Relationship between Dietary Inflammatory Index and Postpartum Depression in Exclusively Breastfeeding Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approvals
2.2. Sampling
2.3. Study Subjects
2.3.1. Sample Size
2.3.2. Inclusion and Exclusion Criteria
2.4. Data Collection
Questionnaires
2.5. Statistical Analysis
2.5.1. Dietary Inflammatory Index Calculation
dietary ingredient or the global average per capita daily intake of nutrients)/the SD
of the global average per capita daily intake of this dietary ingredient or nutrient
2.5.2. Data Analysis
3. Results
3.1. General Information of the Participants
3.2. Dietary Inflammatory Index and Its Influencing Factors
3.3. Factors Related to PPD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Strategy for Infant and Young Child Feeding; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Shi, H.; Yang, Y.; Yin, X.; Li, J.; Fang, J.; Wang, X. Determinants of exclusive breastfeeding for the first six months in China: A cross-sectional study. Int. Breastfeed J. 2021, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Yang, Z.; Lai, J.; Yu, D.; Chang, S.; Pang, X.; Jiang, S.; Zhang, H.; Bi, Y.; Wang, J.; et al. Exclusive Breastfeeding Rate and Complementary Feeding Indicators in China: A National Representative Survey in 2013. Nutrients 2018, 10, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Nutrition Targets. 2025. 2012. Available online: https://www.who.int/maternal_child_adolescent/documents/9241562218/en/ (accessed on 25 September 2022).
- Cohen, L.S.; Wang, B.; Nonacs, R.; Viguera, A.C.; Lemon, E.L.; Freeman, M.P. Treatment of mood disorders during pregnancy and postpartum. Psychiatr. Clin. North Am. 2010, 33, 273–293. [Google Scholar] [CrossRef]
- Gaffney, K.F.; Kitsantas, P.; Brito, A.; Swamidoss, C.S.S. Postpartum Depression, Infant Feeding Practices, and Infant Weight Gain at Six Months of Age. J. Pediatr. Health Car. 2014, 28, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Dennis, C.L.; McQueen, K. The Relationship Between Infant-Feeding Outcomes and Postpartum Depression: A Qualitative Systematic Review. Pediatrics 2009, 123, E736–E751. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.S.; Lima, M.C.; Sequeira-de-Andrade, L.A.S.; Oliveira, J.S.; Monteiro, J.S.; Lima, N.M.S.; Santos, R.M.A.B.; Lira, P.I.C. Association between postpartum depression and the practice of exclusive breastfeeding in the first three months of life. J. Pediatr. 2017, 93, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Sha, T.; Gao, X.; Chen, C.; Li, L.; Cheng, G.; Wu, X.; Tian, Q.; Yang, F.; He, Q.; Yan, Y. A prospective study of maternal postnatal depressive symptoms with infant-feeding practices in a Chinese birth cohort. BMC Pregnancy Childbirth 2019, 19, 388. [Google Scholar] [CrossRef] [Green Version]
- Payne, J.L.; Maguire, J. Pathophysiological mechanisms implicated in postpartum depression. Front. Neuroendocr. 2019, 52, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Achtyes, E.; Keaton, S.A.; Smart, L.; Burmeister, A.R.; Heilman, P.L.; Krzyzanowski, S.; Nagalla, M.; Guillemin, G.J.; Escobar Galvis, M.L.; Lim, C.K.; et al. Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression. Brain Behav. Immun. 2020, 83, 239–247. [Google Scholar] [CrossRef]
- Corwin, E.J.; Pajer, K.; Paul, S.; Lowe, N.; Weber, M.; McCarthy, D.O. Bidirectional psychoneuroimmune interactions in the early postpartum period influence risk of postpartum depression. Brain Behav. Immun. 2015, 49, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Buglione-Corbett, R.; Deligiannidis, K.M.; Leung, K.; Zhang, N.; Lee, M.; Rosal, M.C.; Moore Simas, T.A. Expression of inflammatory markers in women with perinatal depressive symptoms. Arch. Womens Ment Health 2018, 21, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Lambert, M.; Gressier, F. Inflammatory Biomarkers and Postpartum Depression: A Systematic Review of Literature. Can. J. Psychiatry 2019, 64, 471–481. [Google Scholar] [CrossRef]
