Vitamin K1 and K2 in the Diet of Patients in the Long Term after Kidney Transplantation
Abstract
:1. Introduction
2. Materials and Methods
- I.
- A complete menu submitted by the patient from the three consecutive working days immediately prior to the visit. The questions concerned the intake and portion sizes of three main meals and any snacks.
- II.
- Product groups to accurately determine the food consumed and to obtain information on vitamin K1 and K2 content. The diary listed eight product groups: 1: meats, eggs, fish; 2: dairy products; 3: bread, cereals, pasta; 4: fats; 5: vegetables; 6: fruits; 7: nuts, seeds; 8: sweets.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gulcicek, S.; Zoccali, C.; Olgun, D.C.; Tripepi, G.; Alagoz, S.; Yalın, S.F.; Trabulus, S.; Altiparmak, M.R.; Seyahi, N. Long-term progression of coronary artery calcification is independent of classical risk factors, c-reactive protein, and parathyroid hormone in renal transplant patients. Cardiorenal Med. 2017, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Giannini, S.; D’Angelo, A.; Carraro, G.; Antonello, A.; Di Landro, D.; Marchini, F.; Plebani, M.; Zaninotto, M.; Rigotti, P.; Sartori, L.; et al. Persistently increased bone turnover and low bone density in long-term survivors to kidney transplantation. Clin. Nephrol. 2001, 56, 353–363. [Google Scholar]
- Agrawal, A.; Ison, M.G.; Danziger-Isakov, L. Long-term infectious complications of kidney transplantation. Clin. J. Am. Soc. Nephrol. 2022, 17, 286–295. [Google Scholar] [CrossRef]
- Kapoor, A. Malignancy in kidney transplant recipients. Drugs 2008, 68 (Suppl. 1), 9–11. [Google Scholar] [CrossRef] [PubMed]
- Caluwé, R.; Verbeke, F.; De Vriese, A.S. Evaluation of vitamin K status and rationale for vitamin K supplementation in dialysis patients. Nephrol. Dial. Transplant. 2020, 1, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Silaghi, C.N.; Ilyés, T.; Filip, V.P.; Farcaș, M.; van Ballegooijen, A.J.; Crăciun, A.M. Vitamin K dependent proteins in kidney disease. Int. J. Mol. Sci. 2019, 20, 1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roumeliotis, S.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Association of the inactive circulating matrix Gla protein with vitamin K intake, calcification, mortality, and cardiovascular disease: A review. Int. J. Mol. Sci. 2019, 20, 628. [Google Scholar] [CrossRef] [Green Version]
- Mladěnka, P.; Macáková, K.; Kujovská Krčmová, L.; Javorská, L.; Mrštná, K.; Carazo, A.; Protti, M.; Remião, F.; Nováková, L.; OEMONOM researchers and collaborators. Vitamin K—Sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr. Rev. 2022, 80, 677–698. [Google Scholar] [CrossRef] [PubMed]
- Elder, S.J.; Haytowitz, D.B.; Howe, J.; Peterson, J.W.; Booth, S.L. Vitamin K contents of meat, dairy, and fast food in the US diet. J. Agric. Food Chem. 2006, 54, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Booth, S.L.; Al Rajabi, A. Determinants of vitamin K status in humans. Vitam. Horm. 2008, 78, 1–22. [Google Scholar]
- Cranenburg, E.C.M.; Schurgers, L.J.; Vermeer, C. Vitamin K: The coagulation vitamin that became omnipotent. Thromb. Haemost. 2007, 98, 120–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theuwissen, E.; Magdeleyns, E.J.; Braam, L.A.; Teunissen, K.J.; Knapen, M.H.; Binnekamp, I.A.; van Summeren, M.J.; Vermeer, C. Vitamin K status in healthy volunteers. Food Funct. 2014, 5, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Ducy, P.; McKee, M.D.; Pinero, G.J.; Loyer, E.; Behringer, R.R.; Karsenty, G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997, 386, 78–81. [Google Scholar] [CrossRef]
