A Culturally Sensitive and Theory-Based Intervention on Prevention and Management of Diabetes: A Cluster Randomized Control Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Diabetes Education Intervention
2.3. Data Collection
2.3.1. Knowledge Assessment
2.3.2. Health Beliefs
2.3.3. Self-Efficacy
2.3.4. Dietary Intake
2.3.5. Physical Activity
2.3.6. Anthropometric Measures
2.4. Data Analysis
3. Results
3.1. Effect of Intervention on Diabeteknowledge, Health beliefs, Physical Activity, Dietary Intake and Weight Status
3.1.1. Diabetes Knowledge
3.1.2. Health Beliefs
Perceived Susceptibility
Perceived Seriousness
Perceived Benefits
Perceived Barriers
Self-Efficacy
3.1.3. Dietary Intake
3.1.4. Physical Activity and Weight Status
4. Discussion
Implications and Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO, (World Health Organization). Non-Communicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 9 September 2021).
- Phaswana-Mafuya, N.; Peltzer, K.; Chirinda, W.; Musekiwa, A.; Kose, Z.; Hoosain, E.; Davids, A.; Ramlagan, S. Self-Reported Prevalence of Chronic Non-Communicable Diseases and Associated Factors among Older Adults in South Africa. Glob. Health Action 2017, 6, 20936. [Google Scholar] [CrossRef] [PubMed]
- Melaku, Y.A.; Gill, T.K.; Taylor, A.W.; Appleton, S.L.; Gonzalez-Chica, D.; Adams, R.; Achoki, T.; Shi, Z.; Renzaho, A. Trends of Mortality Attributable to Child and Maternal Undernutrition, Overweight/Obesity and Dietary Risk Factors of Non-Communicable Diseases in Sub-Saharan Africa, 1990–2015: Findings from the Global Burden of Disease Study 2015. Public Health Nutr. 2019, 22, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Gouda, H.N.; Charlson, F.; Sorsdahl, K.; Ahmadzada, S.; Ferrari, A.J.; Erskine, H.; Leung, J.; Santamauro, D.; Lund, C.; Aminde, L.N.; et al. Burden of Non-Communicable Diseases in Sub-Saharan Africa, 1990–2017: Results from the Global Burden of Disease Study 2017. Lancet Glob. Health 2019, 7, e1375–e1387. [Google Scholar] [CrossRef] [Green Version]
- Remais, J.V.; Zeng, G.; Li, G.; Tian, L.; Engelgau, M.M. Convergence of Non-Communicable and Infectious Diseases in Low- and Middle-Income Countries. Int. J. Epidemiol. 2013, 42, 221–227. [Google Scholar] [CrossRef]
- Jailobaeva, K.; Falconer, J.; Loffreda, G.; Arakelyan, S.; Witter, S.; Ager, A. An Analysis of Policy and Funding Priorities of Global Actors Regarding Noncommunicable Disease in Low- and Middle-Income Countries. Glob. Health 2021, 17, 68. [Google Scholar] [CrossRef]
- Roser, M.; Ritchie, H. Burden of Disease. Available online: https://ourworldindata.org/burden-of-disease (accessed on 29 August 2022).