- Lim, G.; LaSorda, K.R.; Farrell, L.M.; McCarthy, A.M.; Facco, F.; Wasan, A.D. Obstetric pain correlates with postpartum depression symptoms: A pilot prospective observational study. BMC Pregnancy Childbirth 2020, 20, 240. [Google Scholar] [CrossRef] [Green Version]
- Corwin, E.J.; Arbour, M. Postpartum fatigue and evidence-based interventions. MCN Am. J. Matern. Child. Nurs. 2007, 32, 215–220. [Google Scholar] [CrossRef]
- Mehta, D.; Quast, C.; Fasching, P.A.; Seifert, A.; Voigt, F.; Beckmann, M.W.; Faschingbauer, F.; Burger, P.; Ekici, A.B.; Kornhuber, J.; et al. The 5-HTTLPR polymorphism modulates the influence on environmental stressors on peripartum depression symptoms. J. Affect. Disord. 2012, 136, 1192–1197. [Google Scholar] [CrossRef]
- Sanjuan, J.; Martin-Santos, R.; Garcia-Esteve, L.; Carot, J.M.; Guillamat, R.; Gutierrez-Zotes, A.; Gornemann, I.; Canellas, F.; Baca-Garcia, E.; Jover, M.; et al. Mood changes after delivery: Role of the serotonin transporter gene. Br. J. Psychiatry 2008, 193, 383–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doornbos, B.; Dijck-Brouwer, D.A.J.; Kema, I.P.; Tanke, M.A.C.; van Goor, S.A.; Muskiet, F.A.J.; Korf, J. The development of peripartum depressive symptoms is associated with gene polymorphisms of MAOA, 5-HTT and COMT. Prog. Neuro.-Psychoph. 2009, 33, 1250–1254. [Google Scholar] [CrossRef]
- Bouma, E.M.C.; Riese, H.; Doornbos, B.; Ormel, J.; Oldehinkel, A.J. Genetically based reduced MAOA and COMT functioning is associated with the cortisol stress response: A replication study. Mol. Psychiatr. 2012, 17, 119–121. [Google Scholar] [CrossRef] [Green Version]
- Costas, J.; Gratacos, M.; Escaramis, G.; Martin-Santos, R.; de Diego, Y.; Baca-Garcia, E.; Canellas, F.; Estivill, X.; Guillamat, R.; Guitart, M.; et al. Association study of 44 candidate genes with depressive and anxiety symptoms in post-partum women. J. Psychiatr. Res. 2010, 44, 717–724. [Google Scholar] [CrossRef]
- Giugliano, D.; Ceriello, A.; Esposito, K. The effects of diet on inflammation: Emphasis on the metabolic syndrome. J. Am. Coll. Cardiol. 2006, 48, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Roager, H.M.; Vogt, J.K.; Kristensen, M.; Hansen, L.B.S.; Ibrugger, S.; Maerkedahl, R.B.; Bahl, M.L.; Lind, M.V.; Nielsen, R.L.; Frokiaer, H.; et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: A randomised cross-over trial. Gut 2019, 68, 83–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shabbir, F.; Patel, A.; Mattison, C.; Bose, S.; Krishnamohan, R.; Sweeney, E.; Sandhu, S.; Nel, W.; Rais, A.; Sandhu, R.; et al. Effect of diet on serotonergic neurotransmission in depression. Neurochem. Int. 2013, 62, 324–329. [Google Scholar] [CrossRef]
- Dash, S.; Clarke, G.; Berk, M.; Jacka, F.N. The gut microbiome and diet in psychiatry: Focus on depression. Curr. Opin. Psychiatry 2015, 28, 1–6. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, J.S.; Hiles, S.; Bisquera, A.; Hure, A.J.; McEvoy, M.; Attia, J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am. J. Clin. Nutr. 2014, 99, 181–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godos, J.; Grosso, G.; Castellano, S.; Galvano, F.; Caraci, F.; Ferri, R. Association between diet and sleep quality: A systematic review. Sleep Med. Rev. 2021, 57, 101430. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.D.; Moazzami, K.; Wittbrodt, M.T.; Nye, J.A.; Lima, B.B.; Gillespie, C.F.; Rapaport, M.H.; Pearce, B.D.; Shah, A.J.; Vaccarino, V. Diet, Stress and Mental Health. Nutrients 2020, 12, 2428. [Google Scholar] [CrossRef]
- Nordman, M.; Matthiessen, J.; Biltoft-Jensen, A.; Ritz, C.; Hjorth, M.F. Weekly variation in diet and physical activity among 4-75-year-old Danes. Public Health Nutr. 2020, 23, 1350–1361. [Google Scholar] [CrossRef] [Green Version]
