Protein Supplementation with Short Peptides Prevents Early Muscle Mass Loss after Roux-en-Y-Gastric Bypass
Abstract
:1. Introduction
2. Materials and Methods
- BMI was calculated using the formula: weight (kg)/height2 (m2) [20].
- % Total weight loss (% TWL) was calculated using the formula: (Initial W (kg) − Final W (kg))/(Initial W (kg)) × 100.
- Control product: specific nutritional product for patients who underwent surgery and required hypocaloric diets (calorie restriction).
- Product enriched with HMB (β-hydroxymethyl β-butyrate).
- Peptide-based formula.
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sjöström, L.; Narbro, K.; Sjöström, C.D.; Karason, K.; Larsson, B.; Wedel, H.; Lystig, T.; Sullivan, M.; Bouchard, C.; Carlsson, B.; et al. for the SOSS. Effects of Bariatric Surgery on Mortality in Swedish Obese Subjects. N. Engl. J. Med. 2007, 357, 741–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, M.C.; Meli, E.F.; Candia, F.P.; Filippi, F.; Vilallonga, R.; Cordero, E.; Hernández, I.; Eguinoa, A.Z.; Burgos, R.; Vila, A.; et al. The Impact of Bariatric Surgery on the Muscle Mass in Patients with Obesity: 2-Year Follow-up. Obes. Surg. 2022, 32, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Vaurs, C.; Diméglio, C.; Charras, L.; Anduze, Y.; du Rieu, M.C.; Ritz, P. Determinants of changes in muscle mass after bariatric surgery. Diabetes Metab. 2015, 41, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Maïmoun, L.; Lefebvre, P.; Aouinti, S.; Picot, M.-C.; Mariano-Goulart, D.; Nocca, D. Acute and longer-term body composition changes after bariatric surgery. Surg. Obes. Relat. Dis. 2019, 15, 1965–1973. [Google Scholar] [CrossRef]
- Ciudin, A.; Simó-Servat, A.; Palmas, F.; Barahona, M.J. Sarcopenic obesity: A new challenge in the clinical practice. Endocrinol. Diabetes Nutrición 2020, 67, 672–681. [Google Scholar] [CrossRef]
- Khadra, D.; Itani, L.; Tannir, H.; Kreidieh, D.; El Masri, D.; El Ghoch, M. Association between sarcopenic obesity and higher risk of type 2 diabetes in adults: A systematic review and meta-analysis. World J. Diabetes 2019, 10, 311–323. [Google Scholar] [CrossRef]
- Srikanthan, P.; Hevener, A.L.; Karlamangla, A.S. Sarcopenia Exacerbates Obesity-Associated Insulin Resistance and Dysglycemia: Findings from the National Health and Nutrition Examination Survey III. PLoS ONE 2010, 5, e10805. [Google Scholar] [CrossRef]
- Piovezan, R.D.; Hirotsu, C.; Moizinho, R.; de Sá Souza, H.; D’Almeida, V.; Tufik, S.; Poyares, D. Associations between sleep conditions and body composition states: Results of the EPISONO study. J. Cachexia Sarcopenia Muscle 2019, 10, 962–973. [Google Scholar] [CrossRef]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Arai, H.; Kritchevsky, S.B.; Guralnik, J.; Bauer, J.M.; Pahor, M.; Clark, B.C.; Cesari, M.; et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J. Nutr. Health Aging 2018, 22, 1148–1161. [Google Scholar] [CrossRef] [PubMed]
