Evidence to Underpin Vitamin A Requirements and Upper Limits in Children Aged 0 to 48 Months: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
- Revision to search systematically for and include children aged 0 to 48 months, but also include any relevant studies identified in infants and children aged up to 10 years (mean age ≤120 months), so that relevant studies, that may be scaled for younger children, could be included (WHO originally requested inclusion of studies on children aged 0 to 36 months).
- The WHO requested that we search from the inception of each database (rather than from 2010 onwards, as suggested in the protocol).
- What is the relationship between exclusive or mixed breastfeeding duration and vitamin A status?
- What is the relationship between duration of formula use and vitamin A status?
- What is the relationship between vitamin A intake (from formula, foods and sup-plements) and any health outcome?
- What is the relationship between vitamin A intake (from formula, foods and sup-plements) and vitamin A status (such as serum retinol and liver stores)?
- What is the relationship between vitamin A status and any health outcome (such as night blindness, xerophthalmia, diarrhoea, infection mortality, all-cause mortality, infection rate, measures of growth)?
- What are the obligatory losses of vitamin A in exclusively breast-fed infants, infants on mixed feeding (breast and formula), infants on breast milk and weaning foods, infants on formula and weaning foods, infants on follow-on milk and weaning foods, and fully weaned children?
- What are vitamin A requirements for growth and storage in infants and children?
- How large are vitamin A stores and total body vitamin A pools at different ages?
- How well are carotene and pre-formed vitamin A from breast milk and infant for-mula, from specific weaning and other foods, supplements, fortified foods and bio-fortified foods, absorbed?
- What evidence do we have on levels of conversion of carotenoids to functional vita-min A in children aged 6 to 48 months?
- How is carotene conversion linked to vitamin A status?
2.1. Searches
2.2. Assessment of Inclusion
2.3. Data Extraction and Tabulation
- (a)
- Intake-status-outcome studies (Excel sheets 2A, 2B, 2C): We undertook limited data extraction to clarify available outcomes (e.g., mortality, growth, infections), adverse effects and sample sizes for recent systematic reviews and trials.
- (b)
- For outcomes assessed in ≥6 trials, or trials including at least 1000 children, we carried out additional data extraction on relevant trials. This second layer of data extraction included:
- i.
- Interventions (e.g., dose, frequency, duration & type of vitamin A plus whether further nutrients were included in the intervention)
- ii.
- Details on participant age, country, and baseline health status
- iii.
- How the outcome was measured
- iv.
- Allocation method
2.4. Risk of Bias Assessment
3. Results
3.1. Search Results
3.2. Data Relevant to Setting Dietary Reference Values (DRVs)
3.2.1. Intake Outcome Relationships
3.2.2. Evidence Addressing Health-Based Questions for Vitamin A
- a.
- What is the relationship between exclusive or mixed breastfeeding duration and vitamin A status in children?
- b.
- What is the relationship between duration of formula use and vitamin A status in children?
- c.
- What is the relationship between vitamin A intake (from formula, foods and supplements) in infants and children and any health outcome?
- d.
- What is the relationship between vitamin A intake (from formula, foods and supplements) and vitamin A status (such as serum retinol and liver stores)?
- e.
- What is the relationship between vitamin A status in infants and children and any health outcome (such as night blindness, xerophthalmia, diarrhoea, infection mortality, all-cause mortality, infection rate, measures of growth)?