- Allen, L. Non-Communicable Disease Funding. Lancet Diabetes Endocrinol. 2017, 5, 92. [Google Scholar] [CrossRef] [PubMed]
- Manne-Goehler, J.; Geldsetzer, P.; Agoudavi, K.; Andall-Brereton, G.; Aryal, K.K.; Bicaba, B.W.; Bovet, P.; Brian, G.; Dorobantu, M.; Gathecha, G.; et al. Health System Performance for People with Diabetes in 28 Low- and Middle-Income Countries: A Cross-Sectional Study of Nationally Representative Surveys. PLoS Med. 2019, 16, e1002751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiberenge, M.W.; Ndegwa, Z.M.; Njenga, E.W.; Muchemi, E.W. Knowledge, Attitude and Practices Related to Diabetes among Community Members in Four Provinces in Kenya: A Cross-Sectional Study. Pan. Afr. Med. J. 2017, 7, 2. [Google Scholar]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global Nutrition Transition and the Pandemic of Obesity in Developing Countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M. The Nutrition Transition: An Overview of World Patterns of Change. Nutr. Rev. 2004, 62, S140–S143. [Google Scholar] [CrossRef]
- McCloskey, M.L.; Tarazona-Meza, C.E.; Jones-Smith, J.C.; Miele, C.H.; Gilman, R.H.; Bernabe-Ortiz, A.; Miranda, J.J.; Checkley, W. Disparities in Dietary Intake and Physical Activity Patterns across the Urbanization Divide in the Peruvian Andes. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Ojiambo, R.M.; Easton, C.; Casajús, J.A.; Konstabel, K.; Reilly, J.J.; Pitsiladis, Y. Effect of Urbanization on Objectively Measured Physical Activity Levels, Sedentary Time, and Indices of Adiposity in Kenyan Adolescents. J. Phys. Act. Health 2012, 9, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IDF (International Diabetes Federation). Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- WHO, (World Health Organization). The Mysteries of Type 2 Diabetes in Developing Countries. Bull. World Health Organ. 2016, 94, 241–242. [Google Scholar] [CrossRef] [PubMed]
- Cusack, L.; Del Mar, C.; Chalmers, I.; Gibson, E.; Hoffman, T. Educational Interventions to Improve People’s Understanding of Key Concepts in Assessing the Effects of Health Interventions: A Systematic Review. Syst. Rev. 2018, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- MoH, (Ministry of Health). National Clinical Guidelines for Management of Diabetes Mellitus; Ministry of Health: Nairobi, Kenya, 2010.
- MoH, (Ministry of Health). Kenya National Strategy for The Prevention And Control Of Non-Communicable Diseases (2015–2020); Ministry of Health: Nairobi, Kenya, 2015.
- Torres-Ruiz, M.; Robinson-Ector, K.; Attinson, D.; Trotter, J.; Anise, A.; Clauser, S. A Portfolio Analysis of Culturally Tailored Trials to Address Health and Healthcare Disparities. Int. J. Environ. Res. Public Health 2018, 15, 1859. [Google Scholar] [CrossRef] [Green Version]
- Kupolati, M.D.; MacIntyre, U.E.; Gericke, G.J. A Theory-Based Contextual Nutrition Education Manual Enhanced Nutrition Teaching Skill. Front. Public Health 2018, 6, 157. [Google Scholar] [CrossRef] [Green Version]
- Levitt, N.S.; Steyn, K.; Lambert, E.V.; Reagon, G.; Lombard, C.J.; Fourie, J.M.; Rossouw, K.; Hoffman, M. Modifiable Risk Factors for Type 2 Diabetes Mellitus in a Peri-Urban Community in South Africa. Diabet. Med. 1999, 16, 946–950. [Google Scholar] [CrossRef]
- Muchiri, J.W.; Gericke, G.J.; Rheeder, P. Impact of Nutrition Education on Diabetes Knowledge and Attitudes of Adults with Type 2 Diabetes Living in a Resource-Limited Setting in South Africa: A Randomised Controlled Trial. J. Endocrinol. Metab. Diabetes South Afr. 2016, 21, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Bennett, B.J.; Hall, K.D.; Hu, F.B.; McCartney, A.L.; Roberto, C. Nutrition and the Science of Disease Prevention: A Systems Approach to Support Metabolic Health. Ann. N. Y. Acad. Sci. 2015, 1352, 1–12. [Google Scholar] [CrossRef] [Green Version]
- UCLA. Statistical Consulting Group Introduction to Power Analysis. Available online: https://stats.oarc.ucla.edu/other/mult-pkg/seminars/intro-power/ (accessed on 3 October 2022).
- ADA, A.D.A. Lifestyle Management: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019, 42, S46–S60. [Google Scholar] [CrossRef] [Green Version]
- VUMC Educational Toolkit Materials|Center for Effective Health Communication. Available online: https://www.vumc.org/cehc/educational-toolkit-materials (accessed on 13 June 2020).
