The Spectrum of Pharmacological Actions of Syringetin and Its Natural Derivatives—A Summary Review
Abstract
:1. Introduction
1.1. Syringetin
1.2. Pharmacological Effects of Syringetin
1.3. Laricitrin
1.4. Isorhamnetin
1.5. Ayanin
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stompor-Gorący, M.; Bajek-Bil, A.; Machaczka, M. Chrysin: Perspectives on contemporary status and future possibilities as pro-health agent. Nutrients 2021, 13, 2038. [Google Scholar] [CrossRef] [PubMed]
- Panek-Krzyśko, A.; Stompor-Gorący, M. The pro-health benefits of morusin administration–an update review. Nutrients 2021, 13, 3043. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Walle, T. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab. Dispos. 2006, 34, 1786–1792. [Google Scholar] [CrossRef] [Green Version]
- Stompor, M. A review on sources and pharmacological aspects of sakuranetin. Nutrients 2020, 12, 513. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Cha, H.J.; Choi, E.O.; Lee, H.; Lee, H.; Hwang-Bo, H.; Ji, S.Y.; Kim, M.Y.; Kim, S.Y.; Hong, S.H.; et al. Isorhamnetin induces cell cycle arrest and apoptosis via reactive oxygen species-mediated AMP-activated protein kinase signaling pathway activation in human bladder cancer cells. Cancers 2019, 11, 1494. [Google Scholar] [CrossRef] [Green Version]
- Ming-Yu, H.; Ming-Ju, H.; Yu-Sheng, L.; Chia-Chieh, L.; Yi-Ching, C.; Mu-Kuan, C.; Ming-Chih, C. Xanthohumol target the JNK1/2 signaling pathway in apoptosis of human nasopharyngeal carcinoma cells. Environ. Toxicol. 2022, 37, 1509–1520. [Google Scholar]
- Zhou, W.; Yang, L.; Deng, K.; Xu, G.; Wang, Y.; Ni, Q.; Zhang, Y. Investigation of isoflavone constituents from tuber of Apios americana Medik and its protective effect against oxidative damage on RIN-m5F cells. Food Chem. 2023, 405, 134655. [Google Scholar] [CrossRef]
- Lee, D.S.; Lee, M.; Sung, S.H.; Jeong, G.S. Involvement of heme oxygenase-1 induction in the cytoprotective and neuroinflammatory activities of Siegesbeckia pubescens isolated from 5,3′-dihydroxy-3,7,4′-trimethoxyflavone in HT22 cells and BV2 cells. Int. Immunopharmacol. 2016, 40, 65–72. [Google Scholar] [CrossRef]
- Langley, B.O.; Ryan, J.J.; Phipps, J.; Buttolph, L.; Bray, B.; Aslan, J. E Xanthohumol microbiome and signature in adults with Crohn’s disease (the XMaS trial): A protocol for a phase II triple-masked, plabeco-controlled clinical trial. Trials 2022, 23, 885. [Google Scholar] [CrossRef]
- Möller, G.; Temml, V.; Cala Peralta, A.; Gruet, O.; Richomme, P.; Séraphin, D.; Viault, G.; Kraus, L.; Huber-Cantonati, P.; Schopfhauser, E.; et al. Analogueues of natural chalcones as efficient inhibitors of AKR1C3. Metabolites 2022, 12, 99. [Google Scholar] [CrossRef]
- Guo, J.; Yu, D.L.; Xu, L.; Zhu, M.; Yang, S.L. Flavonol glycosides from Lysimachia congestiflora. Phytochemistry 1998, 48, 1445–1457. [Google Scholar]
- Ono, M.; Koto, M.; Komatsu, H.; Igoshi, K.; Kobayashi, H.; Ito, Y.; Nohara, T. Cytotoxic triterpenes and sterol from the fruit of rabbiteye blueberry (Vaccinium ashei). Food Sci. Technol. Res. 2004, 10, 56–59. [Google Scholar] [CrossRef]
- Favre, G.; González-Neves, G.; Piccardo, D.; Gómez-Alonso, S.; Pèrez-Navarro, J.; Hermosín-Gutièrrez, I. New acylated flavonols identified in Vitis vinifera grapes and wines. Food Res. J. 2018, 112, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, Y.; Lu, J. Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and orginations. Int. J. Mol. Sci. 2012, 13, 3492–3510. [Google Scholar] [CrossRef] [Green Version]