3.2.3. Factorial Relationships
3.2.4. Methodologies Used in Previous DRV Development
3.3. Data Relevant to Setting Upper Limits (ULs)
3.3.1. Studies on Vitamin A Adverse Effects, Toxicity, and Overload
3.3.2. Methodologies Used in Previous Vitamin A UL Development
4. Discussion
4.1. Health-Based Approach to Nutrient Requirements
4.2. Modelling-Based Approach to Nutrient Requirements
4.3. Upper Limits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, G.A.; Bennett, J.E.; Hennocq, Q.; Lu, Y.; De-Regil, L.M.; Rogers, L.; Danaei, G.; Li, G.; White, R.A.; Flaxman, S.R.; et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: A pooled analysis of population-based surveys. Lancet Glob. Health 2015, 3, e528–e536. [Google Scholar] [CrossRef] [Green Version]
- Wirth, J.P.; Petry, N.; Tanumihardjo, S.A.; Rogers, L.M.; McLean, E.; Greig, A.; Garrett, G.S.; Klemm, R.D.W.; Rohner, F. Vitamin A Supplementation Programs and Country-Level Evidence of Vitamin A Deficiency. Nutrients 2017, 9, 190. [Google Scholar] [CrossRef]
- Imdad, A.; Mayo-Wilson, E.; Herzer, K.; Bhutta, Z.A. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst. Rev. 2017. [Google Scholar] [CrossRef]
- Neonatal Vitamin A Supplementation Evidence group. Early neonatal vitamin A supplementation and infant mortality: An individual participant data meta-analysis of randomised controlled trials. Arch. Dis. Child. 2019, 104, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Imdad, A.; Rehman, F.; Davis, E.; Attia, S.; Ranjit, D.; Surin, G.S.; Lawler, S.; Smith, A.; Bhutta, Z.A. Effect of Synthetic Vitamin A and Probiotics Supplementation for Prevention of Morbidity and Mortality during the Neonatal Period. A Systematic Review and Meta-Analysis of Studies from Low- and Middle-Income Countries. Nutrients 2020, 12, 791. [Google Scholar] [CrossRef] [Green Version]
- IOM (Institute of Medicine). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Centers for Disease Control and Prevention. Strategies to Prevent Obesity and Other Chronic Diseases: The CDC Guide to Strategies to Increase the Consumption of Fruits and Vegetables; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2011. [Google Scholar]
- European Food Safety Authority (EFSA) NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific opinion on Dietary Reference Values for vitamin A. EFSA J. 2015, 13, 4028. [Google Scholar] [CrossRef] [Green Version]
- WHO/FAO (World Health Organization/Food and Agriculture Organization of the United Nations). Vitamin and Mineral Requirements in Human Nutrition: Report of a JOINT FAO/WHO Expert Consultation 21–30 September 1998; WHO: Bangkok, Thailand, 2004. [Google Scholar]
- Lietz, G.; Furr, H.C.; Gannon, B.M.; Green, M.H.; Haskell, M.; Lopez-Teros, V.; Novotny, J.A.; Palmer, A.C.; Russell, R.M.; Tanumihardjo, S.A.; et al. Current Capabilities and Limitations of Stable Isotope Techniques and Applied Mathematical Equations in Determining Whole-Body Vitamin A Status. Food Nutr. Bull. 2016, 37, S87–S103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2012. Integrating Nutrition and Physical Activity; Nordic Council of Ministers: Copenhagen, Denmark, 2014; Available online: https://www.norden.org/en/publication/nordic-nutrition-recommendations-2012 (accessed on 10 January 2022). [CrossRef]
- COMA. 41 Dietary Reference Values for Food Energy and Nutrients for the United Kingdom Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy; TSO: London, UK, 1991. [Google Scholar]
- Haskell, M.J.; Jamil, K.M.; Peerson, J.M.; Wahed, M.A.; Brown, K.H. The Paired Deuterated Retinol Dilution Technique Can Be Used to Estimate the Daily Vitamin A Intake Required to Maintain a Targeted Whole Body Vitamin A Pool Size in Men. J. Nutr. 2011, 141, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Joint FAO WHO Technical Workshop on Food Nutrient Risk Assessment. A model for establishing upper levels of intake for nutrients and related substances: Report of a Joint FAO/WHO Technical Workshop on Food Nutrient Risk Assessment, WHO Headquarters, Geneva, Switzerland, 2–6 May 2005. World Health Organization: Geneva, Switzerland. 2006. Available online: https://apps.who.int/iris/handle/10665/43451 (accessed on 10 January 2022).
- Higgins, J.P.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (Updated March 2011); The Cochrane Collaboration: Oxford, UK, 2011. [Google Scholar]
- Covidence Systematic Review Software; Veritas Health Innovation: Melbourne, Australia. 2021. Available online: www.covidence.org (accessed on 10 January 2022).