- Munroe, P.B.; Olgunturk, R.O.; Fryns, J.P.; Van Maldergem, L.; Ziereisen, F.; Yuksel, B.; Gardiner, R.M.; Chung, E. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat. Genet. 1999, 21, 142–144. [Google Scholar] [CrossRef]
- Shanahan, C.M. Mechanisms of vascular calcification in renal disease. Clin. Nephrol. 2005, 63, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Nigwekar, S.; Bloch, D.; Nazarian, R.; Vermeer, C.; Booth, S.; Xu, D.; Thadhani, R.I.; Malhotra, R. Vitamin K—Dependent carboxylation of matrix Gla protein influences the risk of calciphylaxis. J. Am. Soc. Nephrol. 2017, 28, 1717–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurnatowska, I.; Małyska, A.; Wysocka, K.; Mazur, K.; Krawczyk, J.; Nowicki, M. Long-term effect of body mass index changes on graft damage markers in patients after kidney transplantation. Ann. Transplant. 2016, 21, 626–631. [Google Scholar] [CrossRef]
- Keyzer, C.A.; Vermeer, C.; Joosten, M.M.; Knapen, M.H.; Drummen, N.E.; Navis, G.; Bakker, S.J.; de Borst, M.H. Vitamin K status and mortality after kidney transplantation: A cohort study. Am. J. Kidney Dis. 2015, 65, 474–483. [Google Scholar] [CrossRef]
- Fusaro, M.; Cianciolo, G.; Brandi, M.L.; Ferrari, S.; Nickolas, T.L.; Tripepi, G.; Plebani, M.; Zaninotto, M.; Iervasi, G.; La Manna, G.; et al. Vitamin K and osteoporosis. Nutrients 2020, 12, 3625. [Google Scholar] [CrossRef] [PubMed]
- Palermo, A.; Tuccinardi, D.; D’Onofrio, L.; Watanabe, M.; Maggi, D.; Maurizi, A.R.; Greto, V.; Buzzetti, R.; Napoli, N.; Pozzilli, P.; et al. Vitamin K and osteoporosis: Myth or reality? Metabolism 2017, 70, 57–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gast, G.C.; de Roos, N.M.; Sluijs, I.; Bots, M.L.; Beulens, J.W.; Geleijnse, J.M.; Witteman, J.C.; Grobbee, D.E.; Peeters, P.H.; van der Schouw, Y.T. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 504–510. [Google Scholar] [CrossRef]
- Geleijnse, J.M.; Vermeer, C.; Grobbee, D.E.; Schurgers, L.J.; Knapen, M.H.; van der Meer, I.M.; Hofman, A.; Witteman, J.C. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam study. J. Nutr. 2004, 134, 3100–3105. [Google Scholar] [CrossRef] [PubMed]
- Witham, M.D.; Lees, J.S.; White, M.; Band, M.; Bell, S.; Chantler, D.J.; Ford, I.; Fulton, R.L.; Kennedy, G.; Littleford, R.C.; et al. Vitamin K supplementation to improve vascular stiffness in CKD: The K4Kidneys randomized controlled trial. J. Am. Soc. Nephrol. 2020, 31, 2434–2445. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Hariri, E.; Daaboul, Y.; Korjian, S.; El Alam, A.; Protogerou, A.D.; Kilany, H.; Karam, A.; Stephan, A.; Bahous, S.A. Vitamin K2 supplementation and arterial stiffness among renal transplant recipients—A single-arm, single-center clinical trial. J. Am. Soc. Hypertens. 2017, 11, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Kurnatowska, I.; Grzelak, P.; Masajtis-Zagajewska, A.; Kaczmarska, M.; Stefańczyk, L.; Vermeer, C.; Maresz, K.; Nowicki, M. Plasma desphospho-uncarboxylated matrix Gla protein as a marker of kidney damage and cardiovascular risk in advanced stage of chronic kidney disease. Kidney Blood Press. Res. 2016, 41, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Cranenburg, E.C.M.; Schurgers, L.J.; Uiterwijk, H.H.; Beulens, J.W.; Dalmeijer, G.W.; Westerhuis, R.; Magdeleyns, E.J.; Herfs, M.; Vermeer, C.; Laverman, G.D. Vitamin K intake and status are low in hemodialysis patients. Kidney Int. 2012, 82, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Akbulut, A.C.; Pavlic, A.; Petsophonsakul, P.; Halder, M.; Maresz, K.; Kramann, R.; Schurgers, L. Vitamin K2 needs an RDI separate from Vitamin K1. Nutrients 2020, 21, 1852. [Google Scholar] [CrossRef]
- FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 8 August 2018).