- Werneck, A.O.; Silva, D.R.; Malta, D.C.; Gomes, C.S.; Souza, P.R.B.; Azevedo, L.O.; Barros, M.B.A.; Szwarcwald, C.L. Associations of sedentary behaviours and incidence of unhealthy diet during the COVID-19 quarantine in Brazil. Public Health Nutr. 2021, 24, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Dumrongwongsiri, O.; Chongviriyaphan, N.; Chatvutinun, S.; Phoonlabdacha, P.; Sangcakul, A.; Siripinyanond, A.; Suthutvoravut, U. Dietary Intake and Milk Micronutrient Levels in Lactating Women with Full and Partial Breastfeeding. Matern Child Health J. 2021, 25, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Qin, R.; Lin, X.; Ding, Y.; Li, F.; Wang, Z. [Dietary status of lactating women from five cities of China in 2015–2016]. Wei Sheng Yan Jiu 2019, 48, 220–225. [Google Scholar] [PubMed]
- O’Connor, L.E.; Kim, J.E.; Clark, C.M.; Zhu, W.; Campbell, W.W. Effects of Total Red Meat Intake on Glycemic Control and Inflammatory Biomarkers: A Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2021, 12, 115–127. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I. Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Curr. Pharm. Des. 2016, 22, 6701–6715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Punder, K.; Pruimboom, L. The Dietary Intake of Wheat and other Cereal Grains and Their Role in Inflammation. Nutrients 2013, 5, 771–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Hebert, J.R.; Marcos, A.; Diaz, L.E.; Gomez, S.; Nova, E.; Michels, N.; Arouca, A.; Gonzalez-Gil, E.; Frederic, G.; et al. Association between dietary inflammatory index and inflammatory markers in the HELENA study. Mol. Nutr. Food Res. 2017, 61, 1600707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakya, P.R.; Melaku, Y.A.; Shivappa, N.; Hebert, J.R.; Adams, R.J.; Page, A.J.; Gill, T.K. Dietary inflammatory index (DII®) and the risk of depression symptoms in adults. Clin. Nutr. 2021, 40, 3631–3642. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arellano, A.; Martinez-Gonzalez, M.A.; Ramallal, R.; Salas-Salvado, J.; Hebert, J.R.; Corella, D.; Shivappa, N.; Forga, L.; Schroder, H.; Munoz-Bravo, C.; et al. Dietary inflammatory index and all-cause mortality in large cohorts: The SUN and PREDIMED studies. Clin. Nutr. 2019, 38, 1221–1231. [Google Scholar] [CrossRef]
- Jiang, C.; Yin, H.; Liu, A.; Liu, Q.; Ma, H.; Geng, Q. Dietary inflammatory index and depression risk in patients with chronic diseases and comorbidity. J. Affect. Disord. 2022, 301, 307–314. [Google Scholar] [CrossRef]
- Li, R.; Zhan, W.; Huang, X.; Zhang, Z.; Zhou, M.; Bao, W.; Huang, F.; Ma, Y. Association of Dietary Inflammatory Index (DII) and depression in the elderly over 55 years in Northern China: Analysis of data from a multicentre, cohort study. BMJ Open 2022, 12, e056019. [Google Scholar] [CrossRef]
- Myo, T.; Hong, S.A.; Thepthien, B.O.; Hongkrailert, N. Prevalence and Factors Associated with Postpartum Depression in Primary Healthcare Centres in Yangon, Myanmar. Malays J. Med. Sci. 2021, 28, 71–86. [Google Scholar] [CrossRef]
- Wang, S.S.; Lay, S.; Yu, H.N.; Shen, S.R. Dietary Guidelines for Chinese Residents (2016): Comments and comparisons. J. Zhejiang Univ. Sci. B 2016, 17, 649–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, Y.; Wang, Y.; Yin, L.; Chan, K.S.; Guo, X. Validation of the Mainland Chinese version of the Edinburgh Postnatal Depression Scale in Chengdu mothers. Int. J. Nurs. Stud. 2010, 47, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Zimet, G.D.; Powell, S.S.; Farley, G.K.; Werkman, S.; Berkoff, K.A. Psychometric characteristics of the Multidimensional Scale of Perceived Social Support. J. Pers. Assess. 1990, 55, 610–617. [Google Scholar] [CrossRef]
- Hebert, J.R.; Shivappa, N.; DWirth, M.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Chinese Nutrition Society. Dietary Guidelines for Chinese Residents Webpage. Available online: http://dg.cnsoc.org/article/04/hjgfxca3Ra69sKbvqDETbg.html (accessed on 15 October 2022).