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-07/ScientificReport_of_the_2020DietaryGuidelinesAdvisoryCommittee_first-print.pdf (accessed on 10 January 2022).
- D-A-CH (Deutsche Gesellschaft für Ernährung, Ö.G.f.E. Schweizerische Gesellschaft für Ernährung). Referenzwerte für die Nährstoffzufuhr. 2. Auflage, 1. Ausgabe; DGE: Bonn, Germany, 2015. [Google Scholar]
- Netherlands Food and Nutrition Council. Recommended Dietary Allowances 1989 in the Netherlands; Netherlands Food and Nutrition Council: Amsterdam, the Netherlands, 1992; 115p. [Google Scholar]
- SCF (Scientific Committee for Food). Nutrient and Energy Intakes for the European Community. Reports of the Scientific Committee for Food, 31st Series; European Commission: Luxembourg, 1993. [Google Scholar]
- Afssa (Agence Française de Sécurité Sanitaire des Aliments). Apports Nutritionnels Conseillés pour la Population Française; Editions Tec&Doc: Paris, France, 2001. [Google Scholar]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 21, 358. [Google Scholar] [CrossRef] [Green Version]
- Gannon, B.M.; Rogers, L.M.; Tanumihardjo, S.A. Metabolism of Neonatal Vitamin A Supplementation: A Systematic Review. Adv. Nutr. 2020, 12, 942–958. [Google Scholar] [CrossRef]
- Hombali, A.S.; Solon, J.A.; Venkatesh, B.T.; Nair, N.S.; Pena-Rosas, J.P. Fortification of staple foods with vitamin A for vitamin A deficiency. Cochrane Database Syst. Rev. 2019, 5, CD010068. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.M.; Silva, M.A.; Garcia, P.P.C.; Silva, L.S.D.; Costa, G.D.D.; Araujo, R.M.A.; Cotta, R.M.M. Efect of vitamin A suplementation: A systematic review. Cienc. Saude Coletiva 2019, 24, 827–838. [Google Scholar] [CrossRef]
- Afolami, I.; Mwangi, M.N.; Samuel, F.; Boy, E.; Ilona, P.; Talsma, E.F.; Feskens, E.; Melse-Boonstra, A. Daily consumption of pro-vitamin A biofortified (yellow) cassava improves serum retinol concentrations in preschool children in Nigeria: A randomized controlled trial. Am. J. Clin. Nutr. 2020, 113, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.M.; Huda, M.N.; Raqib, R.; Qadri, F.; Alam, M.J.; Afsar, M.N.A.; Peerson, J.M.; Tanumihardjo, S.A.; Stephensen, C.B. High-Dose Neonatal Vitamin A Supplementation to Bangladeshi Infants Increases the Percentage of CCR9-Positive Treg Cells in Infants with Lower Birthweight in Early Infancy, and Decreases Plasma sCD14 Concentration and the Prevalence of Vitamin A Deficiency at Two Years of Age. J. Nutr. 2020, 150, 3005–3012. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Penkert, R.R.; Jones, B.G.; Sealy, R.E.; Surman, S.L.; Sun, Y.; Tang, L.; De Beauchamp, J.; Webb, A.; Richardson, J.; et al. Baseline serum Vitamin A and D levels determine benefit of oral Vitamin A&D supplements to humoral immune responses following pediatric influenza vaccination. Viruses 2019, 11, 907. [Google Scholar] [CrossRef] [Green Version]
- Palmer, A.C.; Craft, N.E.; Schulze, K.J.; Barffour, M.; Chileshe, J.; Siamusantu, W.; West, K.P. Impact of biofortified maize consumption on serum carotenoid concentrations in Zambian children. Eur. J. Clin. Nutr. 2018, 72, 301–303. [Google Scholar] [CrossRef]
- Sheftel, J.; Gannon, B.M.; Davis, C.R.; Tanumihardjo, S.A. Provitamin A-biofortified maize consumption increases serum xanthophylls and 13C-natural abundance of retinol in Zambian children. Exp. Biol. Med. 2017, 242, 1508–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCT03383744. Using Stable Isotopes to Assess the Effectiveness of Vitamin A Supplementation in Cameroon. 2017. Available online: https://clinicaltrials.gov/show/NCT03383744 (accessed on 10 January 2022).
