Influence of Nutritional Parameters on the Evolution, Severity and Prognosis of Critically Ill Patients with COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Treatment and Nutritional Support
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sacristán, J.A.; Millán, J. El médico frente a la COVID-19: Lecciones de una pandemia. Educ. Médica 2020, 21, 265–271. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. Coronavirus Disease 2019: The Harms of Exaggerated Information and Non-Evidence-Based Measures. Eur. J. Clin. Investig. 2020, 50, e13222. [Google Scholar] [CrossRef] [PubMed]
- Lenzer, J. COVID-19: US Gives Emergency Approval to Hydroxychloroquine despite Lack of Evidence. BMJ 2020, 369, m1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emanuel, E.J.; Persad, G.; Upshur, R.; Thome, B.; Parker, M.; Glickman, A.; Zhang, C.; Boyle, C.; Smith, M.; Phillips, J.P. Fair Allocation of Scarce Medical Resources in the Time of COVID-19. N. Engl. J. Med. 2020, 382, 2049–2055. [Google Scholar] [CrossRef]
- Truog, R.D.; Mitchell, C.; Daley, G.Q. The Toughest Triage—Allocating Ventilators in a Pandemic. N. Engl. J. Med. 2020, 382, 1973–1975. [Google Scholar] [CrossRef]
- Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Krznaric, Z.; Nitzan, D.; Pirlich, M.; Singer, P. ESPEN Expert Statements and Practical Guidance for Nutritional Management of Individuals with SARS-CoV-2 Infection. Clin. Nutr. 2020, 39, 1631–1638. [Google Scholar] [CrossRef]
- Gandhi, R.T.; Lynch, J.B.; del Rio, C. Mild or Moderate COVID-19. N. Engl. J. Med. 2020, 383, 1757–1766. [Google Scholar] [CrossRef]
- Romagnoli, S.; Peris, A.; De Gaudio, A.R.; Geppetti, P. SARS-CoV-2 and COVID-19: From the Bench to the Bedside. Physiol. Rev. 2020, 100, 1455–1466. [Google Scholar] [CrossRef]
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus Disease 2019-COVID-19. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine Elevation in Severe and Critical COVID-19: A Rapid Systematic Review, Meta-Analysis, and Comparison with Other Inflammatory Syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Grund, S.; Bauer, J.M. Malnutrition and Sarcopenia in COVID-19 Survivors. Clin. Geriatr. Med. 2022, 38, 559–564. [Google Scholar] [CrossRef]
- Thibault, R.; Seguin, P.; Tamion, F.; Pichard, C.; Singer, P. Nutrition of the COVID-19 Patient in the Intensive Care Unit (ICU): A Practical Guidance. Crit. Care 2020, 24, 447. [Google Scholar] [CrossRef] [PubMed]
- Bear, D.E.; Merriweather, J.L. Nutrition in Postacute Rehabilitation of COVID-19 Survivors. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 154–158. [Google Scholar] [CrossRef] [PubMed]
- García de Lorenzo, A.; Álvarez, J.; Calvo, M.V.; de Ulíbarri, J.I.; del Río, J.; Galbán, C.; García, P.P.; García Peris, P.; La Roche, F.; León, M.; et al. Conclusiones Del II Foro de Debate SENPE Sobre Desnutrición Hospitalaria. Nutr. Hosp. 2005, 20, 82–87. [Google Scholar] [PubMed]
- Westergren, A.; Lindholm, C.; Axelsson, C.; Ulander, K. Prevalence of Eating Difficulties and Malnutrition among Persons within Hospital Care and Special Accommodations. J. Nutr. Health Aging 2008, 12, 39–43. [Google Scholar] [CrossRef]