- Tavares, I.M.C.; Lago-Vanzela, E.S.; Rebello, L.P.G.; Ramos, A.M.; Gómez-Alonso, S.; García-Romero, E.; Da-Silva, R.; Hermosín-Gutièrrez, I. Comprehensive study of the phenolic composition of the edible parts of jambolan fruits (Syzygium cumini (L.) skeels. Food Res. Int. 2016, 82, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pardhasaradhi, M.; Sidhu, G.S. Obtusifoliol, syringetin and dihydrosyringetin from Soymida febrifuga. Phytochemistry 1972, 11, 1520–1522. [Google Scholar] [CrossRef]
- Pertuzatti, B.; Teixeira Barcia, M.; Gómez-Alonso, S.; Teixeira Godoy, H.; Hermosin-Gutierrez, I. Phenolics profiling by HPLC-DAD-ESI-MSn aided by principal component analysis to classify rabbiteye and Highbush blueberries. Food Chem. 2021, 340, 127959. [Google Scholar] [CrossRef]
- Kakorin, P.A.; Fateeva, T.V.; Tereshkina, O.I.; Perova, I.B.; Ramenskaya, G.V.; Sologova, S.S.; Eller, K.I. Antimicrobial activity of liophillized aqueous extract from Caragana jubata (Pall.) poir. Pharm. Chem. J. 2020, 54, 290–292. [Google Scholar] [CrossRef]
- Kakorin, P.A.; Babenkova, I.V.; Teselkin, Y.P.; Ramenskaya, G.V.; Demura, T.A.; Kukes, V.G. Hepatoprotective activity of aqueous extract from Caragana jubata (Pall.) Poir shoots in the model of acute hepatitis induced by acetaminophen in rats. Biomed. Khim. 2018, 64, 241–246. [Google Scholar] [CrossRef] [Green Version]
- El-Aasr, M.; Kabbash, A.; Abo El-Seoud, K.A.; Al-Madboly, L.A.; Ikeda, T. Antimicrobial and immunomodulatory activities of flavonol glycosides isolated from Atriplex halimus L. herb. J. Pharm. Sci. Res. 2016, 8, 1159–1168. [Google Scholar]
- Shi, P.B.; Yue, T.X.; Ai, L.L.; Cheng, Y.F.; Meng, J.F.; Li, M.H.; Zhang, Z.W. Phenolic compound profiles in grape skins of Cabernet Sauvignon, Merlot, Syrah and Marselan cultivated in the Shachen area (China). S. Afr. Enol. Vitic. 2016, 37, 132–138. [Google Scholar]
- Niemann, G.J.; Baas, W.J. Phenolics from larix needles XIV flavonoids and phenolic glucosides and ester of L. decidua. Z. Nat. C J. Biosci. 1978, 33, 780–782. [Google Scholar] [CrossRef]
- Pico, J.; Yanm, Y.; Gerbrandt, E.M.; Castellarin, S.D. Determination of free and bound phenolic in northern highbush blueberries by a validated HPLC/QTOF methodology. J. Food Compos. Anal. 2022, 108, 104412. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, J.P.; Li, C.Y.; Zhu, L.J.; Zhang, X.; Wang, J.H.; Yao, X.S. Flavonoid glycosides from the fruits of Embelia ribes and their anti-oxidant and α-glucosidase inhibitory activities. J. Asian Nat. Prod. Res. 2021, 23, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Race, E.J.; Shikhande, A.J. Anthocyanin transformation in Cabernet Sauvignon wine during aging. J. Agric. Food Chem. 2003, 51, 7989–7994. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Gao, M.; Li, H.; Han, X.; Zhang, X.; Li, Y.; Guo, D.; Liu, B. Three new bisflavonols from the seeds of Hovenia dulcis Thunb. and their anti-RSV activities. Fitoterapia 2020, 143, 104587. [Google Scholar] [CrossRef]
- Ferreira, V.; Fernandes, F.; Pinto-Carnide, O.; Valentão, P.; Falco, V.; Martín, J.P.; Ortiz, J.M.; Arroyo-García, R.; Andrade, P.B.; Castro, I. Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile. Food Chem. 2016, 194, 117–127. [Google Scholar] [CrossRef]