- USDA Meal Planning, Shopping, and Budgeting. Available online: https://snaped.fns.usda.gov/nutrition-education/nutrition-education-materials/meal-planning-shopping-and-budgeting (accessed on 10 June 2020).
- UMHS Michigan Diabetes Research Center: Pilot and Feasibility. Available online: http://diabetesresearch.med.umich.edu/Tools_SurveyInstruments.php (accessed on 25 March 2020).
- Tan, M.Y. The Relationship of Health Beliefs and Complication Prevention Behaviors of Chinese Individuals with Type 2 Diabetes Mellitus. Diabetes Res. Clin. Pract. 2004, 66, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Kartal, A.; Özsoy, S.A. Validity and Reliability Study of the Turkish Version of Health Belief Model Scale in Diabetic Patients. Int. J. Nurs. Stud. 2007, 44, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, R.; Renner, B. Risk and Health Behaviors—Documentation of the Scales of the Research Project: “Risk Appraisal Consequences in Korea” (RACK); Freie Universität Berlin: Berlin, Germany, 2005. [Google Scholar]
- Willet, W.; Harvard, T.H. Chan School of Public Health Nutrition Department’s File Download Site. Available online: https://regepi.bwh.harvard.edu/health/nutrition.html (accessed on 10 May 2020).
- IPAQ Downloadable Questionnaires—International Physical Activity Questionnaire. Available online: https://sites.google.com/site/theipaq/questionnaire_links (accessed on 8 May 2020).
- Chawla, S.P.S.; Kaur, S.; Bharti, A.; Garg, R.; Kaur, M.; Soin, D.; Ghosh, A.; Pal, R. Impact of Health Education on Knowledge, Attitude, Practices and Glycemic Control in Type 2 Diabetes Mellitus. J. Family Med. Prim. Care 2019, 8, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Shiferaw, W.S.; Akalu, T.Y.; Desta, M.; Kassie, A.M.; Petrucka, P.M.; Aynalem, Y.A. Effect of Educational Interventions on Knowledge of the Disease and Glycaemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. BMJ Open 2021, 11, e049806. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.; Murimi, M. A Theory-Based Nutrition Education Intervention to Improve Calcium Intake in Hanoi, Vietnam; Texas Tech University: Lubbock, TX, USA, 2020. [Google Scholar]
- Suratman, S.; Ross, K.E.; Babina, K.; Edwards, J.W. The Effectiveness of an Educational Intervention to Improve Knowledge and Perceptions for Reducing Organophosphate Pesticide Exposure among Indonesian and South Australian Migrant Farmworkers. RMHP 2016, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashton, L.M.; Hutchesson, M.J.; Rollo, M.E.; Morgan, P.J.; Collins, C.E. Motivators and Barriers to Engaging in Healthy Eating and Physical Activity. Am. J. Mens. Health 2017, 11, 330–343. [Google Scholar] [CrossRef] [Green Version]
- Boyle, M. Community Nutrition in Action, 8th ed.; CENGAGE Learning: Belmont, CA, USA, 2021; ISBN 0-357-36808-8. [Google Scholar]
- Muyanga, M.; Jayne, T.S.; Argwings-Kodhek, G.; Ariga, J. Staple Food Consumption Patterns in Urban Kenya: Trends And Policy Implications; Egerton University: Tegemeo Institute of Agricultural Policy and Development: Njoro, Kenya, 2019. [Google Scholar]
- Sawicki, C.M.; Jacques, P.F.; Lichtenstein, A.H.; Rogers, G.T.; Ma, J.; Saltzman, E.; McKeown, N.M. Whole- and Refined-Grain Consumption and Longitudinal Changes in Cardiometabolic Risk Factors in the Framingham Offspring Cohort. J. Nutr. 2021, 151, 2790–2799. [Google Scholar] [CrossRef]
- McKiernan, F.; Hollis, J.H.; Mattes, R.D. Short-Term Dietary Compensation in Free-Living Adults. Physiol. Behav. 2008, 93, 975–983. [Google Scholar] [CrossRef] [Green Version]
- USDA Dietary Guidelines for Americans, 2020–2025; United States Department of Agriculture: Washington, DC, USA, 2020.