- Planas, M.; Audivert, S.; Pérez-Portabella, C.; Burgos, R.; Puiggrós, C.; Casanelles, J.M.; Rosselló, J. Nutritional Status among Adult Patients Admitted to an University-Affiliated Hospital in Spain at the Time of Genoma. Clin. Nutr. 2004, 23, 1016–1024. [Google Scholar] [CrossRef]
- Kruizenga, H.M.; Wierdsma, N.J.; Van bokhorst, M.A.E.; De van der schueren; Hollander, H.J.; Jonkers-schuitema, C.F.; Van der heijden, E.; Melis, G.C.; van Staveren, W.A. Screening of Nutritional Status in The Netherlands. Clin. Nutr. 2003, 22, 147–152. [Google Scholar] [CrossRef]
- Pirlich, M.; Schütz, T.; Norman, K.; Gastell, S.; Lübke, H.J.; Bischoff, S.C.; Bolder, U.; Frieling, T.; Güldenzoph, H.; Hahn, K.; et al. The German Hospital Malnutrition Study. Clin. Nutr. 2006, 25, 563–572. [Google Scholar] [CrossRef]
- Kondrup, J.; Johansen, N.; Plum, L.M.; Bak, L.; Larsen, I.H.; Martinsen, A.; Andersen, J.R.; Baernthsen, H.; Bunch, E.; Lauesen, N. Incidence of Nutritional Risk and Causes of Inadequate Nutritional Care in Hospitals. Clin. Nutr. 2002, 21, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, H.H.; Kondrup, J.; Staun, M.; Ladefoged, K.; Kristensen, H.; Wengler, A. Prevalence of Patients at Nutritional Risk in Danish Hospitals. Clin. Nutr. 2004, 23, 1009–1015. [Google Scholar] [CrossRef]
- Bouillanne, O.; Golmard, J.-L.; Coussieu, C.; Noël, M.; Durand, D.; Piette, F.; Nivet-Antoine, V. Leptin a New Biological Marker for Evaluating Malnutrition in Elderly Patients. Eur. J. Clin. Nutr. 2007, 61, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Ravasco, P.; Anderson, H.; Mardones, F. Métodos de Valoración Del Estado Nutricional. Nutr. Hosp. 2010, 25, 57–66. [Google Scholar]
- Acosta Escribano, J.; Gómez-Tello, V.; Ruiz Santana, S. Valoración Del Estado Nutricional En El Paciente Grave. Nutr. Hosp. 2005, 20, 5–8. [Google Scholar] [PubMed]
- Boles, J.M.; Garre, M.A.; Youinou, P.Y.; Mialon, P.; Menez, J.F.; Jouquan, J.; Miossec, P.J.; Pennec, Y.; Le Menn, G. Nutritional Status in Intensive Care Patients: Evaluation in 84 Unselected Patients. Crit. Care Med. 1983, 11, 87–90. [Google Scholar] [CrossRef]
- Wa, K.; Ea, D.; Dp, W.; Je, Z. APACHE II: A Severity of Disease Classification System. Crit. Care Med. 1985, 13, 818–829. [Google Scholar]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. On Behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.P.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A Tool for Controlling Nutritional Status. First Validation in a Hospital Population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN Guideline on Clinical Nutrition in the Intensive Care Unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [CrossRef]
- Zhang, P.; He, Z.; Yu, G.; Peng, D.; Feng, Y.; Ling, J.; Wang, Y.; Li, S.; Bian, Y. The Modified NUTRIC Score Can Be Used for Nutritional Risk Assessment as Well as Prognosis Prediction in Critically Ill COVID-19 Patients. Clin. Nutr. 2021, 40, 534–541. [Google Scholar] [CrossRef]