- Schurgers, L.J.; Vermeer, C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis 2000, 30, 298–307. [Google Scholar]
- Tarvainen, M.; Fabritius, M.; Yang, B. Determination of vitamin K composition of fermented food. Food Chem. 2019, 275, 515–522. [Google Scholar] [CrossRef]
- Manoury, E.; Jourdon, K.; Boyaval, P.; Fourcassié, P. Quantitative measurement of vitamin K2 (menaquinones) in various fermented dairy products using a reliable high-performance liquid chromatography method. J. Dairy Sci. 2013, 96, 1335–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnaveni, P.; Gowda, V.M. Assessing the validity of Friedewald’s formula and Anandraja’s formula for serum LDL-cholesterol calculation. J. Clin. Diagn. Res. 2015, 9, BC01–BC04. [Google Scholar]
- EFSA Panelon Dietetic Products, Nutrition and Allergies (NDA); Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; et al. Dietary reference values for vitamin K. EFSA J. 2017, 22, e04780. [Google Scholar]
- Beulens, J.W.J.; van der A, D.L.; Grobbee, D.E.; Sluijs, I.; Spijkerman, A.M.W.; van der Schouw, Y.T. Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 2010, 33, 1699–1705. [Google Scholar] [CrossRef] [Green Version]
- US Department of Agriculture, Agricultural Research Service. What We Eat in America: NHANES 2011-2012. Table 1. Nutrient Intakes from Food and Beverages. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1112/Table_1_NIN_GEN_11.pdf (accessed on 1 January 2020).
- Chan, R.; Leung, J.; Woo, J. No association between dietary vitamin K intake and fracture risk in chinese community-dwelling older men and women: A prospective study. Calcif. Tissue Int. 2012, 90, 396–403. [Google Scholar] [CrossRef]
- Nagaoka, Y.; Onda, R.; Sakamoto, K.; Izawa, Y.; Kono, H.; Nakagawa, K.; Shinoda, K.; Morita, S.; Kanno, Y. Dietary intake in Japanese patients with kidney transplantation. Clin. Exp. Nephrol. 2016, 20, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Poesen, R.; Meijers, B. The gut–kidney axis. Pediatr. Nephrol. 2017, 32, 2005–2014. [Google Scholar] [CrossRef] [PubMed]
- Shevchuk, Y.M.; Conly, J.M. Antibiotic-associated hypoprothrombinemia: A review of prospective studies, 1966–1988. Rev. Infect. Dis. 1990, 12, 1109–1126. [Google Scholar] [CrossRef]