- Nyanchoka, A.M.; Stuijvenberg, M.E.V.; Tambe, A.B.; Mbhenyane, X.G. Fruit and Vegetables Consumption Patterns and Risk of Chronic Disease of Lifestyle among University Students in Kenya. Proc. Nutr. Soc. 2021, 80. [Google Scholar] [CrossRef]
- Golden, S.D.; Earp, J.A.L. Social Ecological Approaches to Individuals and Their Contexts: Twenty Years of Health Education & Behavior Health Promotion Interventions. Health Educ. Behav. 2012, 39, 364–372. [Google Scholar] [CrossRef]
- Hall, K.D.; Kahan, S. Maintenance of Lost Weight and Long-Term Management of Obesity. Med. Clin. N. Am. 2018, 102, 183–197. [Google Scholar] [CrossRef] [PubMed]
Total Participants | Intervention Group | Control Group | p-Value | |
---|---|---|---|---|
Mean ± SD | ||||
Age (years) | 37.5 ± 12.7 | 39.4 ± 12.6 | 35.5 ± 12.7 | 0.02 |
Weight (pounds) | 169.9 ± 38.8 | 164.2 ± 31.1 | 175.9 ± 44.8 | 0.02 |
Height (inches) | 65.0 ± 6.4 | 63.7 ± 8.5 | 66.0 ± 3.4 | 0.01 |
Body Mass Index | ||||
Underweight | 4 (1.8) | 3 (2.6) | 1 (0.9) | 0.001 |
Normal weight | 84 (37.2) | 40 (34.8) | 44 (40.0) | |
Overweight | 51 (22.6) | 22 (19.1) | 29 (26.4) | |
Obese | 72 (31.9) | 36 (31.3) | 36 (32.7) | |
Gender | ||||
Male | 64 (28.3) | 38 (32.8) | 26 (23.6) | 0.08 |
Female | 158 (69.9) | 74 (63.8) | 84 (76.4) | |
Education | ||||
Primary School | 9 (4.0) | 5 (4.3) | 4 (3.6) | 0.06 |
Secondary School | 77 (34.1) | 28 (24.1) | 49 (44.5) | |
College (2-year degree) | 77 (34.1) | 45 (38.8) | 32 (29.1) | |
University Degree (4-year degree) | 50 (22.1) | 29 (25.0) | 21 (19.1) | |
Post-graduate Degree | 12 (5.3) | 8 (6.9) | 4 (3.6) | |
Occupation | ||||
Government employed | 87 (38.5) | 49 (42.2) | 38 (34.5) | 0.81 |
NGO employed | 27 (11.9) | 14 (12.1) | 13 (11.8) | |
Self employed | 43 (19.0) | 21 (18.1) | 22 (20.0) | |
Homemaker | 9 (4.0) | 3 (2.6) | 6 (5.5) | |
Retired | 7 (3.1) | 4 (3.4) | 3 (2.7) | |
Not employed | 50 (22.1) | 23 (19.8) | 27 (24.5) | |
Unable to work | 2 (0.9) | 1 (0.9) | 1 (0.9) | |
Household Income | ||||
100 USD or less | 49 (21.7) | 24 (20.7) | 25 (22.7) | 0.97 |
100–299 USD | 75 (33.2) | 38 (32.8) | 37 (33.6) | |
300–499 USD | 41 (18.1) | 21 (18.1) | 20 (18.2) | |
500–999 USD | 35 (15.5) | 19 (16.4) | 16 (14.5) | |
1000 USD and above | 9 (4.0) | 5 (4.3) | 4 (3.6) | |
Diabetes Diagnosis | ||||
Yes | 20 (8.8) | 9 (45.0) | 11 (55.0) | 0.71 |
No | 206 (91.2) | 107 (51.9) | 99 (48.1) | |