- Parker, W.H.; Maze, J.; McLachlan, D.G. Flavonoids of Abies amabilis needles. Phytochemistry 1979, 18, 508–510. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.F.; Xu, T.F.; Qin, M.Y.; Zhuang, X.F.; Fang, Y.L.; Zhang, Z.W. Phenolic characterization of young wines made from spine grape (Vitis davidii Foex) grown in Chongyi County (China). Food Res. Int. 2012, 49, 664–671. [Google Scholar] [CrossRef]
- Niemann, G.J. Flavonoids and related compounds in leaves of Ponaceae. II. Cedrus atlantica c.v. glauca. Z. Nat. C J. Biosci. 1977, 32, 1015–1017. [Google Scholar]
- Parker, W.H.; Bohm, B.A. Flavonol glycosides of Limnanthes douglasii. Phytochemistry 1975, 14, 553–555. [Google Scholar] [CrossRef]
- Williams, C.A.; Harborne, J.B. The leaf flavonoids of the Zingiberales. Biochem. Syst. Ecol. 1977, 5, 221–229. [Google Scholar] [CrossRef]
- Tyukavkina, N.A.; Medvedeva, S.A.; Ivanova, S.Z. New flavonol glycosides from the needles of Larix sibirica. Chem. Nat. Compd. 1974, 10, 170–172. [Google Scholar] [CrossRef]
- Adell, J.; Barbera, Q.; Alberto Marco, J. Flavonoid glycosides from Anthyllis sericea. Phytochemistry 1988, 27, 2967–2970. [Google Scholar] [CrossRef]
- Yusukawa, K.; Takido, M. Quercetin 3-rhamnosyl (1 → 2) galactoside from Lysimachia vulgaris var. davurica. Phytochemistry 1988, 27, 3017–3018. [Google Scholar] [CrossRef]
- Yasukawa, K.; Ogawa, H.; Takido, M. Two flavonol glycosides from Lysimachia nummularia. Phytochemistry 1990, 29, 1707–1708. [Google Scholar] [CrossRef]
- Mizuno, M.; Yoshida, S.; Linuma, M.; Tanaka, T.; Tsuji, K.; Lang, F.A. Four flavonol glycosides from Achlys triphylla. Phytochemistry 1992, 31, 301–303. [Google Scholar] [CrossRef]
- Slimestad, R.; Andersen, Q.M.; Francis, G.W.; Marston, A.; Hostettmann, K. Syringetin 3-O-(6″-acetyl)-β-glucopyranoside and other flavonols from needles of norway spruce, Picea abies. Phytochemistry 1995, 40, 1537–1542. [Google Scholar] [CrossRef]
- Slimestad, R.; Hostettmann, K. Characterisation of phenolic constituents from juvenile and mature needles of Norway spruce by means of high performance liquid chromatography-mass spectrometry. Phytochem. Anal. 1996, 7, 42–48. [Google Scholar] [CrossRef]
- Wu, J.B.; Cheng, Y.D.; Su, L.L.; Kuo, C.W.; Kuo, S.C. A flavonol C-glycoside from Moghania macrophylla. Phytochemistry 1997, 45, 1727–1728. [Google Scholar] [CrossRef]
- Brun, G.; Dijoux, M.G.; David, B.; Mariotte, A.M. A new flavonol glycoside from Catharanthus roseus. Phytochemistry 1998, 50, 167–169. [Google Scholar] [CrossRef]
- Liu, S.; Marsol-Vall, A.; Laaksonen, O.; Kortesniemi, M.; Yang, B. Characterization and quantification of nonanthocyanin phenolic compounds in white and blue bilberry (Vaccinium myrtillus) juices and wines using UHPLC-DAD-ESI-QTOF-MS and UHPLC-DAD. J. Agric. Food Chem. 2020, 68, 7734–7744. [Google Scholar] [CrossRef]
- Masuoka, C.; Yokoi, K.; Komatsu, H.; Kinjo, J.; Nohara, T.; Ono, M. Two novel antioxidant ortho-benzoyloxyphenyl acetic acid derivatives from the fruit of Vaccinium uliginosum. Food Sci. Technol. Res. 2007, 13, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Eissa, M.A.; Hashim, Y.Z.H.Y.; El-Kersh, D.M.; Abd-Azziz, S.S.S.; Salleh, H.M.; Isa, M.L.M.; Abd Warif, N.M. Metabolite profiling of Aquilaria malaccensis leaf extract using liquid chromatography-Q-TOF-mass spectrometry and investigation of its potential antilipoxygenase activity in vitro. Processes 2020, 8, 202. [Google Scholar] [CrossRef]