- Bedock, D.; Bel Lassen, P.; Mathian, A.; Moreau, P.; Couffignal, J.; Ciangura, C.; Poitou-Bernert, C.; Jeannin, A.-C.; Mosbah, H.; Fadlallah, J.; et al. Prevalence and Severity of Malnutrition in Hospitalized COVID-19 Patients. Clin. Nutr. ESPEN 2020, 40, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM Criteria for the Diagnosis of Malnutrition—A Consensus Report from the Global Clinical Nutrition Community. J. Cachexia Sarcopenia Muscle 2019, 10, 207–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitani, A.; Iwai, T.; Shichinohe, T.; Takeda, H.; Kumagai, S.; Nishida, M.; Sugita, J.; Teshima, T. The Combined Usage of the Global Leadership Initiative on Malnutrition Criteria and Controlling Nutrition Status Score in Acute Care Hospitals. Ann. Nutr. Metab. 2021, 77, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Mureșan, A.V.; Hălmaciu, I.; Arbănași, E.M.; Kaller, R.; Arbănași, E.M.; Budișcă, O.A.; Melinte, R.M.; Vunvulea, V.; Filep, R.C.; Mărginean, L.; et al. Prognostic Nutritional Index, Controlling Nutritional Status (CONUT) Score, and Inflammatory Biomarkers as Predictors of Deep Vein Thrombosis, Acute Pulmonary Embolism, and Mortality in COVID-19 Patients. Diagnostics 2022, 12, 2757. [Google Scholar] [CrossRef]
- Bodolea, C.; Nemes, A.; Avram, L.; Craciun, R.; Coman, M.; Ene-Cocis, M.; Ciobanu, C.; Crisan, D. Nutritional Risk Assessment Scores Effectively Predict Mortality in Critically Ill Patients with Severe COVID-19. Nutrients 2022, 14, 2105. [Google Scholar] [CrossRef]
- Kuroda, D.; Sawayama, H.; Kurashige, J.; Iwatsuki, M.; Eto, T.; Tokunaga, R.; Kitano, Y.; Yamamura, K.; Ouchi, M.; Nakamura, K.; et al. Controlling Nutritional Status (CONUT) Score Is a Prognostic Marker for Gastric Cancer Patients after Curative Resection. Gastric Cancer 2018, 21, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhu, M.; Yang, X.; Cui, H.; Li, Z.; Wei, J. Controlling Nutritional Status Score as a Predictive Marker of In-Hospital Mortality in Older Adult Patients. Front. Nutr. 2021, 8, 738045. [Google Scholar] [CrossRef]
- Kato, T.; Yaku, H.; Morimoto, T.; Inuzuka, Y.; Tamaki, Y.; Yamamoto, E.; Yoshikawa, Y.; Kitai, T.; Taniguchi, R.; Iguchi, M.; et al. Association with Controlling Nutritional Status (CONUT) Score and In-Hospital Mortality and Infection in Acute Heart Failure. Sci. Rep. 2020, 10, 3320. [Google Scholar] [CrossRef] [Green Version]
- Yıldırım, B.; Karakaya, Z.; Acar, E.; Demir, A.; Gökçek, K.; Gökçek, A.; Doğan, V.; Biteker, M. Controlling Nutritional Status (CONUT) Score Predicts in-Hospital Mortality in Acute Pulmonary Embolism. Med. Princ. Pract. 2022, 31, 439–444. [Google Scholar] [CrossRef]
- Saito, Y.; Aizawa, Y.; Iida, K.; Matsumoto, N.; Sezai, A.; Tanaka, M.; Okumura, Y. Clinical Significance of the Controlling Nutritional Status (CONUT) Score in Patients with Infective Endocarditis. Int. Heart J. 2020, 61, 531–538. [Google Scholar] [CrossRef]