Family history of diabetes | ||||
Yes | 75 (33.2) | 36 (48.0) | 39 (52.0) | 0.67 |
No | 151 (66.8%) | 71 (47.0) | 80 (53.0) | |
Type of family member with diabetes | ||||
dia | 32 (42.6%) | 14 (43.8) | 18 (56.2 | 0.63 |
Extended | 28 (37.33%) | 17 (60.7) | 11 (39.30) | |
Both | 15 (20.0%) | 6 (40) | 9 (60) |
Variables | Baseline Assessment (T1) | Post-Intervention Assessment (T2) (1 Week after Baseline) | Follow-Up Assessment (T3) (5 Weeks after Baseline) | ΔT3-T1 (m ± sd) | p-Value † between Groups over Time | ||||
---|---|---|---|---|---|---|---|---|---|
Mean Change ± SD | Mean Change ± SD | Mean Change ± SD | |||||||
IG | CG | IG | CG | IG | CG | IG | CG | ||
Diabetes Knowledge | 1.43 ± 0.68 | 1.36 ± 0.61 | 2.80 ± 0.55 | 1.31 ± 0.59 | 2.87 ± 0.43 | 1.40 ± 0.69 | 1.44 ± 0.56 | 0.04 ± 0.65 | 0.001 |
Perceived Susceptibility | 2.37 ± 1.06 | 2.21 ± 1.02 | 3.03 ± 0.53 | 2.27 ± 0.95 | 3.22 ± 1.11 | 2.34 ± 0.90 | 0.85 ± 1.09 | 0.13 ± 0.96 | 0.05 |
Perceived Seriousness | 2.91 ± 0.83 | 3.13 ± 0.72 | 2.53 ± 0.39 | 3.03 ± 0.79 | 2.51 ± 0.97 | 2.99 ± 0.78 | −0.4 ± 0.90 | −0.14 ± 0.75 | 0.06 |
Perceived Benefits | 3.63 ± 0.94 | 3.48 ± 0.95 | 4.30 ± 0.91 | 3.41 ± 0.89 | 3.64 ± 0.89 | 3.43 ± 0.85 | 0.01 ± 0.92 | −0.05 ± 0.90 | 0.04 |
Perceived Barriers | 2.58 ± 0.92 | 2.67 ± 0.92 | 2.54 ± 0.32 | 2.64 ± 0.81 | 2.45 ± 0.94 | 2.68 ± 0.75 | −0.13 ± 0.93 | 0.01 ± 0.84 | 0.09 |
Self-efficacy-Nutrition | 3.12 ± 0.74 | 3.09 ± 0.76 | 3.82 ± 0.62 | 3.08 ± 0.68 | 3.86 ± 0.72 | 3.06 ± 0.68 | 0.74 ± 0.73 | −0.03 ± 0.72 | 0.02 |
Self-efficacy-Physical activity | 2.98 ± 0.82 | 2.92 ± 0.83 | 3.03 ± 0.82 | 2.89 ± 0.79 | 3.05 ± 0.81 | 2.87 ± 0.77 | 0.07 ± 0.82 | −0.05 ± 0.80 | 0.98 |
Self-efficacy-Alcohol (n = 76) | 3.08 ± 0.81 | 3.04 ± 0.87 | 3.49 ± 0.29 | 2.99 ± 0.82 | 3.48 ± 0.81 | 2.86 ± 0.83 | 0.40 ± 0.81 | −0.18 ± 0.85 | 0.02 |
Self-efficacy-Smoking (n = 30) | 2.71 ± 1.02 | 2.33 ± 0.88 | 2.85 ± 0.32 | 2.89 ± 1.01 | 2.71 ± 1.02 | 2.89 ± 1.02 | 0.00 ± 1.02 | 0.56 ± 0.95 | 0.12 |
Food Groups | Baseline Assessment Mean (SD) | Follow-Up Assessment Mean (SD) | ΔT3-T1 (m ± sd) | p-Value between Groups Over Time | |||
---|---|---|---|---|---|---|---|
IG | CG | IG | CG | IG | CG | ||
Whole Grain †† | 2.40 (2.26) | 2.28 (2.23) | 2.09 (2.51) | 2.30 (2.31) | −0.31 ± 2.385 | 0.02 ± 2.27 | 0.77 |