- Soltana, H.; De Rosso, M.; Lazreg, H.; Dalla Vedova, A.; Hammami, M.; Flamini, R. LC-QTOF characterization of non-anthocyanic flavonoids in four Tunisian fig varieties. J. Mass Spectrom. 2018, 53, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Fujitaka, Y.; Shimoda, K.; Kubota, N.; Araki, M.; Onishi, T.; Nakayama, N.; Ishihara, K.; Tanigawa, M.; Hamada, H.; Hamada, H. Glycosylation and methylation of quercetin and myricetin by cultured cells of Phytolacca amerykany. Nat. Prod. Commun. 2017, 12, 523–524. [Google Scholar] [PubMed]
- Stompor, M.; Uram, Ł.; Podgórski, R. In vitro effect of 8-prenylnaringenin and naringenin on fibroblasts and glioblastoma cells-cellular accumulation and cytotoxicity. Molecules 2017, 22, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stompor, M.; Świtalska, M.; Wietrzyk, J. The influence of a single and double biotinylation of xanthohumol on its anticancer activity. Acta Biochim. Pol. 2019, 66, 2876. [Google Scholar] [CrossRef]
- Yen, S.C.; Wu, Y.W.; Huang, C.C.; Chao, M.W.; Tu, H.J.; Chen, L.C.; Lin, T.E.; Sung, T.Y.; Tseng, H.J.; Chu, J.C.; et al. O-Methylated flavonol as multi-kinase inhibitor of leukemogenic kinases exhibits a potential treatment for acute myeloid leukemia. Phytomedicine 2022, 100, 154061. [Google Scholar] [CrossRef] [PubMed]
- Vetrivel, P.; Kim, S.M.; Ha, S.E.; Kim, H.H.; Bhosale, P.B.; Senthil, K.; Kim, G.S. Compound prunetin induces cell death in gastric cancer cell with potent anti-proliferative properties: In vitro assay, molecular docking, dynamics, and admet studies. Biomolecules 2020, 10, 1086. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Bazer, F.W.; Lim, W.; Song, G. The O-methylated isoflavone, formononetin, inhibits human ovarian cancer cell proliferation by sub G0/G1 cell phase arrest through PI3K/AKT and ERK1/2 inactivation. J. Cell. Biochem. 2018, 119, 7377–7387. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Alonso, S.; Collins, V.J.; Vauzour, D.; Rodríguez-Mateos, A.; Corona, G.; Spencer, J.P.E. Inhibition of colon adenocarcinoma cell proliferation by flavonols is linked to a G2/M cell cycle block and reduction in cyclin D1 expression. Food Chem. 2012, 130, 493–500. [Google Scholar] [CrossRef]
- Tsai, Y.M.; Chong, I.W.; Hung, J.Y.; Chang, W.A.; Kuo, P.L.; Tsai, M.J.; Hsu, Y.L. Syringetin suppresses osteoclastogenesis mediated by osteoblasts in human lung adenocarcinoma. Oncol. Res. 2015, 34, 617–626. [Google Scholar] [CrossRef]
- Bando, S.I.; Hatano, O.; Takemori, H.; Kubota, N.; Ohnishi, K. Potentiality of syringetin for preferential radiosensitization to cancer cells. Int. J. Radiat. Biol. 2017, 93, 286–294. [Google Scholar] [CrossRef]
- Rosa, A.; Isola, R.; Pollastro, F.; Caria, P.; Appendino, G.; Nieddu, M. The dietary flavonoid eupatilin attenuates in vitro lipid peroxidation and targetes lipid profile in cancer Hela cells. Food Funct. 2020, 11, 5179–5191. [Google Scholar] [CrossRef]
- Lim, S.H.; Yu, J.S.; Lee, H.S.; Choi, C.I.; Kim, K.H. Antidiabetic flavonoids from fruits of Morus alba promoting insulin-stimulated glucose uptake via akt and AMP-activated protein kinase activation in 3T3-L1 adipocytes. Pharmaceutics 2021, 13, 526. [Google Scholar] [CrossRef]
- Naeini, F.; Namkhah, Z.; Tutunchi, H.; Rezayat, S.M.; Mansouri, S.; Jazayeri-Tehrani, S.A.; Yaseri, M.; Hosseizadeh-Attar, M.J. Effects of naringenina supplementation in overweight/obese patients with non-alcoholic fatty liver disease: Study protocol for a randomized double-blind clinical trial. Trials 2021, 22, 801. [Google Scholar] [CrossRef]