- Kaneki, M.; Hodges, S.J.; Hosoi, T.; Fujiwara, S.; Lyons, A.; Crean, S.J.; Ishida, N.; Nakagawa, M.; Takechi, M.; Sano, Y.; et al. Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: Possible implications for hip-fracture risk. Nutrition 2001, 17, 315–321. [Google Scholar] [CrossRef]
- Knapen, M.H.; Schurgers, L.J.; Shearer, M.J.; Newman, P.; Theuwissen, E.; Vermeer, C. Association of vitamin K status with adiponectin and body composition in healthy subjects: Uncarboxylated osteocalcin is not associated with fat mass and body weight. Br. J. Nutr. 2012, 108, 1017–1024. [Google Scholar] [CrossRef] [Green Version]
- Theuwissen, E.; Cranenburg, E.C.; Knapen, M.H.; Magdeleyns, E.J.; Teunissen, K.J.; Schurgers, L.J.; Smit, E.; Vermeer, C. Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. Br. J. Nutr. 2012, 108, 1652–1657. [Google Scholar] [CrossRef]
- Knapen, M.H.; Braam, L.A.; Teunissen, K.J.; Zwijsen, R.M.; Theuwissen, E.; Vermeer, C. Yogurt drink fortified with menaquinone-7 improves vitamin K status in a healthy population. J. Nutr. Sci. 2015, 16, e35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braam, L.; McKeown, N.; Jacques, P.; Lichtenstein, A.; Vermeer, C.; Wilson, P.; Booth, S. Dietary phylloquinone intake as a potential marker for a heart-healthy dietary pattern in the Framingham Offspring cohort. J. Am. Diet. Assoc. 2004, 104, 1410–1414. [Google Scholar] [CrossRef] [PubMed]
- Ferron, M.; Hinoi, E.; Karsenty, G.; Ducy, P. Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl. Acad. Sci. USA 2008, 105, 5266–5270. [Google Scholar] [CrossRef] [Green Version]
- Braam, L.A.J.L.M.; Knapen, M.H.J.; Geusens, P.; Brouns, F.; Hamulyak, K.; Gerichhausen, M.J.W.; Vermeer, C. Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. Calcif. Tissue Int. 2003, 73, 21–26. [Google Scholar] [CrossRef]
- Iwamoto, I.; Kosha, S.; Noguchi, S.; Murakami, M.; Fujino, T.; Douchi, T.; Nagata, Y. A longitudinal study of the effect of vitamin K2 on bone mineral density in postmenopausal women: A comparative study with vitamin D3 and estrogen-progesin therapy. Maturitas 1999, 31, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, J.; Takeda, T.; Ichimura, S. Effect of combined administration of vitamin D3 and vitamin K2 on bone mineral density of the lumbar spine in postmenopausal women with osteoporosis. J. Orthop. Sci. 2000, 5, 546–551. [Google Scholar] [CrossRef]