- Ponsky, T.A.; Brody, F.; Pucci, E. Alterations in Gastrointestinal Physiology after Roux-En-Y Gastric Bypass. J. Am. Coll. Surg. 2005, 201, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Quercia, I.; Dutia, R.; Kotler, D.P.; Belsley, S.; Laferrère, B. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014, 40, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsanos, C.S.; Madura, J.A.; Roust, L.R. Essential amino acid ingestion as an efficient nutritional strategy for the preservation of muscle mass following gastric bypass surgery. Nutrition 2016, 32, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Mechanick, J.I.; Apovian, C.; Brethauer, S.; Garvey, W.T.; Joffe, A.M.; Kim, J.; Kushner, R.F.; Lindquist, R.; Pessah-Pollack, R.; Seger, J.; et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures—2019 update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology. Surg. Obes. Relat. Dis. 2020, 16, 175–247. [Google Scholar] [CrossRef]
- O’Kane, M.; Parretti, H.M.; Hughes, C.A.; Sharma, M.; Woodcock, S.; Puplampu, T.; Blakemore, A.I.; Clare, K.; MacMillan, I.; Joyce, J.; et al. Guidelines for the follow-up of patients undergoing bariatric surgery. Clin. Obes. 2016, 6, 210–224. [Google Scholar] [CrossRef] [Green Version]
- Sherf-Dagan, S.; Goldenshluger, A.; Globus, I.; Schweiger, C.; Kessler, Y.; Sandbank, G.K.; Ben-Porat, T.; Sinai, T. Nutritional Recommendations for Adult Bariatric Surgery Patients: Clinical Practice. Adv. Nutr. Int. Rev. J. 2017, 8, 382–394. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, C.F.; Oliveira, B.; Barbin, R.; Marchini, J.S.; Junior, W.S.; Nonino, C.B. Red meat intolerance in patients submitted to gastric bypass: A 4-year follow-up study. Surg. Obes. Relat. Dis. 2015, 11, 842–846. [Google Scholar] [CrossRef]
- Del Olmo, D. Productos dietéticos para usos nutricionales específicos. Tratado Nutr. Tomo 4 Nutr. Clín. 2010, 5, 254–279. [Google Scholar]
- Eknoyan, G. Adolphe Quetelet (1796-1874)—The average man and indices of obesity. Nephrol. Dial. Transplant. 2008, 23, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Villareal, D.T.; Aguirre, L.; Gurney, A.B.; Waters, D.L.; Sinacore, D.R.; Colombo, E.; Armamento-Villareal, R.; Qualls, C. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. N. Engl. J. Med. 2017, 376, 1943–1955. [Google Scholar] [CrossRef] [PubMed]
- Trouwborst, I.; Verreijen, A.; Memelink, R.; Massanet, P.; Boirie, Y.; Weijs, P.; Tieland, M. Exercise and Nutrition Strategies to Counteract Sarcopenic Obesity. Nutrients 2018, 10, 605. [Google Scholar] [CrossRef] [Green Version]
