5 ± 34.3 | 78.0 ± 49.7 | 67.0 ± 42.7 | ||
6 months | 60.6 ± 47.6 | 74.5 ± 59.7 | 83.6 ± 35.8 | ||
Vitamin D (µg) | baseline | 3.4 ± 2.2 | 4.0 ± 3.1 | 3.4 ± 2.7 | 0.147 |
3 months | 3.7 ± 2.8 | 3.9 ± 2.6 | 2.9 ± 1.8 | ||
6 months | 6.0 ± 6.1 | 3.4 ± 2.9 | 5.8 ± 4.5 | ||
Vitamin E (mg α-tocopherol) | baseline | 8.4 ± 5.8 | 8.9 ± 4.2 | 8.9 ± 3.5 | 0.397 |
3 months | 6.9 ± 3.8 | 9.9 ± 5.7 | 8.0 ± 4.5 | ||
6 months | 7.1 ± 2.8 | 10.6 ± 10.1 | 10.9 ± 4.8 | ||
Vitamin K (µg) | baseline | 86.7 ± 52.9 | 224.0 ± 418.1 | 122.4 ± 57.7 | 0.751 |
3 months | 106.0 ± 81.6 | 174.9 ± 180.6 | 178.1 ± 123.0 | ||
6 months | 100.8 ± 89.5 | 191.2 ± 236.3 | 189.0 ± 129.4 | ||
Calcium (mg) | baseline | 630.1 ± 294.1 | 794.1 ± 355.3 | 684.0 ± 265.2 | 0.385 |
3 months | 696.2 ± 238.9 | 808.5 ± 290.7 | 736.3 ± 331.0 | ||
6 months | 738.5 ± 200.1 | 698.9 ± 291.6 | 713.3 ± 305.3 | ||
Iron (mg) | baseline | 10.8 ± 3.6 | 13.5 ± 4.9 | 11.7 ± 4.7 | 0.222 |
3 months | 10.8 ± 3.3 | 16.0 ± 6.4 | 13.7 ± 6.1 | ||
6 months | 11.7 ± 3.7 | 13.6 ± 4.7 | 14.8 ± 4.2 | ||
Magnesium (mg) | baseline | 256.5 ± 76.0 | 283.9 ± 110.5 | 256.7 ± 68.5 | 0.348 |
3 months | 232.3 ± 58.0 | 313.0 ± 115.5 | 314.5 ± 149.1 | ||
6 months | 261.6 ± 87.9 | 306.1 ± 142.1 | 320.2 ± 104.8 | ||
Phosphorus (mg) | baseline | 922.8 ± 243.9 | 1013.1 ± 334.6 | 925.0 ± 216.5 | 0.150 |
3 months | 957.1 ± 272.6 | 1126.6 ± 336.4 | 1128.7 ± 358.6 | ||
6 months | 1091.3 ± 218.2 | 1016.2 ± 359.2 | 1120.3 ± 351.6 |
Control | Low BC | High BC | |||
---|---|---|---|---|---|
(Placebo, n = 13) | (392 mg/Day, n = 16) | (784 mg/Day, n = 11) | p-Value * | ||
Weight (kg) | baseline | 73.2 ± 17.7 | 72.4 ± 15.2 | 71.4 ± 14.6 | 0.779 |
3 months | 74.1 ± 18.2 | 73.0 ± 15.6 | 72.1 ± 15.1 | ||
6 months | 73.9 ± 18.0 | 72.9 ± 15.4 | 71.2 ± 14.6 | ||
BMI (kg/m2) | baseline | 27.0 ± 7.2 | 26.8 ± 4.9 | 25.8 ± 4.9 | 0.746 |
3 months | 27.4 ± 7.5 | 27.0 ± 5.0 | 25.8 ± 5.0 | ||
6 months | 27.3 ± 7.5 | 27.0 ± 5.0 | 25.8 ± 4.9 | ||
WC (cm) | baseline | 85.5 ± 15.6 | 85.2 ± 11.6 | 81.8 ± 12.0 | 0.345 |
3 months | 86.1 ± 15.4 | 87.9 ± 11.8 | 83.4 ± 13.0 | ||
6 months | 86.6 ± 15.4 | 88.6 ± 12.9 | 83.5 ± 11.0 | ||
SBP (mmHg) | baseline | 115.7 ± 14.1 | 118.5 ± 15.0 | 109.9 ± 13.5 | 0.192 |
3 months | 115.6 ± 14.3 | 111.8 ± 14.3 | 113.3 ± 10.8 | ||
6 months | 115.2 ± 11.9 | 113.5 ± 13.7 | 112.6 ± 11.5 | ||