- Palmer, A.C.; Siamusantu, W.; Chileshe, J.; Schulze, K.J.; Barffour, M.; Craft, N.E.; Molobeka, N.; Kalungwana, N.; Arguello, M.A.; Mitra, M.; et al. Provitamin A-biofortified maize increases serum β-carotene, but not retinol, in marginally nourished children: A cluster-randomized trial in rural Zambia. Am. J. Clin. Nutr. 2016, 104, 181–190. [Google Scholar] [CrossRef] [Green Version]
- NCT02627222. The Efficacy of Pro-Vitamin A Biofortified Cassava on Vitamin A Status in Nigerian Preschool Children. 2015. Available online: https://clinicaltrials.gov/show/NCT02627222 (accessed on 10 January 2022).
- NCT02069522. Healthy Term Infants Fed Milk-Based Formulas. 2014. Available online: https://clinicaltrials.gov/show/NCT02069522 (accessed on 10 January 2022).
- Pinkaew, S.; Wegmuller, R.; Wasantwisut, E.; Winichagoon, P.; Hurrell, R.F.; Tanumihardjo, S.A. Triple-fortified rice containing vitamin A reduced marginal vitamin A deficiency and increased vitamin A liver stores in school-aged Thai children. J. Nutr. 2014, 144, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Mackey, A.D.; Albrecht, D.; Oliver, J.; Williams, T.; Long, A.C.; Price, P.T. Plasma carotenoid concentrations of infants are increased by feeding a milk-based infant formula supplemented with carotenoids. J. Sci. Food Agric. 2013, 93, 1945–1952. [Google Scholar] [CrossRef]
- Awasthi, S.; Peto, R.; Read, S.; Clark, S.; Pande, V.; Bundy, D. Vitamin A supplementation every 6 months with retinol in 1 million pre-school children in north India: DEVTA, a cluster-randomised trial. Lancet 2013, 381, 1469–1477. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Zhu, J.; Yang, T.; Lai, X.; Lei, Y.; Chen, J.; Li, T. Vitamin A and vitamin D deficiencies exacerbate symptoms in children with autism spectrum disorders. Nutr. Neurosci. 2019, 22, 637–647. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, R.R.; Yan, Z.X.; Yi, W.X.; Yue, B. Correlation of serum vitamin A, D, and E with recurrent respiratory infection in children. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8133–8138. [Google Scholar] [CrossRef]
- Lawal, O.A.; Adegoke, S.A.; Oseni, S.B.; Oyelami, O.A. Low serum vitamin A is prevalent in underfive children with severe malaria and is associated with increased risk of death. J. Infect. Dev. Ctries 2018, 12, 365–372. [Google Scholar] [CrossRef]
- Hamalainen, N.; Nwaru, B.I.; Erlund, I.; Takkinen, H.M.; Ahonen, S.; Toppari, J.; Ilonen, J.; Veijola, R.; Knip, M.; Kaila, M.; et al. Serum carotenoid and tocopherol concentrations and risk of asthma in childhood: A nested case-control study. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2017, 47, 401–409. [Google Scholar] [CrossRef]
- Ahmed, A.M.S.; Ahmed, T.; Soares Magalhaes, R.J.; Long, K.Z.; Alam, M.A.; Hossain, M.I.; Islam, M.M.; Mahfuz, M.; Mondal, D.; Haque, R.; et al. Association between serum Vitamin D, retinol and zinc status, and acute respiratory infections in underweight and normal-weight children aged 6-24 months living in an urban slum in Bangladesh. Epidemiol. Infect. 2016, 144, 3494–3506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ding, F.; Li, H.; Zhao, W.; Jing, H.; Yan, Y.; Chen, Y. Low Serum Levels of Vitamins A, D, and E Are Associated with Recurrent Respiratory Tract Infections in Children Living in Northern China: A Case Control Study. PLoS ONE 2016, 11, e0167689. [Google Scholar] [CrossRef]
- Qi, Y.J.; Niu, Q.L.; Zhu, X.L.; Zhao, X.Z.; Yang, W.W.; Wang, X.J. Relationship between deficiencies in vitamin A and E and occurrence of infectious diseases among children. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 5009–5012. [Google Scholar] [PubMed]
- Fidanci, I.; Arikan, F.I.; Bilge, Y.D. The role of the micronutrients; Vitamin A, Vitamin B12, Iron, Zinc, Copper levels of children with lower respiratory tract infections. Cocuk Enfeksiyon Derg. 2014, 8, 105–109. [Google Scholar] [CrossRef]
- 2020 Dietary Guidelines Advisory Committee and Nutrition Evidence Systematic Review Team. The Duration, Frequency, and Volume of Exclusive Human Milk and/or Infant Formula Consumption and Nutrient Status: A Systematic Review. 2020 Dietary Guidelines Advisory Committee Project; U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion: Alexandria, VA, USA, 2020. Available online: https://nesr.usda.gov/2020-dietary-guidelines-advisory-committee-systematic-reviews (accessed on 10 January 2022).