- Wu, B.; Song, H.P.; Zhou, X.; Liu, X.G.; Gao, W.; Dong, X.; Li, H.J.; Li, P.; Yang, H. Screening of minor bioactive compounds from herbal medicines by in silico docking and the trace peak exposure methods. J. Chromatogr. A 2016, 1436, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Liao, X.; Chen, Z. Screening and charazterization of potential α-glucosidase inhibitors from Cercis chinensis Bunge fruits using ultrafiltration coupled with HPLC-ESI-MS/MS. Food Chem. 2022, 372, 131316. [Google Scholar] [CrossRef]
- Xu, Q.; Zechen, S.; Long, Y.; Zhang, L.; Pan, Y.; Li, Q. Analyses on antioxidant activity in phenolics and composition and metabolism of flavonoids and related compounds in methanol extracts from bulbs of three Lilium species. J. Plant Resour Environ. 2022, 31, 42–52. [Google Scholar]
- Lau, A.J.; Chang, T.K.H. 3-Hydroxyflavone and structural analogueues differentially activate pregnane X receptor: Implication for inflammatory bowel disease. Pharmacol. Res. 2015, 100, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.B.; Zheng, L.J.; Wu, J.G.; Chen, T.Q.; Yi, J.; Wu, J.Z. Antioxidantt activities of extract and fractions from Receptaculum nelumbinis and related flavonol glycosides. Int. J. Mol. Sci. 2012, 13, 7163–7173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büchter, C.; Ackermann, D.; Honnen, S.; Arnold, N.; Havermann, S.; Koch, K.; Wätjen, W. Methylated derivatives of myricetin enhance life span in Caenorhabditis elegans dependent in the transcription factor DAF-16. Food Funct. 2015, 6, 3383–3392. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.W.; Zhanó, Y.J.; Wang, Y.F.; Lai, C.C.; Yang, C.R. Eucalmaidins A-E, (+)-oleuropeic acid derivatives from the fresh leaves of Eucalyptus maiden. J. Nat. Prod. 2009, 72, 1608–1611. [Google Scholar] [CrossRef]
- Grewal, A.S.; Singh, S.; Sharma, N.; Grover. In silico docking studies of some flavonoids against multi pletarget of Alzheimer’s disease. Plant Arch. 2020, 20, 3271–3278. [Google Scholar]
- Ramezani, M.; Darbandi, N.; Khodagholi, F.; Hashemi, A. Myricetin protects hippocampal CA3 pytamidal neurons and improves learning and memory impairment in rats with Alzheimer’s disease. Neural Regen. Res. 2016, 11, 1976–1980. [Google Scholar] [CrossRef]
- Lau, A.J.; Politi, R.; Yang, G.; Chang, T.K.H. Cell-based and in silico evidence against quercetin and stucturally-related flavonols as activators of vitamin D receptor. J. Steroid Biochem. Mol. Biol. 2016, 163, 59–67. [Google Scholar] [CrossRef]
- Hsu, Y.L.; Liang, H.L.; Hung, C.H.; Kuo, P.L. Syringetin, a flavonoid derivatives in grape and wine, induced human osteoblast differentation through bone morphogenetic protein-2/extracellular signal-regulated kinase ½ pathway. Mol. Nutr. Food Res. 2009, 53, 1452–1461. [Google Scholar] [CrossRef]
- Łyko, L.; Olech, M.; Nowak, R. LC-ESI-MS/MS characterization of concentrated polyphenolic fractions from Rhododendron luteum and their antiinflammatory and antioxidant activities. Molecules 2022, 27, 827. [Google Scholar] [CrossRef]
- Neves, M.; Antunes, M.; Fernandes, W.; Campos, M.J.; Azevedo, Z.M.; Freitas, V.; Rocha, J.M.; Tecelāo, C. Physicochemical and nutritional profile of leaves, flowers, and fruits of the edible halophyte chorão-da-praia (Carpobrotus edulis) on Portuguese west shores. Food Biosci. 2021, 43, 101288. [Google Scholar] [CrossRef]
- Cui, H.Q.; Peng, C.Y.; Huang, Y.Z.; Gao, Y.; Liu, J.Q.; Zhang, R.; Shu, J.C. Flavonoids from leaves of Psidum littora. Yao Xue Xue Bao 2016, 51, 1745–1750. [Google Scholar] [PubMed]