- Welbourn, R.; Hollyman, M.; Kinsman, R.; Dixon, J.; Liem, R.; Ottosson, J.; Ramos, A.; Våge, V.; Al-Sabah, S.; Brown, W.; et al. Bariatric Surgery Worldwide: Baseline Demographic Description and One-Year Outcomes from the Fourth IFSO Global Registry Report. Obes. Surg. 2019, 29, 782–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García Almeida, J.M.; García García, C.; Bellido Castañeda, V.; Bellido Guerrero, D. Nuevo enfoque de la nutrición. Valoración del estado nutricional del paciente: Función y composición corporal. Nutr. Hosp. 2018, 35, 1–14. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Thorell, A.; MacCormick, A.D.; Awad, S.; Reynolds, N.; Roulin, D.; Demartines, N.; Vignaud, M.; Alvarez, A.; Singh, P.M.; Lobo, D. Guidelines for Perioperative Care in Bariatric Surgery: Enhanced Recovery after Surgery (ERAS) Society Recommendations. World J. Surg. 2016, 40, 2065–2083. [Google Scholar] [CrossRef] [Green Version]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.; et al. ESPEN guideline: Clinical nutrition in surgery. Clin. Nutr. 2017, 36, 623–650. [Google Scholar] [CrossRef] [Green Version]
- Walrand, S.; Guillet, C.; Boirie, Y. Nutrition, Protein Turnover and Muscle Mass. Sarcopenia 2012, 147, 59–73. [Google Scholar]
- Pennings, B.; Boirie, Y.; Senden, J.M.; Gijsen, A.P.; Kuipers, H.; van Loon, L.J. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr. 2011, 93, 997–1005. [Google Scholar] [CrossRef] [Green Version]
- Gilmartin, S.; O’Brien, N.; Giblin, L. Whey for sarcopenia; can whey peptides, hydrolysates or proteins play a beneficial role? Foods 2020, 9, 750. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J. Cachex-Sarcopenia Muscle 2017, 8, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Picca, A.; Marzetti, E. Beta-hydroxy-beta-methylbutyrate and sarcopenia: From biological plausibility to clinical evidence. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Schneeman, B.O. Gastrointestinal physiology and functions. Br. J. Nutr. 2002, 88, S159–S163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, G.M.; Cooper, H.L. Protein Digestion and Absorption. Gastroenterology 1971, 61, 535–544. [Google Scholar] [CrossRef]
- Tessier, R.; Ribeiro-Parenti, L.; Bruneau, O.; Khodorova, N.V.; Cavin, J.-B.; Bado, A.; Azzout-Marniche, D.; Calvez, J.; Le Gall, M.; Gaudichon, C. Effect of different bariatric surgeries on dietary protein bioavailability in rats. Am. J. Physiol. Liver Physiol. 2019, 317, G592–G601. [Google Scholar] [CrossRef]
- Bojsen-Møller, K.N.; Jacobsen, S.H.; Dirksen, C.; Jørgensen, N.B.; Reitelseder, S.; Jensen, J.-E.B.; Kristiansen, V.B.; Holst, J.J.; van Hall, G.; Madsbad, S. Accelerated protein digestion and amino acid absorption after Roux-en-Y gastric bypass. Am. J. Clin. Nutr. 2015, 102, 600–607. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.-Y.; Tang, H.-C.; Hu, S.-H.; Chang, S.-J. Peptide-based enteral formula improves tolerance and clinical outcomes in abdominal surgery patients relative to a whole protein enteral formula. World J. Gastrointest. Surg. 2016, 8, 700–705. [Google Scholar] [CrossRef]