DBP (mmHg) | baseline | 80.5± 7.1 | 81.0 ± 7.5 | 76.5 ± 7.5 | 0.865 |
3 months | 79.9 ± 10.5 | 79.2 ± 9.9 | 77.6 ± 7.2 | ||
6 months | 79.6 ± 12.2 | 80.8 ± 9.7 | 76.8 ± 6.3 | ||
PA (MET-min/day) | baseline | 457.5 ± 350.5 | 472.7 ± 353.2 | 386.4 ± 309.4 | 0.157 |
3 months | 353.8 ± 278.1 | 552.8 ± 388.9 | 444.3 ± 464.3 | ||
6 months | 372.4 ± 306.7 | 647.2 ± 410.1 | 471.6 ± 325.9 |
BMD | Control | Low BC | High BC | ||||
---|---|---|---|---|---|---|---|
(g/cm2) | (Placebo, n = 13) | (392 mg/Day, n = 16) | (784 mg/Day, n = 11) | p-Value * | p-Value ** | p-Value *** | |
Whole-body BMD | baseline | 1.17 ± 0.13 | 1.14 ± 0.13 | 1.15 ± 0.08 | <0.05 | 0.214 | <0.05 |
6 months | 1.16 ± 0.13 | 1.14 ± 0.12 | 1.17 ± 0.08 | ||||
Head-BMD | baseline | 2.30 ± 0.32 | 2.30 ± 0.35 | 2.40 ± 0.22 | 0.965 | 0.889 | 0.886 |
6 months | 2.31 ± 0.32 | 2.29 ± 0.34 | 2.40 ± 0.23 | ||||
Arms-BMD | baseline | 0.88 ± 0.12 | 0.85 ± 0.13 | 0.80 ± 0.12 | 0.081 | 0.969 | 0.080 |
6 months | 0.87 ± 0.13 | 0.84 ± 0.13 | 0.86 ± 0.06 | ||||
Legs-BMD | baseline | 1.20 ± 0.15 | 1.13 ± 0.11 | 1.14 ± 0.06 | 0.355 | 0.276 | 0.225 |
6 months | 1.18 ± 0.13 | 1.13 ± 0.10 | 1.14 ± 0.08 | ||||
Trunk-BMD | baseline | 0.95 ± 0.12 | 0.93 ± 0.13 | 0.96 ± 0.08 | 0.241 | 0.289 | 0.065 |
6 months | 0.94 ± 0.12 | 0.94 ± 0.14 | 0.97 ± 0.09 | ||||
Ribs-BMD | baseline | 0.75 ± 0.09 | 0.76 ± 0.11 | 0.78 ± 0.14 | <0.05 | 0.389 | <0.05 |
6 months | 0.74 ± 0.07 | 0.76 ± 0.11 | 0.81 ± 0.14 | ||||
Spine-BMD | baseline | 1.11 ± 0.16 | 1.10 ± 0.21 | 1.12 ± 0.11 | 0.737 | 0.672 | 0.735 |
6 months | 1.11 ± 0.17 | 1.08 ± 0.22 | 1.12 ± 0.12 | ||||
Pelvis-BMD | baseline | 1.04 ± 0.13 | 1.00 ± 0.13 | 1.03 ± 0.13 | <0.05 | 0.137 | 0.922 |
6 months | 1.03 ± 0.12 | 1.02 ± 0.15 | 1.02 ± 0.12 |
Control | Low BC | High BC | |||||
---|---|---|---|---|---|---|---|
(Placebo, n = 13) | (392 mg/Day, n = 16) | (784 mg/Day, n = 11) | p-Value * | p-Value ** | p-Value *** | ||
Biomarkers of bone metabolism | |||||||
P1NP (ng/mL) | baseline | 32.53 ± 20.93 | 26.55 ± 10.43 | 21.21 ± 10.09 | <0.05 | 0.400 | <0.05 |
3 months | 27.19 ± 9.79 | 26.78 ± 10.82 | 25.86 ± 15.00 | ||||
6 months | 26.36 ± 17.71 | 25.99 ± 10.27 | 41.79 ± 39.47 | ||||
BALP (U/L) | baseline | 17.52 ± 6.18 | 19.43 ± 8.77 | 17.57 ± 7.30 | 0.679 | 0.256 | 0.533 |
3 months | 14.87 ± 5.30 | 18.42 ± 9.58 | 16.95 ± 7.14 | ||||