- Nutrition Evidence Systematic Review Team and Complementary Feeding Technical Expert Collaborative. Timing of Introduction of Complementary Foods and Beverages and Micronutrient Status: A Systematic Review. Pregnancy and Birth to 24 Months Project, February 2019. Available online: https://nesr.usda.gov/sites/default/files/2019-12/TimingOfCFBandMicronutrientStatus-NESRSystematicReview.pdf (accessed on 20 January 2021).
- Dalili, H.; Shariat, M.; Nayeri, F.; Emami, Z.; Sahebi, R.; Sahebi, L. Exclusive Breastfeeding Duration and its Effect on the Health of the Children in Iran, a Meta Analysis. J. Pediatr. Nurs. 2019, 48, e8–e14. [Google Scholar] [CrossRef]
- Qasem, W.; Fenton, T.; Friel, J. Age of introduction of first complementary feeding for infants: A systematic review. BMC Pediatrics 2015, 15, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, M.S.; Kakuma, R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst. Rev. 2012, CD003517. [Google Scholar] [CrossRef] [PubMed]
- Imdad, A.; Ahmed, Z.; Bhutta, Z.A. Vitamin A supplementation for the prevention of morbidity and mortality in infants one to six months of age. Cochrane Database Syst. Rev. 2016, 9, CD007480. [Google Scholar] [CrossRef]
- Girard, A.W.; Self, J.L.; McAuliffe, C.; Olude, O. The effects of household food production strategies on the health and nutrition outcomes of women and young children: A systematic review. Paediatr. Perinat Epidemiol. 2012, 26 (Suppl. 1), 205–222. [Google Scholar] [CrossRef] [PubMed]
- Church, J.A.; Rukobo, S.; Govha, M.; Carmolli, M.P.; Diehl, S.A.; Chasekwa, B.; Ntozini, R.; Mutasa, K.; Humphrey, J.H.; Kirkpatrick, B.D.; et al. Neonatal vitamin A supplementation and immune responses to oral polio vaccine in Zimbabwean infants. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 110–115. [Google Scholar] [CrossRef]
- McDonald, S.L.; Savy, M.; Fulford, A.J.; Kendall, L.; Flanagan, K.L.; Prentice, A.M. A double blind randomized controlled trial in neonates to determine the effect of vitamin A supplementation on immune responses: The Gambia protocol. BMC Pediatrics 2014, 14, 92. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, M.J.; Fisker, A.B.; Sartono, E.; Andersen, A.; Erikstrup, C.; Lisse, I.M.; Yazdanbakhsh, M.; Aaby, P.; Benn, C.S. The effect of at-birth vitamin A supplementation on differential leucocyte counts and in vitro cytokine production: An immunological study nested within a randomised trial in Guinea-Bissau. Br. J. Nutr. 2013, 109, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Aage, S.; Kiraly, N.; Da Costa, K.; Byberg, S.; Bjerregaard-Andersen, M.; Fisker, A.B.; Aaby, P.; Benn, C.S. Neonatal vitamin A supplementation associated with increased atopy in girls. Allergy 2015, 70, 985–994. [Google Scholar] [CrossRef]
- Kiraly, N.; Benn, C.S.; Biering-Sorensen, S.; Rodrigues, A.; Jensen, K.J.; Ravn, H.; Allen, K.J.; Aaby, P. Vitamin A supplementation and BCG vaccination at birth may affect atopy in childhood: Long-term follow-up of a randomized controlled trial. Allergy 2013, 68, 1168–1176. [Google Scholar] [CrossRef]