- Bascom, E.M.; Napolitano, M.A. Breastfeeding Duration and Primary Reasons for Breastfeeding Cessation among Women with Postpartum Depressive Symptoms. J. Hum. Lact. 2016, 32, 282–291. [Google Scholar] [CrossRef]
- Ahn, S.; Corwin, E.J. The association between breastfeeding, the stress response, inflammation, and postpartum depression during the postpartum period: Prospective cohort study. Int. J. Nurs. Stud. 2015, 52, 1582–1590. [Google Scholar] [CrossRef] [Green Version]
- Shuman, C.J.; Peahl, A.F.; Pareddy, N.; Morgan, M.E.; Chiangong, J.; Veliz, P.T.; Dalton, V.K. Postpartum depression and associated risk factors during the COVID-19 pandemic. BMC Res. Notes. 2022, 15, 102. [Google Scholar] [CrossRef]
- Chen, C.M.; Kuo, S.F.; Chou, Y.H.; Chen, H.C. Postpartum Taiwanese women: Their postpartum depression, social support and health-promoting lifestyle profiles. J. Clin. Nurs. 2007, 16, 1550–1560. [Google Scholar] [CrossRef]
- Norhayati, M.N.; Hazlina, N.H.; Asrenee, A.R.; Emilin, W.M. Magnitude and risk factors for postpartum symptoms: A literature review. J. Affect. Disord. 2015, 175, 34–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, J.L.; Holden, J.M.; Sagovsky, R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br. J. Psychiatry 1987, 150, 782–786. [Google Scholar] [CrossRef] [Green Version]
- Liang, P.Q.; Wang, Y.D.; Shi, S.; Liu, Y.; Xiong, R.B. Prevalence and factors associated with postpartum depression during the COVID-19 pandemic among women in Guangzhou, China: A cross-sectional study. BMC Psychiatry 2020, 20, 557. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, W.; Xiong, J.; Zheng, X. Prevalence and Risk Factors Associated with Postpartum Depression during the COVID-19 Pandemic: A Literature Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 2219. [Google Scholar] [CrossRef] [PubMed]
- Tamminen, T. The impact of mother’s depression on her nursing experiences and attitudes during breastfeeding. Acta Paediatr. Scand. Suppl. 1988, 344, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.C.; Figueiredo, B. Breastfeeding and depression: A systematic review of the literature. J. Affect. Disord. 2015, 171, 142–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.; Rance, J.; Bennett, P. Understanding the relationship between breastfeeding and postnatal depression: The role of pain and physical difficulties. J. Adv. Nurs. 2016, 72, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Klainin, P.; Arthur, D.G. Postpartum depression in Asian cultures: A literature review. Int. J. Nurs. Stud. 2009, 46, 1355–1373. [Google Scholar] [CrossRef] [PubMed]
- Dennis, C.L.; McQueen, K. Does maternal postpartum depressive symptomatology influence infant feeding outcomes? Acta Paediatr. 2007, 96, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhu, X.; Zhang, M.; Li, Y.; Liu, W.; Huang, H.; Xu, Y. Association between dietary inflammatory index and bone density in lactating women at 6 months postpartum: A longitudinal study. BMC Public Health 2019, 19, 1076. [Google Scholar] [CrossRef]