- De Brito-Ashurst, I.; Klebach, M.; Tsompanaki, E.; Kaul, S.; van Horssen, P.; Hofman, Z. Gastrointestinal Tolerance and Protein Absorption Markers with a New Peptide Enteral Formula Compared to a Standard Intact Protein Enteral Formula in Critically Ill Patients. Nutrients 2021, 13, 2362. [Google Scholar] [CrossRef]
Nutrients | Control Product (50 g with 200 mL of Water) | Short Peptide Product (200 mL) | Product with HMB (220 mL) |
---|---|---|---|
Energy (kcal) | 210 | 300 | 330 |
Protein (g) | 15 | 13.5 | 20 |
Carbohydrates (g) | 27.4 | 36.8 | 37 |
Fat (g) | 4.5 | 11 | 11 |
HMB (g) | - | - | 1.5 |
Carnitine (mg) | 15 | 30 | 40 |
Choline (mg) | - | 136 | 154 |
Taurine (mg) | 15 | 30 | - |
Arginine (g) | 15 | - | - |
Fiber (g) | - | - | - |
Sodium (mg) | 200 | 338 | 330 |
Potassium (mg) | 620 | 400 | 594 |
Chlorine (mg) | 320 | 300 | 139 |
Calcium (mg) | 333 | 200 | 499 |
Phosphorus (mg) | 168 | 200 | 260 |
Magnesium (mg) | 52.5 | 60 | 55 |
Iron (mg) | 4.2 | 4 | 4.6 |
Manganese (mg) | 0.67 | 1 | 0.99 |
Copper (mcg) | 450 | 480 | 539 |
Zinc (mg) | 3.2 | 3.6 | 3.9 |
Iodine (mcg) | 70 | 30 | 48 |
Selenium (mcg) | 18.5 | 19 | 20 |
Chrome (mcg) | 27.5 | 16 | 19 |
Molybdenum (mcg) | 28 | 36 | 33 |
Fluorine (mg) | 0.3 | - | - |
Vitamin A (mcg) | 305 | 300 | 264 |
Vitamin D (mcg) | 1.8 | 2 | 13 |
Vitamin E (mg) | 5 | 3.8 | 5.5 |
Vitamin C (mg) | 27 | 36 | 35 |
Vitamin K (mcg) | 25 | 14 | 33 |
Folic acid (mcg) | 105 | 60 | 77 |
Vitamin B1 (mg) | 0.5 | 0.42 | 0.57 |
Vitamin B2 (mg) | 0.6 | 0.60 | 0.70 |
Vitamin B6 (mg) | 0.6 | 0.60 | 0.66 |
Vitamin B12 (mcg) | 0.5 | 1 | 1.4 |
Niacin (mg) | 5.5 | 6 | 6.6 |
Pantothenic acid (mg) | 2.3 | 2 | 2.4 |
Biotin (mcg) | 15.8 | 11 | 1.3 |
Lactose (g) | 5 | - | - |
Fructose (g) | 4.1 | - | - |
n | 60 |
---|---|
Gender (women %) | 38 (63%) |
Age (years) mean ± SD | 43.13 ± 9.4 |
BMI before BS (kg/m2) mean ± SD | 43.57 ± 4.11 |
Parameters | Control Product | Product with HMB | Short Peptides Product | |||
---|---|---|---|---|---|---|
Baseline | 1 Month after BS | Baseline | 1 Month after BS | Baseline | 1 Month after BS | |
Fat mass (FM) (kg) | 50.80 ± 7.33 | 43.66 ± 7.53 | 50.97 ± 10.28 | 44.08 ± 10.48 | 58.25 ± 6.83 | 45.12 ± 7.46 |
Fat-free mass (FFM) (kg) | 69.76 ± 10.10 | 64.89 ± 9.28 b | 58.20 ± 12.72 | 54.27 ± 11.73 b | 62.81 ± 11.54 | 59.28 ± 10.31 |
Body cell mass (BCM) (kg) | 44.98 ± 5.44 | 40.33 ± 4.96 b | 38.96 ± 7.61 | 35.22 ± 6.58 b | 41.81 ± 7.03 | 37.15 ± 5.74 |
BMI (kg/m2) | 42.51 ± 3.56 | 38.28 ± 3.23 | 43.45 ± 4.37 | 39.19 ± 4.25 | 44.77 ± 4.47 | 38.62 ± 3.43 |
FFMI (kg/m2) | 24.43 ± 1.76 | 22.76 ± 1.66 a | 22.93 ± 2.37 | 21.38 ± 2.29 | 23.08 ± 3.15 | 21.78 ± 2.71 a |
Resistance (R) (50 kHz) (Ω) | 402.60 ± 37.10 | 457.2 ± 51.19 | 409.40 ± 45.49 | 454.7 ± 52.38 | 424.30 ± 70.56 | 452.20 ± 71.11 |