- Li, H.; Zhou, P.; Zhao, Y.; Ni, H.; Luo, X.; Li, J. Prediction of All-Cause Mortality with Malnutrition Assessed by Controlling Nutritional Status Score in Patients with Heart Failure: A Systematic Review and Meta-Analysis. Public Health Nutr. 2022, 25, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Akgün Çağlıyan, G.; Hacıoğlu, S.; Ünver Koluman, B.; İlkkılıç, K.; Nar, R.; Başer, M.N.; Bozdemir, A.; Şenol, H.; Şen Türk, N.; Erol, V.; et al. Is CONUT Score a Prognostic Index in Patients with Diffuse Large Cell Lymphoma? Turk. J. Med. Sci. 2021, 51, 2112–2119. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; He, M.; Kang, Y.; Jianguo, X. Controlling Nutritional Status (CONUT) Score Is a Predictive Marker for Patients with Traumatic Brain Injury. Clin. Neurol. Neurosurg. 2020, 195, 105909. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Maimaiti, Z.; Li, Z.-Y.; Fu, J.; Hao, L.-B.; Xu, C.; Chen, J.-Y. Moderate-to-Severe Malnutrition Identified by the Controlling Nutritional Status (CONUT) Score Is Significantly Associated with Treatment Failure of Periprosthetic Joint Infection. Nutrients 2022, 14, 4433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y. Potential Interventions for Novel Coronavirus in China: A Systematic Review. J. Med. Virol. 2020, 92, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Bengelloun, A.K.; Ortega, G.J.; Ancochea, J.; Sanz-Garcia, A.; Rodríguez-Serrano, D.A.; Fernández-Jiménez, G.; Girón, R.; Ávalos, E.; Soriano, J.B.; de Ulíbarri, J.I. Usefulness of the CONUT Index upon Hospital Admission as a Potential Prognostic Indicator of COVID-19 Health Outcomes. Chin. Med. J. 2021, 135, 187–193. [Google Scholar] [CrossRef]
- Sánchez, P.E.; Rosero, R.J.; Stephens, I. Malnutrición en los tiempos del COVID-19. Rev. Colomb. De Endocrinol. Diabetes Metab. 2020, 7, 84–87. [Google Scholar] [CrossRef]
- Li, G.; Zhou, C.-L.; Ba, Y.-M.; Wang, Y.-M.; Song, B.; Cheng, X.-B.; Dong, Q.-F.; Wang, L.-L.; You, S.-S. Nutritional Risk and Therapy for Severe and Critical COVID-19 Patients: A Multicenter Retrospective Observational Study. Clin. Nutr. 2021, 40, 2154–2161. [Google Scholar] [CrossRef]
- Ojo, O.; Ojo, O.O.; Feng, Q.; Boateng, J.; Wang, X.; Brooke, J.; Adegboye, A.R.A. The Effects of Enteral Nutrition in Critically Ill Patients with COVID-19: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 1120. [Google Scholar] [CrossRef]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.G.; et al. ESPEN Practical Guideline: Clinical Nutrition in Surgery. Clin. Nutr. 2021, 40, 4745–4761. [Google Scholar] [CrossRef]
- Al-Subaie, N.; Reynolds, T.; Myers, A.; Sunderland, R.; Rhodes, A.; Grounds, R.M.; Hall, G.M. C-Reactive Protein as a Predictor of Outcome after Discharge from the Intensive Care: A Prospective Observational Study. Br. J. Anaesth. 2010, 105, 318–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulldemolins, M.; Roberts, J.A.; Rello, J.; Paterson, D.L.; Lipman, J. The Effects of Hypoalbuminaemia on Optimizing Antibacterial Dosing in Critically Ill Patients. Clin. Pharm. 2011, 50, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Cheungpasitporn, W.; Chewcharat, A.; Mao, M.A.; Thirunavukkarasu, S.; Kashani, K.B. Risk of Acute Respiratory Failure among Hospitalized Patients with Various Admission Serum Albumin Levels. Medicine 2020, 99, e19352. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Cangemi, R.; Romiti, G.F.; Ceccarelli, G.; Oliva, A.; Alessandri, F.; Pirro, M.; Pignatelli, P.; Lichtner, M.; Carraro, A.; et al. Is Albumin Predictor of Mortality in COVID-19? Antioxid. Redox Signal. 2021, 35, 139–142. [Google Scholar] [CrossRef]