- Shivappa, N.; Schoenaker, D.A.J.M.; Hebert, J.R.; Mishra, G.D. Association between inflammatory potential of diet and risk of depression in middle-aged women: The Australian Longitudinal Study on Women’s Health. Br. J. Nutr. 2016, 116, 1077–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.Q.; Petrini, M.; Maloni, J.A. “Doing the month”: Postpartum practices in Chinese women. Nurs. Health Sci. 2015, 17, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.H.; Chen, Q.; Tolhurst, R.J.; Garner, P. Traditional beliefs and practices in the postpartum period in Fujian Province, China: A qualitative study. BMC Pregnancy Childbirth 2007, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, G.; Tian, Y.; Yu, J.; Vinturache, A. Cultural postpartum practices of ‘doing the month’ in China. Perspect Public Health 2018, 138, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.M.; Nelson, E.A.; Leung, S.S.; Cheung, P.C.; Li, C.Y. Special postpartum dietary practices of Hong Kong Chinese women. Eur. J. Clin. Nutr. 2000, 54, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Leung, S.K.; Arthur, D.; Martinson, I.M. Perceived stress and support of the Chinese postpartum ritual “doing the month”. Health Care Women Int. 2005, 26, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.D.; Niu, L.; Vinturache, A.; Zhang, J.; Lu, M.; Gao, Y.; Pan, S.M.; Tian, Y.; Study, S.B.C. “Doing the month” and postpartum depression among Chinese women: A Shanghai prospective cohort study. Women Birth. 2020, 33, E151–E158. [Google Scholar] [CrossRef] [PubMed]
- Holroyd, E.; Lopez, V.; Chan, S.W.C. Negotiating “Doing the month”: An ethnographic study examining the postnatal practices of two generations of Chinese women. Nurs. Health Sci. 2011, 13, 47–52. [Google Scholar] [CrossRef]
- Huang, Z.; Li, N.; Hu, Y.M. Dietary patterns and their effects on postpartum weight retention of lactating women in south central China. Nutrition 2019, 67–68, 110555. [Google Scholar] [CrossRef]
- Shin, D.; Shivappa, N.; Hebert, J.R.; Lee, K.W. Examining Regional Differences of Dietary Inflammatory Index and Its Association with Depression and Depressive Symptoms in Korean Adults. Int. J. Environ. Res. Public Health 2020, 17, 3205. [Google Scholar] [CrossRef]
- Azarmanesh, D.; Bertone-Johnson, E.R.; Pearlman, J.; Liu, Z.H.; Carbone, E.T. The dietary inflammatory index is inversely associated with depression, which is minimally mediated by C-reactive protein. Nutr. Res. 2022, 97, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Tolkien, K.; Bradburn, S.; Murgatroyd, C. An anti-inflammatory diet as a potential intervention for depressive disorders: A systematic review and meta-analysis. Clin. Nutr. 2019, 38, 2045–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foong, S.C.; Tan, M.L.; Foong, W.C.; Ho, J.J.; Rahim, F.F. Comparing breastfeeding experiences between mothers spending the traditional Chinese confinement period in a confinement centre and those staying at home: A cohort study. Int. Breastfeed. J. 2021, 16, 4. [Google Scholar] [CrossRef]
- Qin, Y.T.; Chen, Y.; Zhang, Z.W.; Huang, S.M.; Jiao, C.Y.; Zhang, Z.Q.; Mao, L.M. Associations of dietary inflammatory potential with postpartum weight change and retention: Results from a cohort study. Obesity 2021, 29, 1689–1699. [Google Scholar] [CrossRef] [PubMed]