Refined Grains †† | 6.03 (1.89) | 6.01 (1.92) | 5.43 (1.29) | 6.13 (1.03) | −0.6 ± 1.59 | 0.12 ± 1.48 | 0.01 |
Meat/poultry/eggs φ | 1.48 (1.68) | 1.52 (1.68) | 2.38 (1.39) | 1.72 (1.36) | 0.9 ± 1.54 | 0.20 ± 1.52 | 0.34 |
Fish/seafood φ | 3.36 (1.67) | 3.01 (1.67) | 3.22 (1.29) | 3.38 (1.23) | −0.14 ± 1.48 | 0.37 ± 1.45 | 0.69 |
Dark green vegetable Φ | 4.93 (2.21) | 4.95 (2.22) | 4.84 (1.49) | 4.56 (1.81) | −0.09 ± 1.85 | −0.39 ± 2.02 | 0.17 |
Red & orange vegetables Φ | 6.15 (1.87) | 6.14 (1.89) | 6.23 (0.91) | 6.22 (0.83) | 0.08 ± 1.39 | 0.08 ± 1.36 | 0.56 |
Other vegetables Φ | 3.98 (2.60) | 3.99 (2.62) | 3.86 (2.17) | 3.87 (1.99) | −0.12 ± 2.39 | −0.12 ± 2.31 | 0.51 |
Oils ¥ | 42.53 (1.42) | 43.54 (1.02) | 38.7 (0.83) | 44.72 (0.86) | −3.83 ± 1.13 | 1.18 ± 0.94 | 0.03 |
Starchy vegetables Φ | 2.21 (0.31) | 2.28 (0.31) | 3.62 (0.57) | 2.26 (3.09) | 1.41 ± 0.44 | −0.02 ± 1.70 | 0.001 |
Beans/peas/lentils Φ | 2.19 (2.64) | 2.17 (2.65) | 2.47 (2.17) | 2.37 (1.95) | 0.28 ± 2.41 | 0.20 ± 2.30 | 0.29 |
Fruits †† | 3.68 (2.88) | 3.66 (2.93) | 4.66 (1.88) | 3.81 (2.00) | 0.98 ± 2.38 | 0.15 ± 2.47 | 0.01 |
Dairy †† | 5.14 (3.02) | 5.02 (3.08) | 4.41 (2.00) | 4.92 (2.20) | −0.73 ± 2.50 | −0.10 ± 2.64 | 0.05 |
Nuts/seeds/soy φ | 0.75 (1.20) | 0.82 (1.33) | 0.78 (0.89) | 0.75 (0.85) | 0.03 ± 1.05 | −0.07 ± 1.09 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Githinji, P.; Dawson, J.A.; Appiah, D.; Rethorst, C.D. A Culturally Sensitive and Theory-Based Intervention on Prevention and Management of Diabetes: A Cluster Randomized Control Trial. Nutrients 2022, 14, 5126. https://doi.org/10.3390/nu14235126
Githinji P, Dawson JA, Appiah D, Rethorst CD. A Culturally Sensitive and Theory-Based Intervention on Prevention and Management of Diabetes: A Cluster Randomized Control Trial. Nutrients. 2022; 14(23):5126. https://doi.org/10.3390/nu14235126
Chicago/Turabian StyleGithinji, Phrashiah, John A. Dawson, Duke Appiah, and Chad D. Rethorst. 2022. "A Culturally Sensitive and Theory-Based Intervention on Prevention and Management of Diabetes: A Cluster Randomized Control Trial" Nutrients 14, no. 23: 5126. https://doi.org/10.3390/nu14235126
APA StyleGithinji, P., Dawson, J. A., Appiah, D., & Rethorst, C. D. (2022). A Culturally Sensitive and Theory-Based Intervention on Prevention and Management of Diabetes: A Cluster Randomized Control Trial. Nutrients, 14(23), 5126. https://doi.org/10.3390/nu14235126