6 months | 14.81 ± 5.11 | 17.29 ± 8.59 | 16.11 ± 6.91 | ||||
OC (ng/mL) | baseline | 10.05 ± 3.96 | 9.07 ± 3.66 | 9.04 ± 2.00 | 0.269 | 0.375 | 0.109 |
3 months | 9.75 ± 3.69 | 9.35 ± 4.32 | 9.53 ± 2.30 | ||||
6 months | 8.84 ± 2.78 | 9.15 ± 3.81 | 9.57 ± 3.61 | ||||
CTX1 (ng/mL) | baseline | 1.11 ± 0.59 | 0.96 ± 1.02 | 1.13 ± 0.85 | 0.475 | 0.428 | 0.881 |
3 months | 1.26 ± 1.12 | 0.84 ± 0.68 | 0.77 ± 0.72 | ||||
6 months | 1.36 ± 1.14 | 0.93 ± 0.81 | 1.31 ± 1.56 | ||||
Sclerostin (ng/mL) | baseline | 0.72 ± 0.22 | 0.70 ± 0.22 | 0.75 ± 0.33 | 0.803 | 0.816 | 0.265 |
3 months | 0.69 ± 0.21 | 0.65 ± 0.17 | 0.69 ± 0.24 | ||||
6 months | 0.73 ± 0.19 | 0.64 ± 0.16 | 0.69 ± 0.28 | ||||
BALP/CTX1 | baseline | 23.52 ± 21.90 | 44.93 ± 45.25 | 32.32 ± 37.26 | 0.713 | 0.561 | 0.129 |
3 months | 20.96 ± 22.95 | 47.56 ± 60.49 | 39.66 ± 48.25 | ||||
6 months | 21.04 ± 22.21 | 52.39 ± 55.80 | 42.59 ± 61.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosal, B.M.; Sakaki, J.R.; Macdonald, Z.; Mahoney, K.; Kim, K.; Madore, M.; Thornton, S.; Tran, T.D.B.; Weinstock, G.; Lee, E.C.-H.; et al. Blackcurrants Reduce the Risk of Postmenopausal Osteoporosis: A Pilot Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Nutrients 2022, 14, 4971. https://doi.org/10.3390/nu14234971
Nosal BM, Sakaki JR, Macdonald Z, Mahoney K, Kim K, Madore M, Thornton S, Tran TDB, Weinstock G, Lee EC-H, et al. Blackcurrants Reduce the Risk of Postmenopausal Osteoporosis: A Pilot Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Nutrients. 2022; 14(23):4971. https://doi.org/10.3390/nu14234971
Chicago/Turabian StyleNosal, Briana M., Junichi R. Sakaki, Zachary Macdonald, Kyle Mahoney, Kijoon Kim, Matthew Madore, Staci Thornton, Thi Dong Binh Tran, George Weinstock, Elaine Choung-Hee Lee, and et al. 2022. "Blackcurrants Reduce the Risk of Postmenopausal Osteoporosis: A Pilot Double-Blind, Randomized, Placebo-Controlled Clinical Trial" Nutrients 14, no. 23: 4971. https://doi.org/10.3390/nu14234971
APA StyleNosal, B. M., Sakaki, J. R., Macdonald, Z., Mahoney, K., Kim, K., Madore, M., Thornton, S., Tran, T. D. B., Weinstock, G., Lee, E. C. -H., & Chun, O. K. (2022). Blackcurrants Reduce the Risk of Postmenopausal Osteoporosis: A Pilot Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Nutrients, 14(23), 4971. https://doi.org/10.3390/nu14234971