- Beck, S.; Stengel, J. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L. Phytochemistry 2016, 130, 201–206. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, B.; Kaur, G.; Chakaraborty, D.; Kaur, K. Application of recombinant Pediococcus acidilactici BD16 (fcs+/ech+) in malolactic fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 3015–3028. [Google Scholar] [CrossRef]
- Chang, W.A.; Hung, J.Y.; Tsai, Y.M.; Hsu, Y.L.; Chiang, H.H.; Chou, S.H.; Huang, M.S.; Kuo, P.L. Laricitrin suppresses increased benzo(a)pyrene-induced lung tumor-associated monocyte-derived dendritic cell cancer progression. Onlcol. Lett. 2016, 11, 1783–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.A.; Hung, J.Y.; Jian, S.F.; Lin, Y.S.; Wu, C.Y.; Hsu, Y.L.; Kuo, P.L. Laricitrin ameliorates lung cancer-mediated dendritic cell suppression by inhibiting signal transducer and activator of transcription 3. Oncotarget 2016, 7, 85220–85234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romani, A.; Casciano, F.; Stevanin, C.; Maietti, A.; Tedeschi, P.; Secchiero, P.; Marchetti, N.; Voltan, R. Anticancer activity of aqueous extracts from Asparagus officinalis L. byproduct on breast cancer cells. Molecules 2021, 26, 6369. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.W.; Li, Y.; Paxton, J.W.; Birch, N.P.; Scheepens, A. Identification of novel dietary phytochemicals inhibiting the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Food Chem. 2013, 138, 2267–2274. [Google Scholar] [CrossRef]
- Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R. Metabolite profiling of grape: Flavonols and anthocyanins. J. Agric. Food Chem. 2006, 54, 7692–7702. [Google Scholar] [CrossRef]
- Fioroto, C.K.S.; da Silva, T.B.V.; Castilho, P.A.; Uber, T.M.; Sá-Nakanishi, A.B.; Seixas, F.A.V.; Peralta, R.M.; Bracht, A. Effects of Ilex paraguariensis beverages on in vivo trigliceride and starch absorbtion in mice. Biocatal. Agric. Biotechnol. 2022, 42, 102330. [Google Scholar] [CrossRef]
- Xie, J.; Li, M.X.; Du, Z.Z. Chemical compounds, anti-aging and antibacterial properties of Rosa rugosa purple branch. Ind. Crop. Prod. 2022, 181, 114814. [Google Scholar] [CrossRef]
- Kostikova, V.A.; Zarubaev, V.V.; Esaulkova, I.L.; Sinegubova, E.O.; Kadyrova, R.A.; Shaldaeva, T.M.; Veklich, T.N.; Kuznetsov, A.A. The antiviral, antiradical, and phytochemical potential of dry extracts from Spiraea hypericifolia, S. media, and S. salicifolia (Rosaceae). S. Afr. J. Bot. 2022, 147, 215–222. [Google Scholar] [CrossRef]
- Gu, Q.; Duan, G.; Yu, X. Bioconversion of flavonoid glycosides from Hippophae rhamnoides leaves into flavonoid aglycones by Eurotium amstelodami. Microorganisms 2019, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Wang, Z.; Chen, X.; Guo, Z.; Wen, L.; Kan, J. Evaluation of bitter compounds in Zanthoxylum schinifolium Sieb. Et Zucc. by instrumental and sensory analyses. Food Chem. 2022, 390, 133180. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Li, M.; Zhang, W.; Cai, S.; Hu, X.; Yi, J. Analysis of phenolic compounds in pickled chayote and their effects on antioxidant activities and cell protection. Food Res. Int. 2022, 157, 111325. [Google Scholar] [CrossRef] [PubMed]
- Yingzhuan, Z.; Wenjing, T.; Wenjuan, T.; Ruochen, H.; Jue, W.; Cheng, W.; Wen, L. Potential antiviral activity of isorhamnetin agains SARS-CoV-2 spike pseudotyped virus in vitro. Drug Dev. Res. 2021, 82, 1124–1130. [Google Scholar]