- Borge, S.J.; Lauritzen, J.B.; Jørgensen, H.L. Hypoalbuminemia Is Associated with 30-Day Mortality in Hip Fracture Patients Independently of Body Mass Index. Scand. J. Clin. Lab. Investig. 2022, 1–5. [Google Scholar] [CrossRef]
- Pass, B.; Malek, F.; Rommelmann, M.; Aigner, R.; Knauf, T.; Eschbach, D.; Hussmann, B.; Maslaris, A.; Lendemans, S.; Schoeneberg, C. The Influence of Malnutrition Measured by Hypalbuminemia and Body Mass Index on the Outcome of Geriatric Patients with a Fracture of the Proximal Femur. Medicina 2022, 58, 1610. [Google Scholar] [CrossRef]
- Higashikawa, T.; Ito, T.; Mizuno, T.; Ishigami, K.; Kuroki, K.; Maekawa, N.; Usuda, D.; Nakao, S.; Hamada, K.; Takagi, S.; et al. A New Predictive Tool Consolidating CURB-65 with Procalcitonin and Albumin to Assess Short-Term Mortality in Hospitalized Elderly Patients with Infectious Disease: A Retrospective Study of a Patient Cohort. Medicine 2022, 101, e31614. [Google Scholar] [CrossRef]
- Jaber, C.A.; Bryan, F.E.; Toor, R.S.; Quereshi, A.M.; Messer, T.A.; Schlanser, V.L.; Tatebe, L.C.; Poulakidas, S.J.; Bokhari, F. Initial Laboratory Values Can Predict Mortality in Burn Patients. Am. Surg. 2022, 31348221083945. [Google Scholar] [CrossRef]
- Zhu, J.-L.; Liu, H.; Wang, L.-L.; Lu, X.-H.; Yin, H.-Y.; Lyu, J.; Wei, J.-R. Association of Lactate to Albumin Ratio and Bicarbonate with Short-Term Mortality Risk in Patients with Acute Myocardial Infarction. BMC Cardiovasc. Disord. 2022, 22, 490. [Google Scholar] [CrossRef]
- Qiao, P.; Li, L.; Ruan, H.; Zhang, M.; Wang, Z.; Li, X.; Shi, R.; Wei, X.; Duan, L.; Zheng, Y.; et al. Application of the ALBI Scoring System for Mortality Outcome Prediction in Patients with Hypertrophic Cardiomyopathy. Glob. Heart 2022, 17, 73. [Google Scholar] [CrossRef]
- Han, H.; Hu, S.; Du, J. Predictive Value of the Hemoglobin-Albumin-Lymphocyte-Platelet (HALP) Index for ICU Mortality in Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (AECOPD). Intern. Emerg. Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-T.; Jiang, M.-Y.; Hwang, J.-C. Albumin to Prealbumin Ratio in Peritoneal Dialysis Patients: Clinical Implication and Outcome Prediction. PLoS ONE 2022, 17, e0276159. [Google Scholar] [CrossRef]
- Blunt, M.C.; Nicholson, J.P.; Park, G.R. Serum Albumin and Colloid Osmotic Pressure in Survivors and Nonsurvivors of Prolonged Critical Illness. Anaesthesia 1998, 53, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L. Relevance of Albumin in Modern Critical Care Medicine. Best Pract. Res. Clin. Anaesthesiol. 2009, 23, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.-Y.; Lee, S.W.; Baek, S.H.; Na, K.Y.; Chae, D.-W.; Chin, H.J.; Kim, S. Hypoalbuminemia at Admission Predicts the Development of Acute Kidney Injury in Hospitalized Patients: A Retrospective Cohort Study. PLoS ONE 2017, 12, e0180750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rungsakulkij, N.; Vassanasiri, W.; Tangtawee, P.; Suragul, W.; Muangkaew, P.; Mingphruedhi, S.; Aeesoa, S. Preoperative Serum Albumin Is Associated with Intra-Abdominal Infection Following Major Hepatectomy. J. Hepato-Biliary-Pancreat. Sci. 2019, 26, 479–489. [Google Scholar] [CrossRef]