- Lara-Cinisomo, S.; McKenney, K.; Di Florio, A.; Meltzer-Brody, S. Associations Between Postpartum Depression, Breastfeeding, and Oxytocin Levels in Latina Mothers. Breastfeed Med. 2017, 12, 436–442. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n) | The Status of PPD | p Value 1 | |
---|---|---|---|---|
Non-PPD | PPD | |||
Age groups (years) | 0.306 | |||
≤25 | 42 | 18, 42.9 | 24, 57.1 | |
26~35 | 231 | 88, 38.1 | 143, 61.9 | |
36~45 | 20 | 11, 55.0 | 9, 45.0 | |
Ethnic groups | 0.996 | |||
Han | 278 | 111, 39.9 | 167, 60.1 | |
Minority | 15 | 6, 40.0 | 9, 60.0 | |
Educational levels | 0.021 ** | |||
Junior high school and below | 10 | 1, 10.0 | 9, 90.0 | |
Specialized degree | 126 | 42, 33.3 | 84, 66.7 | |
Bachelor’s degree | 126 | 58, 46.0 | 68, 54.0 | |
Postgraduate and above | 31 | 16, 51.6 | 15, 48.4 | |
Occupational levels | 0.069 * | |||
Employed | 191 | 69, 36.1 | 122, 63.9 | |
Unemployed | 102 | 48, 47.1 | 54, 52.9 | |
Region | 0.757 | |||
Suburb | 142 | 58, 40.8 | 84, 59.2 | |
Urban | 151 | 59, 39.1 | 92, 60.9 | |
Spouse’s age groups (years) | 0.859 | |||
≤25 | 26 | 10, 38.5 | 16, 61.5 | |
26~35 | 215 | 87, 40.5 | 128, 59.5 | |
36~45 | 52 | 20, 38.5 | 32, 61.5 | |
Spouse’s ethnic groups | 0.996 | |||
Han | 278 | 111, 39.9 | 167, 60.1 | |
Minority | 15 | 6, 40.0 | 9, 60.0 | |
Spouse’s educational Levels # | 0.224 | |||
Junior high school and below | 10 | 6, 60.0 | 4, 40.0 | |
Specialized degree | 117 | 42, 35.9 | 75, 64.1 | |
Bachelor’s degree | 129 | 50, 38.8 | 79, 61.2 | |
Postgraduate and above | 36 | 19, 52.8 | 17, 47.2 | |
Household income levels (RMB per month) | 0.416 | |||
≤6000 | 41 | 14, 34.1 | 27, 65.9 | |
6000~10,000 | 132 | 58, 43.9 | 74, 56.1 | |
≥10,000 | 120 | 45, 37.5 | 75, 62.5 | |
Baby’s age groups (months) | 0.213 | |||
≤1 | 112 | 51, 45.5 | 61, 54.5 | |
2~3 | 117 | 40, 34.2 | 77, 65.8 | |
≥4 | 64 | 26, 40.6 | 38, 59.4 | |
Number of children | 0.054 * | |||
1 | 180 | 64, 35.6 | 116, 64.4 | |
≥2 | 113 | 53, 46.9 | 60, 53.1 | |
Number of caregivers # | 0.016 ** | |||
1 | 52 | 13, 25.0 | 39, 75.0 | |
2 | 197 | 81, 41.1 | 116, 58.9 | |
≥3 | 43 | 23, 53.5 | 20, 46.5 | |
PSSS score levels | 0.001 ** | |||
Low to medium social support | 100 | 27, 27.0 | 73, 73.0 | |
High social support | 193 | 90, 46.6 | 103, 53.4 | |
PSQI score levels # | 0.001 ** | |||
Good sleep quality | 86 | 47, 54.7 | 39, 45.3 | |
Moderate or poor sleep quality | 205 | 70, 34.1 | 135, 65.9 | |
DII groups | 0.022 ** | |||
Q1 | 98 | 43, 43.9 | 55, 56.1 | |
Q2 | 98 | 46, 46.9 | 52, 63.1 | |
Q3 | 97 | 28, 28.9 | 69, 71.1 | |
Total | 293 | 117, 39.9 | 176, 60.1 |
Variables | DII Tertiles | p Value 1 | ||
---|---|---|---|---|
Q1 | Q2 | Q3 | ||
Age groups (years) | 0.261 | |||
≤25 | 10, 23.8 | 17, 40.5 | 15, 35.7 | |
26~35 | 79, 34.2 | 73, 31.6 | 79, 34.2 | |
36~45 | 9, 45.0 | 8, 40.0 | 3, 15.0 | |
Ethnic groups | 0.432 | |||
Han | 91, 32.7 | 95, 34.2 | 92, 33.1 | |
Minority | 7, 46.7 | 3, 20.0 | 5, 33.3 | |
Educational levels | 0.298 | |||
Junior high school and below | 0, 0.0 | 5, 50.0 | 5, 50.0 | |
Specialized degree | 41, 32.5 | 42, 33.3 | 43, 34.1 | |
Bachelor’s degree | 45, 35.7 | 40, 31.7 | 41, 32.5 | |
Postgraduate and above | 12, 38.7 | 11, 35.5 | 8, 25.8 | |
Occupational levels | 0.256 | |||
Employed | 68, 35.6 | 66, 34.6 | 57, 29.8 | |