- Nishiguchi, S.; Shimoi, S.; Kurooka, H.; Tamori, A.; Habu, D.; Takeda, T.; Kubo, S. Randomized pilot trial of vitamin K2 for bone loss in patients with primary biliary cirrhosis. J. Hepatol. 2001, 35, 543–545. [Google Scholar] [CrossRef]
- Knapen, M.H.; Schurgers, L.J.; Vermeer, C. Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women. Osteoporos. Int. 2007, 18, 963–972. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Kwan, J.T.; McCloskey, E.; McGee, G.; Thomas, G.; Johnson, D.; Wills, R.; Ogunremi, L.; Barron, J. Prevalence and causes of low bone density and fractures in kidney transplant patients. J. Bone Miner. Res. 2001, 16, 1863–1870. [Google Scholar] [CrossRef]
Average Daily Total Intake (μg) (Mean ± SD) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Total | Meat, Eggs, Fish | Seeds and Nuts | Fruits | Bread, Cereals, Pasta | Dairy Products | Sweets | Fats | Vegetables | |
K1 | 120.9 ± 49 | 1.5 ± 1.7 | 0.02 ± 0.2 | 8.7 ± 9.4 | 6.2 ± 3.2 | 1 ± 0.7 | 17.7 ± 21.9 | 11.5 ± 9.8 | 74.1 ± 45 |
K2 | 28.7 ± 11.3 | 20.3 ± 8.9 | - | - | - | 4.7 ± 6.5 | 0.9 ± 4.3 | 1.8 ± 1.2 | 1.7 ± 4.6 |
K2: MK-4 | 25.9 ± 9.9 | 19.6 ± 8.9 | 3.1 ± 2.9 | 0.04 ± 0.07 | 0.01 ± 0.05 | 0.04 ± 0.2 | |||
K2: MK-5 | 0.11 ± 0.2 | - | 0.9 ± 4.3 | - | - | 0.0003 ± 0.002 | |||
K2: MK-6 | 0.24 ± 0.4 | 0.1 ± 0.1 | 1.8 ± 1.2 | - | - | - | |||
K2: MK-7 | 0.25 ± 0.27 | 0.2 ± 0.2 | 1.3 ± 4.4 | 0.07 ± 0.2 | 0.13 ± 0.3 | 0.02 ± 0.04 | |||
K2: MK-8 | 1 ± 1.9 | 0.4 ± 0.4 | 3.1 ± 2.9 | 0.04 ± 0.07 | 0.01 ± 0.05 | 0.04 ± 0.2 | |||
K2: MK-9 | 0.9 ± 2.3 | - | 0.9 ± 4.3 | - | - | 0.0003 ± 0.002 | |||
K2: MK-10 | 0.2 ± 0.5 | - | 1.8 ± 1.2 | - | - | - |
K1 (μg/d) ± SD | K2 (μg/d) ± SD | Menaquinones | |||||||
---|---|---|---|---|---|---|---|---|---|
MK-4 (μg/d) ± SD | MK-5 (μg/d) ± SD | MK-6 (μg/d) ± SD | MK-7 (μg/d) ± SD | MK-8 (μg/d) ± SD | MK-9 (μg/d) ± SD | MK-10 (μg/d) ± SD | |||
Cardiovascular incidents | |||||||||
-yes | 92.4 ± 32.9 | 26.6 ± 11 | 25.2 ± 11.3 | 0.06 ± 0.1 | 0.23 ± 0.4 | 0.22 ± 0.2 | 0.5 ± 0.5 | 0.2 ± 0.2 | 0.15 ± 0.1 |
-no | 122 ± 49.3 | 28.8 ± 11.4 | 25.9 ± 9.8 | 0.1 ± 0.01 | 0.26 ± 0.4 | 0.26 ± 0.3 | 1.1 ± 1.9 | 0.9 ± 2.4 | 0.2 ± 0.5 |