- Schillinger, M.; Exner, M.; Mlekusch, W.; Amighi, J.; Sabeti, S.; Schlager, O.; Wagner, O.; Minar, E. Serum Albumin Predicts Cardiac Adverse Events in Patients with Advanced Atherosclerosis—Interrelation with Traditional Cardiovascular Risk Factors. Thromb. Haemost. 2004, 91, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Poudel-Tandukar, K.; Jacelon, C.S.; Bertone-Johnson, E.R.; Palmer, P.H.; Poudel, K.C. Serum Albumin Levels and Depression in People Living with Human Immunodeficiency Virus Infection: A Cross-Sectional Study. J. Psychosom. Res. 2017, 101, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.S.; Lee, K.; Park, J.; Yun, S.; Lee, Y.S.; Lee, D.S. Clinical Characteristics and Mortality Predictors of COVID-19 Patients Hospitalized at Nationally-Designated Treatment Hospitals. J. Korean Med. Sci. 2020, 35, e328. [Google Scholar] [CrossRef]
- Hackett, T.L.; Scarci, M.; Zheng, L.; Tan, W.; Treasure, T.; Warner, J.A. Oxidative Modification of Albumin in the Parenchymal Lung Tissue of Current Smokers with Chronic Obstructive Pulmonary Disease. Respir. Res. 2010, 11, 180. [Google Scholar] [CrossRef] [Green Version]
- Van Hemelrijck, M.; Harari, D.; Garmo, H.; Hammar, N.; Walldius, G.; Lambe, M.; Jungner, I.; Holmberg, L. Biomarker-Based Score to Predict Mortality in Persons Aged 50 Years and Older: A New Approach in the Swedish AMORIS Study. Int. J. Mol. Epidemiol. Genet. 2012, 3, 66–76. [Google Scholar] [PubMed]
- Caraceni, P.; Domenicali, M.; Tovoli, A.; Napoli, L.; Ricci, C.S.; Tufoni, M.; Bernardi, M. Clinical Indications for the Albumin Use: Still a Controversial Issue. Eur. J. Intern. Med. 2013, 24, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Mendez, C.M.; McClain, C.J.; Marsano, L.S. Albumin Therapy in Clinical Practice. Nutr. Clin. Pract. 2005, 20, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Roberts, I.; Blackhall, K.; Alderson, P.; Bunn, F.; Schierhout, G. Human Albumin Solution for Resuscitation and Volume Expansion in Critically Ill Patients. Cochrane Database Syst. Rev. 2011, CD001208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Z.; Gao, M.; Ge, C.; Lin, W.; Zhang, L.; Zou, Y.; Peng, Q. Association between Albumin Infusion and Septic Patients with Coronary Heart Disease: A Retrospective Study Based on Medical Information Mart for Intensive Care III Database. Front. Cardiovasc. Med. 2022, 9, 982969. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Zhu, J.; Zhong, Z.; Li, H.; Pang, J.; Li, B.; Zhang, J. Association of Elevated Inflammatory Markers and Severe COVID-19: A Meta-Analysis. Medicine 2020, 99, e23315. [Google Scholar] [CrossRef]
- Hamade, B.; Huang, D.T. Procalcitonin: Where Are We Now? Crit. Care Clin. 2020, 36, 23–40. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Beck, F.K.; Rosenthal, T.C. Prealbumin: A Marker for Nutritional Evaluation. AFP 2002, 65, 1575. [Google Scholar]
n = 202 | 1st Day (Mean (SD)) | 3rd Day (Mean (SD)) | p-Value |