Reactance (Xc) (50 kHz) (Ω) | 49.50 ± 8.66 | 52.32 ± 7.90 a | 44.80 ± 7.16 | 48.93 ± 13.10 | 48.00 ± 6.13 | 46.94 ± 5.49 a |
Impedance (Z) (50 kHz) (Ω) | 405.70 ± 37.62 | 460.2 ± 51.68 | 410.80 ± 45.48 | 457.4 ± 53.02 | 427.00 ± 70.53 | 454.90 ± 70.91 |
Phase angle (PA) (º) | 7.03 ± 0.99 | 6.54 ± 0.75 | 6.29 ± 0.96 | 6.10 ± 1.25 b | 6.55 ± 0.96 | 6.01 ± 0.99 a |
CK (UI/l) | 126.90 ± 35.04 | 92.20 ± 55.18 | 127.90 ± 71.15 | 88.90 ± 63.78 | 131.60 ± 97.42 | 76.70 ± 59.74 a |
Protein (g/dL) | 7.10 ± 0.46 | 6.66 ± 2.39 | 7.25 ± 0.33 | 7.15 ± 0.51 | 7.10 ± 0.49 | 7.04 ± 0.57 |
Albumin (g/dL) | 4.21 ± 0.030 | 4.02 ± 1.47 | 4.18 ± 0.30 | 4.35 ± 0.39 | 4.22 ± 0.29 | 4.25 ± 0.31 |
Transthyretin (mg/dL) | 24.47 ± 3.90 | 16.39 ± 11.39 | 25.42 ± 5.47 | 21.86 ± 5.16 b | 24.26 ± 2.34 | 18.59 ± 3.75 a |
Parameters | Control Product | Product with HMB | Short Peptides Product |
---|---|---|---|
FFM from TWL (%) | 40.60 ± 17.27 a | 34.57 ± 13.15 c | 19.14 ± 9.38 a,c |
TWL (%) | 9.98 ± 1.82 a | 9.83 ± 2.71 c | 13.56 ± 4.30 a,c |
FFM loss (kg) | 4,87 ± 2.39 | 3.93 ± 2.32 | 3.53 ± 2.81 |
Organoleptic Values | Good Acceptance | ||
---|---|---|---|
Control Product 30% (24) | Product with HMB 35% (28) | Short Peptides Product 35% (28) | |
Flavor/taste | 91.7% (22) | 64.3% (18) | 71.4% (20) |
Smell | 91.7% (22) | 78.6% (22) | 71.4% (20) |
Color | 91.7% (22) | 85.7% (24) | 85.7% (24) |
Tolerance | 83.3% (20) | 71.4% (20) | 71.4% (20) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comas Martínez, M.; Fidilio Meli, E.; Palmas Candia, F.; Cordero, E.; Hernández, I.; Vilallonga, R.; Burgos, R.; Vila, A.; Simó, R.; Ciudin, A. Protein Supplementation with Short Peptides Prevents Early Muscle Mass Loss after Roux-en-Y-Gastric Bypass. Nutrients 2022, 14, 5095. https://doi.org/10.3390/nu14235095
Comas Martínez M, Fidilio Meli E, Palmas Candia F, Cordero E, Hernández I, Vilallonga R, Burgos R, Vila A, Simó R, Ciudin A. Protein Supplementation with Short Peptides Prevents Early Muscle Mass Loss after Roux-en-Y-Gastric Bypass. Nutrients. 2022; 14(23):5095. https://doi.org/10.3390/nu14235095
Chicago/Turabian StyleComas Martínez, Marta, Enzamaria Fidilio Meli, Fiorella Palmas Candia, Efrain Cordero, Irene Hernández, Ramon Vilallonga, Rosa Burgos, Anna Vila, Rafael Simó, and Andreea Ciudin. 2022. "Protein Supplementation with Short Peptides Prevents Early Muscle Mass Loss after Roux-en-Y-Gastric Bypass" Nutrients 14, no. 23: 5095. https://doi.org/10.3390/nu14235095
APA StyleComas Martínez, M., Fidilio Meli, E., Palmas Candia, F., Cordero, E., Hernández, I., Vilallonga, R., Burgos, R., Vila, A., Simó, R., & Ciudin, A. (2022). Protein Supplementation with Short Peptides Prevents Early Muscle Mass Loss after Roux-en-Y-Gastric Bypass. Nutrients, 14(23), 5095. https://doi.org/10.3390/nu14235095