Unemployed | 30, 29.4 | 32, 31.4 | 40, 39.2 | |
Region | 0.256 | |||
Suburb | 42, 29.6 | 47, 33.1 | 53, 37.3 | |
Urban | 56, 37.1 | 51, 33.8 | 44, 29.1 | |
Spouse’s age groups (years) | 0.539 | |||
≤25 | 8, 30.8 | 9, 34.6 | 9, 34.6 | |
26~35 | 71, 33.0 | 68, 31.6 | 76, 35.3 | |
36~45 | 19, 36.5 | 21, 40.4 | 12, 23.1 | |
Spouse’s ethnic groups | 0.035 * | |||
Han | 89, 32.0 | 97, 34.9 | 92, 33.1 | |
Minority | 9, 60.0 | 1, 6.7 | 5, 33.3 | |
Spouse’s educational Levels # | 0.383 | |||
Junior high school and below | 5, 50.0 | 4, 40.0 | 1, 10.0 | |
Specialized degree | 35, 29.9 | 40, 34.2 | 42, 35.9 | |
Bachelor’s degree | 42, 32.6 | 46, 35.7 | 41, 31.8 | |
Postgraduate and above | 16, 44.4 | 8, 22.2 | 12, 33.3 | |
Household income levels (RMB per month) | 0.951 | |||
≤6000 | 12, 29.3 | 14, 34.1 | 15, 36.6 | |
6000~10,000 | 46, 34.8 | 45, 34.1 | 41, 31.1 | |
≥10,000 | 40, 33.3 | 39, 32.5 | 41, 34.2 | |
Baby’s age groups (months) | 0.469 | |||
≤1 | 36, 32.1 | 36, 32.1 | 40, 35.7 | |
2~3 | 45, 38.5 | 36, 30.8 | 36, 30.8 | |
≥4 | 17, 26.6 | 26, 40.6 | 21, 32.8 | |
Number of children | 0.897 | |||
1 | 59, 32.8 | 62, 34.4 | 59, 32.8 | |
≥2 | 39, 34.5 | 36, 31.9 | 38, 33.6 | |
Number of caregivers # | 0.004 * | |||
1 | 14, 26.9 | 24, 46.2 | 14, 26.9 | |
2 | 78, 39.6 | 56, 28.4 | 63, 32.0 | |
≥3 | 6, 14.0 | 17, 39.5 | 20, 46.5 | |
PSSS score levels | 0.044 * | |||
Low to medium social support | 26, 26.0 | 32, 32.0 | 42, 42.0 | |
High social support | 72, 37.3 | 66, 34.2 | 55, 28.5 | |
PSQI score levels # Age groups (years) | 0.783 | |||
Good sleep quality | 29, 33.7 | 31, 36.0 | 26, 30.2 | |
Moderate or poor sleep quality | 68, 33.2 | 67, 32.7 | 70, 34.1 | |
Total | 98, 33.4 | 98, 33.4 | 97, 33.0 |
DII Tertiles (OR, 95% CI) | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | ||
n = 98 | n = 98 | n = 97 | p Value 1 | |
Crude Model | 0.52 (0.29, 0.94) | 0.46 (0.25, 0.83) | 1 | 0.024 * |
Mode l | 0.50 (0.27, 0.94) | 0.41 (0.22, 0.77) | 1 | 0.016 * |
Mode 2 | 0.47 (0.24, 0.93) | 0.38 (0.19, 0.74) | 1 | 0.013 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, H.; Sun, M.; Liu, Y.; Xi, Y.; Xiang, C.; Yong, C.; Liang, J.; Huo, J.; Lin, Q.; Deng, J. Relationship between Dietary Inflammatory Index and Postpartum Depression in Exclusively Breastfeeding Women. Nutrients 2022, 14, 5006. https://doi.org/10.3390/nu14235006
Zou H, Sun M, Liu Y, Xi Y, Xiang C, Yong C, Liang J, Huo J, Lin Q, Deng J. Relationship between Dietary Inflammatory Index and Postpartum Depression in Exclusively Breastfeeding Women. Nutrients. 2022; 14(23):5006. https://doi.org/10.3390/nu14235006
Chicago/Turabian StyleZou, Hanshuang, Minghui Sun, Yan Liu, Yue Xi, Caihong Xiang, Cuiting Yong, Jiajing Liang, Jiaqi Huo, Qian Lin, and Jing Deng. 2022. "Relationship between Dietary Inflammatory Index and Postpartum Depression in Exclusively Breastfeeding Women" Nutrients 14, no. 23: 5006. https://doi.org/10.3390/nu14235006
APA StyleZou, H., Sun, M., Liu, Y., Xi, Y., Xiang, C., Yong, C., Liang, J., Huo, J., Lin, Q., & Deng, J. (2022). Relationship between Dietary Inflammatory Index and Postpartum Depression in Exclusively Breastfeeding Women. Nutrients, 14(23), 5006. https://doi.org/10.3390/nu14235006