---|---|---|---|
Age (years) | 60.6 (13.6) | ||
ICU stay (days) | 21.6 (16.6) | ||
MV (days) * | 18.0 (10-29) | ||
SOFA score | 6.52 (2.65) | 7.00 (3.17) | 0.158 |
APACHE II score | 12.90 (5.32) | ||
CONUT score | 5.91 (2.21) | 6.12 (2.43) | 0.467 |
MAP (mmHg) | 91.1 (15.7) | 89.4 (14.3) | 0.566 |
HR (bpm) | 80.2 (20.4) | 68.7 (18.6) | 0.001 |
BR (rpm) | 26.8 (6.3) | 22.0 (5.6) | 0.001 |
FiO2 (%) | 0.75 (0.18) | 0.62 (0.16) | 0.001 |
PaO2/FiO2 | 179 (88) | 202 (70) | 0.065 |
n = 202 | Reference Values | 1st Day (Mean (SD) | 3rd Day (Mean (SD) | p-Value |
---|---|---|---|---|
Biochemical variables | ||||
Sodium (mEq/L) | 136–146 | 138.5 (4.4) | 140.6 (5.6) | 0.001 |
Potassium (mEq/L) | 3.5–5.1 | 4.03 (0.56) | 4.01 (0.54) | 0.679 |
Creatinine (mg/dL) | 0.67–1.20 | 1.03 (0.73) | 1.13 (0.93) | 0.070 |
ALT (U/L) * | 0–55 | 35.0 (23.0-59.5) | 37.5 (25.0-72.7) | 0.006 |
AST (U/L) * | 5–40 | 37.0 (27.0-57.0) | 31.0 (22.3-49.0) | 0.005 |
GGT (U/L) * | 1–55 | 73.0 (45-144) | 107.0 (60-204.3) | 0.001 |
LDH (U/L) * | 0–248 | 525.0 (422.3-651.3) | 445.5 (365.0-545.5) | 0.001 |
Creatinekinase (U/L) * | 0–190 | 88.0 (41.8-156.8) | 62.5 (29.3-178.5) | 0.311 |
Hematological variables | ||||
Hemoglobin/dL | 11.0–17.0 | 13.1 (2.0) | 12.4 (2.4) | 0.001 |
Hematocrit (%) | 30.0–50.0 | 38.6 (6.3) | 36.6 (6.0) | 0.001 |
Leukocytes × 103/µL | 3.5–10.5 | 11.4 (5.5) | 10.8 (5.1) | 0.157 |
Lymphocytes (%) | 20.00–44.00 | 7.60 (5.31) | 9.85 (7.03) | 0.001 |
Neutrophils (%) | 42.00–77.00 | 86.3 (12.2) | 82.4 (12.1) | 0.001 |
Platelets × 103/µL | 3.5–10.5 | 250.5 (106.2) | 284.0 (109.0) | 0.001 |
INR | 0.8–1.16 | 1.11 (0.15) | 1.11 (0.19) | 0.896 |
APTT (s) | 26.0–37.0 | 29.5 (4.60) | 29.4 (4.93) | 0.823 |
Nutritional variables | ||||
Glucose (mg/dL) | 75–115 | 168.2 (70.1) | 160.6 (66.7) | 0.205 |
Total proteins (g/dL) | 6.6–8.3 | 6.74 (4.14) | 6.00 (1.03) | 0.017 |
Albumin (g/dL) | 3.5–5.2 | 3.28 (0.48) | 3.0 (0.37) | 0.001 |
Prealbumin (mg/dL) | 16–42 | 14.2 (8.2) | 28.3 (14.2) | 0.001 |
Transferrin (mg/dL) | 200–360 | 142.9 (32.2) | 159.0 (46.9) | 0.002 |
TSI (%) | 17.1–30.6 | 43.4 (30.3) | 36.2 (26.5) | 0.018 |
Cholesterol (mg/dL) | 140–200 | 145.8 (38.9) | 179.7 (53.3) | 0.001 |
Triglycerides (mg/dL) | 89–150 | 285.9 (137.6) | 319.2 (183.8) | 0.154 |
n = 202 | 28-Day Mortality 1st Day | 28-Day Mortality 3rd Day | ||||
---|---|---|---|---|---|---|
Survivors (Mean ± SD) | Deceased (Mean ± SD) | p-Value | Survivors (Mean ± SD) | Deceased (Mean ± SD) | p-Value | |
Albumin (g/dL) | 3.34 (0.49) | 3.16 (0.46) | 0.015 | 3.05 (0.37) | 2.89 (0.37) | 0.006 |
Prealbumin (mg/dL) | 15.0 (8.3) | 13.7 (8.0) | 0.498 | 28.3 (13.2) | 22.6 (11.5) | 0.017 |
Transferrin (mg/dL) | 146.2 (33.8) | 145.4 (33.5) | 0.913 | 159.7 (42.3) | 147.1 (43.9) | 0.117 |
TSI (%) | 45.9 (27.3) | 36.9 (32.4) | 0.180 | 38.5 (25.1) | 36.0 (25.5) | 0.606 |
Cholesterol (mg/dL) | 146.5 (38.3) | 147.2 (40.4) | 0.935 | 181.7 (50.7) | 175.4 (60.5) | 0.529 |
TG (mg/dL) | 283.7 (155.8) | 310.6 (160.9) | 0.452 | 278.2 (135.4) | 336.9 (228.8) | 0.070 |
CONUT | 5.7 (2.3) | 6.1 (1.7) | 0.475 | 5,9 (2.3) | 6.7 (2.3) | 0.043 |
n = 202 | SOFA | APACHE | CONUT | MV | ICU Stay | |