p-value | 0.089 | 0.61 | 0.73 | 0.34 | 0.87 | 0.54 | 0.55 | 0.76 | 0.39 |
Bone fractures | |||||||||
-yes | 124.8 ± 56.8 | 26.7 ± 11 | 24.6 ± 10.6 | 0.06 ± 0.1 | 0.18 ± 0.3 | 0.24 ± 0.3 | 0.7 ± 1 | 0.5 ± 1.4 | 0.27 ± 0.6 |
-no | 118.3 ± 44.3 | 29.8 ± 11.5 | 26.6 ± 9.4 | 0.13 ± 0.2 | 0.27 ± 0.4 | 0.26 ± 0.3 | 1.2 ± 2.2 | 1.2 ± 2.7 | 0.18 ± 0.5 |
p-value | 0.55 | 0.18 | 0.21 | 0.018 | 0.21 | 0.34 | 0.28 | 0.28 | 0.011 |
Statins | |||||||||
-yes | 120.7 ± 57.4 | 30.3 ± 11.12 | 27.1 ± 9 | 0.1 ± 0.2 | 0.26 ± 0.4 | 0.27 ± 0.3 | 1.2 ± 2 | 1.1 ± 2.6 | 0.22 ± 0.6 |
-no | 121 ± 35.8 | 6.6 ± 11.5 | 24.4 ± 10.7 | 0.1 ± 0.2 | 0.21 ± 0.3 | 0.23 ± 0.3 | 0.9 ± 1.7 | 0.65 ± 1.9 | 0.2 ± 0.5 |
p-value | 0.37 | 0.028 | 0.032 | 0.82 | 0.47 | 0.22 | 0.2 | 0.26 | 0.6 |
DM | |||||||||
-yes | 121.9 ± 38.6 | 31 ± 12.2 | 27.8 ± 8 | 0.08 ± 0.1 | 0.18 ± 0.3 | 0.25 ± 0.2 | 1.29 ± 2.6 | 1.1 ± 3.2 | 0.19 ± 0.4 |
-no | 120.5 ± 52 | 28 ± 11 | 25.3 ± 10.3 | 0.1 ± 0.2 | 0.26 ± 0.4 | 0.26 ± 0.3 | 0.98 ± 1.6 | 0.8 ± 1.9 | 0.2 ± 0.6 |
p-value | 0.67 | 0.18 | 0.064 | 0.29 | 0.37 | 0.99 | 0.91 | 0.59 | 0.97 |
eGFR | |||||||||
mL/min/1.73 m2 | |||||||||
≥30 | 121.8 ± 49.9 | 29 ± 11.7 | 26.2 ± 10.1 | 0.11 ± 0.19 | 0.24 ± 0.03 | 0.25 ± 0.26 | 1.1 ± 2 | 0.93 ± 2.42 | 0.19 ± 0.46 |
<30 | 113.8 ± 42.5 | 26 ± 8.2 | 23.7 ± 7.5 | 0.08 ± 0.14 | 0.26 ± 0.05 | 0.3 ± 0.34 | 0.67 ± 0.6 | 0.61 ± 1.4 | 0.34 ± 0.96 |
p-value | 0.66 | 0.29 | 0.29 | 0.41 | 0.19 | 0.68 | 0.88 | 0.77 | 0.78 |
≥45 | 122.8 ± 51.4 | 28.8 ± 11.4 | 26.1 ± 10 | 0.1 ± 0.18 | 0.24 ± 0.36 | 0.23 ± 0.25 | 1.1 ± 1.98 | 0.89 ± 2.32 | 0.17 ± 0.46 |
<45 | 117 ± 44.1 | 28.4 ± 11.4 | 25.5 ± 9.6 | 0.12 ± 0.18 | 0.24 ± 0.36 | 0.3 ± 0.3 | 0.98 ± 1.71 | 0.89 ± 2.35 | 0.29 ± 0.68 |
p-value | 0.85 | 0.57 | 0.49 | 0.36 | 0.68 | 0.2 | 0.43 | 0.1 | 0.097 |
≥60 | 122.8 ± 43.9 | 28.7 ± 12.2 | 25.6 ± 9.7 | 0.12 ± 0.2 | 0.27 ± 0.4 | 0.2 ± 0.2 | 1.3 ± 2.6 | 1.1 ± 2.9 | 0.07 ± 0.1 |
<60 | 120 ± 51.3 | 28.7 ± 11 | 26.1 ± 10 | 0.1 ± 0.2 | 0.23 ± 0.3 | 0.28 ± 0.3 | 0.9 ± 1.5 | 0.8 ± 2 | 0.3 ± 0.6 |
p-value | 0.84 | 0.71 | 0.65 | 0.54 | 0.6 | 0.13 | 0.46 | 0.12 | 0.013 |
Total cholesterol (TC) | |||||||||
<200 mg/dL | 126 ± 59.3 | 31.2 ± 10.9 | 28.3 ± 9.8 | 0.09 ± 0.2 | 0.2 ± 0.4 | 0.3 ± 0.3 | 1.1 ± 1.8 | 0.9 ± 2.2 | 0.2 ± 0.5 |