- Xiao, G.; Zeng, Z.; Jiang, J.; Xu, A.; Li, S.; Li, Y.; Chen, Z.; Chen, W.; Zhang, J.; Bi, X. Network pharmacology analysis and experimental validation to explore the mechanism of Bushao Tiaozhi capsule (BSTZC) on hyperlipidemia. Sci. Rep. 2022, 12, 6992. [Google Scholar] [CrossRef]
- Vasilakopoulou, P.B.; Fanarioti, E.; Tsarouchi, M.; Kokotou, M.G.; Dermon, C.R.; Karathanos, V.T.; Chiou, A. Polar phenol detection in rat brain: Development and validation of a versatile UHPLC-MS method and application on the brain tissues of corinthian currant (Vitis vinifera L., var. Apyrena) fed rats. Food Chem. 2022, 390, 133131. [Google Scholar] [CrossRef]
- Gyeltshen, T.; Jordan, G.J.; Smith, J.A.; Bissember, A.C. Natural products isolation studies of the paleoendemic plant species Nothofagus gunnii and Nothofagus cunninghamii. Fitoterapia 2022, 156, 105088. [Google Scholar] [CrossRef]
- Wang, Y.; Hamburger, M.; Gueho, J.; Hostettmann, K. Antimicrobial flavonoids from Psiadia trinervia and their methylated and acetylated derivatives. Phytochemistry 1989, 28, 2323–2327. [Google Scholar] [CrossRef]
- Arciniegas, A.; Pèrez-Castorena, A.L.; Melèndez-Aguirre, M.; Àvila, J.G.; García-Bores, A.M.; Villaseñor, J.L.; Romo de Vivar, A. Chemical composition and antimicrobial activity of Ageratina deltoidea. Chem. Biodiv. 2018, 15, e1700529. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Pei, Y.; Chae, H.S.; Kim, S.H.; Kim, Y.M.; Choi, Y.H.; Lee, J.; Chang, M.; Song, Y.S.; Rodriguez, R.; et al. Spiroketones and a biphenyl analogue from stems and leaves of Larrea nitida and their inhibitory activity against IL-6 production. Molecules 2018, 23, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, T.; Selenge, E.; Suganuma, K.; Asai, Y.; Batkhuu, J.; Yoshizaki, F. Chromone acyl glucosides and an ayanin glucoside from Dasiphora parvifolia. Phytochem. Lett. 2013, 6, 552–555. [Google Scholar] [CrossRef]
- Ji, H.S.; Li, H.; Mo, E.J.; Kim, U.H.; Kim, Y.H.; Park, H.Y.; Jeong, T.S. Low-density lipoprotein-antioxidant flavonoids and a phenolic ester from Plectranthus hadiensis var. tomentosus. Appl. Biol. Chem. 2019, 62, 58. [Google Scholar] [CrossRef]
- Yamauchi, K.; Afroze, S.H.; Mitsunaga, T.; McCormick, T.C.; Kuehl, T.J.; Zawieja, D.C.; Uddin, M.N. 3,4′,7-O-trimethylquercetin inhibits invasion and migration of ovarian cancer cells. Anticancer Res. 2017, 37, 2823–2829. [Google Scholar] [PubMed] [Green Version]
- Pick, A.; Müller, H.; Mayer, R.; Haenisch, B.; Pajeva, I.K.; Weigt, M.; Bönisch, H.; Müller, C.E.; Wiese, M. Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorg. Med. Chem. 2011, 19, 2090–2102. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmiel, M.; Stompor-Gorący, M. The Spectrum of Pharmacological Actions of Syringetin and Its Natural Derivatives—A Summary Review. Nutrients 2022, 14, 5157. https://doi.org/10.3390/nu14235157
Chmiel M, Stompor-Gorący M. The Spectrum of Pharmacological Actions of Syringetin and Its Natural Derivatives—A Summary Review. Nutrients. 2022; 14(23):5157. https://doi.org/10.3390/nu14235157
Chicago/Turabian StyleChmiel, Marcelina, and Monika Stompor-Gorący. 2022. "The Spectrum of Pharmacological Actions of Syringetin and Its Natural Derivatives—A Summary Review" Nutrients 14, no. 23: 5157. https://doi.org/10.3390/nu14235157
APA StyleChmiel, M., & Stompor-Gorący, M. (2022). The Spectrum of Pharmacological Actions of Syringetin and Its Natural Derivatives—A Summary Review. Nutrients, 14(23), 5157. https://doi.org/10.3390/nu14235157