---|---|---|---|---|---|---|
1st day | Albumin | −0.201 * | −0.162 | −0.841 ** | −0.089 | 0.024 |
Prealbumin | −0.175 | −0.253 | −0.404 ** | −0.173 | −0.082 | |
Transferrin | −0.371 ** | −0.200 | −0.152 | −0.023 | −0.068 | |
TSI | −0.023 | −0.094 | −0.261 * | −0.259 * | −0.128 | |
Cholesterol | −0.268 * | −0.085 | −0.305 ** | 0.033 | 0.101 | |
Triglycerides | 0.225 | 0.031 | −0.166 | 0.177 | 0.306 ** | |
CONUT | 0.289 * | 0.286 | −0.063 | −0.046 | ||
3rd day | Albumin | −0.111 | −0.227 | −0.829 ** | −0.179 * | −0.120 |
Prealbumin | −0.197 | 0.135 | −0.364 ** | 0.139 | −0.008 | |
Transferrin | −0.390 ** | 0.031 | −0.394 ** | −0.156 | −0.071 | |
TSI | 0.091 | −0.149 | 0.124 | −0.178 * | −0.111 | |
Cholesterol | −0.059 | 0.039 | 0.509 ** | 0.002 | −0.034 | |
Triglycerides | 0.285 | 0.029 | −0.108 | 0.165 | 0.025 | |
CONUT | 0.259 | 0.139 | 0.140 | 0.021 |
Fibrinogen | D-Dimer | CRP | Ferritin | ||
---|---|---|---|---|---|
1st day | Albumin | 0.080 | −0.096 | −0.070 | −0.196 * |
Prealbumin | −0.205 | 0.213 | −0.417 ** | 0.171 | |
Transferrin | −0.350 ** | −0.043 | −0.406 ** | −0.508 ** | |
TSI | −0.030 | 0.090 | −0.180 | 0.529 ** | |
Cholesterol | −0.006 | 0.085 | −0.247 * | 0.171 | |
Triglycerides | −0.109 | 0.236 * | −0.107 | −0.027 | |
CONUT | 0.066 | −0.083 | 0.285 ** | −0.157 | |
3rd day | Albumin | −0.179 * | −0.075 | −0.103 | −0.133 |
Prealbumin | −0.391 ** | −0.106 | −0.160 | −0.016 | |
Transferrin | −0.338 ** | −0.039 | −0.155 | −0.270 ** | |
TSI | −0.232 * | −0.070 | −0.060 | 0.357 ** | |
Cholesterol | −0.032 | −0.094 | −0.145 | −0.069 | |
Triglycerides | 0.152 | −0.021 | −0.064 | 0.073 | |
CONUT | 0.189 * | 0.137 | 0.288 ** | 0.224 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamarra-Morales, Y.; Molina-López, J.; Machado-Casas, J.F.; Herrera-Quintana, L.; Vázquez-Lorente, H.; Castaño-Pérez, J.; Perez-Villares, J.M.; Planells, E. Influence of Nutritional Parameters on the Evolution, Severity and Prognosis of Critically Ill Patients with COVID-19. Nutrients 2022, 14, 5363. https://doi.org/10.3390/nu14245363
Gamarra-Morales Y, Molina-López J, Machado-Casas JF, Herrera-Quintana L, Vázquez-Lorente H, Castaño-Pérez J, Perez-Villares JM, Planells E. Influence of Nutritional Parameters on the Evolution, Severity and Prognosis of Critically Ill Patients with COVID-19. Nutrients. 2022; 14(24):5363. https://doi.org/10.3390/nu14245363
Chicago/Turabian StyleGamarra-Morales, Yenifer, Jorge Molina-López, Juan Francisco Machado-Casas, Lourdes Herrera-Quintana, Héctor Vázquez-Lorente, José Castaño-Pérez, José Miguel Perez-Villares, and Elena Planells. 2022. "Influence of Nutritional Parameters on the Evolution, Severity and Prognosis of Critically Ill Patients with COVID-19" Nutrients 14, no. 24: 5363. https://doi.org/10.3390/nu14245363
APA StyleGamarra-Morales, Y., Molina-López, J., Machado-Casas, J. F., Herrera-Quintana, L., Vázquez-Lorente, H., Castaño-Pérez, J., Perez-Villares, J. M., & Planells, E. (2022). Influence of Nutritional Parameters on the Evolution, Severity and Prognosis of Critically Ill Patients with COVID-19. Nutrients, 14(24), 5363. https://doi.org/10.3390/nu14245363