≥200 mg/dL | 115.8 ± 35.8 | 26.2 ± 11.3 | 23.6 ± 9.4 | 0.1 ± 0.2 | 0.2 ± 0.3 | 0.2 ± 0.3 | 1 ± 2 | 0.9 ± 2.4 | 0.2 ± 0.5 |
p-value | 0.61 | 0.0037 | 0.0038 | 0.13 | 0.95 | 0.12 | 0.071 | 0.33 | 0.05 |
Triglycerides (TG) | |||||||||
<150 mg/dL | 116 ± 39.5 | 28 ± 11.1 | 25.6 ± 10.1 | 0.1 ± 0.2 | 0.3 ± 0.4 | 0.3 ± 0.3 | 0.9 ± 1.4 | 0.6 ± 1.8 | 0.2 ± 0.6 |
≥150 mg/dL | 127.3 ± 59.2 | 29.7 ± 11.7 | 26.4 ± 9.6 | 0.1 ± 0.2 | 0.2 ± 0.3 | 0.2 ± 0.2 | 1.3 ± 2.3 | 1.2 ± 2.9 | 0.2 ± 0.4 |
p-value | 0.43 | 0.35 | 0.54 | 0.85 | 0.77 | 0.52 | 0.83 | 0.76 | 0.58 |
K1 | K2 | Isoform K2 | |||||||
---|---|---|---|---|---|---|---|---|---|
MK-4 | MK-5 | MK-6 | MK-7 | MK-8 | MK-9 | MK-10 | |||
BMI (kg/m2) | |||||||||
rho | 0.02 | 0.27 | 0.25 | −0.08 | −0.11 | 0.05 | 0.09 | 0.14 | 0.16 |
p-value | 0.8 | <0.0001 | 0.001 | 0.32 | 0.17 | 0.5 | 0.26 | 0.07 | 0.04 |
Total cholesterol (TC) | |||||||||
rho | −0.08 | −0.19 | −0.18 | 0.11 | −0.01 | −0.17 | −0.17 | −0.12 | −0.2 |
p-value | 0.34 | 0.02 | 0.03 | 0.19 | 0.86 | 0.04 | 0.04 | 0.15 | 0.15 |
LDL | |||||||||
rho | −0.07 | −0.12 | −0.12 | 0.1 | −0.05 | −0.14 | −0.09 | −0.06 | −0.14 |
p-value | 0.38 | 0.13 | 0.14 | 0.2 | 0.52 | 0.1 | 0.26 | 0.44 | 0.08 |
HDL | |||||||||
rho | −0.11 | −0.22 | −0.2 | 0.07 | 0.07 | −0.07 | −0.15 | −0.11 | −0.1 |
p-value | 0.17 | 0.006 | 0.01 | 0.37 | 0.39 | 0.37 | 0.07 | 0.18 | 0.21 |
Triglycerides | |||||||||
rho | 0.06 | 0.09 | 0.05 | −0.07 | −0.04 | −0.1 | 0.003 | 0.04 | −0.02 |
p-value | 0.5 | 0.25 | 0.51 | 0.4 | 0.65 | 0.24 | 0.97 | 0.65 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluch, M.; Bednarkiewicz, P.; Orzechowska, M.; Grzelak, P.; Kurnatowska, I. Vitamin K1 and K2 in the Diet of Patients in the Long Term after Kidney Transplantation. Nutrients 2022, 14, 5070. https://doi.org/10.3390/nu14235070
Kluch M, Bednarkiewicz P, Orzechowska M, Grzelak P, Kurnatowska I. Vitamin K1 and K2 in the Diet of Patients in the Long Term after Kidney Transplantation. Nutrients. 2022; 14(23):5070. https://doi.org/10.3390/nu14235070
Chicago/Turabian StyleKluch, Małgorzata, Patrycja Bednarkiewicz, Magdalena Orzechowska, Piotr Grzelak, and Ilona Kurnatowska. 2022. "Vitamin K1 and K2 in the Diet of Patients in the Long Term after Kidney Transplantation" Nutrients 14, no. 23: 5070. https://doi.org/10.3390/nu14235070