- Shaker, S.M.; Fathy, H.; Abdelall, E.K.A.; Said, A.S.A. The effect of zinc and Vitamin A supplements in treating and reducing the incidence of upper respiratory tract infections in children. Natl. J. Physiol. Pharm. Pharmacol. 2018, 8, 1010–1017. [Google Scholar] [CrossRef]
- Ali, H.; Hamadani, J.; Mehra, S.; Tofail, F.; Hasan, M.I.; Shaikh, S.; Shamim, A.A.; Wu, L.S.F.; West, K.P., Jr.; Christian, P. Effect of maternal antenatal and newborn supplementation with vitamin A on cognitive development of school-aged children in rural Bangladesh: A follow-up of a placebo-controlled, randomized trial. Am. J. Clin. Nutr. 2017, 106, 77–87. [Google Scholar] [CrossRef]
- Lima, A.A.; Kvalsund, M.P.; Souza, P.P.; Figueiredo, Í.; Soares, A.M.; Mota, R.M.; Lima, N.L.; Pinkerton, R.C.; Patrick, P.P.; Guerrant, R.L.; et al. Zinc, vitamin A, and glutamine supplementation in Brazilian shantytown children at risk for diarrhea results in sex-specific improvements in verbal learning. Clinics 2013, 68, 351–358. [Google Scholar] [CrossRef]
- Palmer, A.C.; Healy, K.; Barffour, M.A.; Siamusantu, W.; Chileshe, J.; Schulze, K.J.; West, K.P., Jr.; Labrique, A.B. Provitamin A Carotenoid-Biofortified Maize Consumption Increases Pupillary Responsiveness among Zambian Children in a Randomized Controlled Trial. J. Nutr. 2016, 146, 2551–2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biering-Sorensen, S.; Fisker, A.B.; Ravn, H.; Camala, L.; Monteiro, I.; Aaby, P.; Benn, C.S. The effect of neonatal vitamin A supplementation on growth in the first year of life among low-birth-weight infants in Guinea-Bissau: Two by two factorial randomised controlled trial. BMC Pediatrics 2013, 13, 87. [Google Scholar] [CrossRef] [Green Version]
- NCT03181178. Effect of a Complementary Food Supplement on Growth and Morbidity of Ghanaian Infants. 2017. Available online: https://clinicaltrials.gov/show/NCT03181178 (accessed on 10 January 2022).
- Newton, S.; Owusu-Agyei, S.; Asante, K.P.; Amoaful, E.; Mahama, E.; Tchum, S.K.; Ali, M.; Adjei, K.; Davis, C.R.; Tanumihardjo, S.A. Vitamin A status and body pool size of infants before and after consuming fortified home-based complementary foods. Arch. Public Health 2016, 74, 10. [Google Scholar] [CrossRef] [Green Version]
- Talsma, E.F.; Brouwer, I.D.; Verhoef, H.; Mbera, G.N.K.; Mwangi, A.M.; Demir, A.Y.; Maziya-Dixon, B.; Boy, E.; Zimmermann, M.B.; Melse-Boonstra, A. Biofortified yellow cassava and vitamin A status of Kenyan children: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, S.S.; Wengreen, H.J.; Dew, J. Skin Carotenoid Response to a High-Carotenoid Juice in Children: A Randomized Clinical Trial. J. Acad. Nutr. Diet. 2015, 115, 1771–1778. [Google Scholar] [CrossRef] [PubMed]
- Astiazaran-Garcia, H.; Lopez-Teros, V.; Quihui-Cota, L.; Esparza-Romero, J.; Valencia, M.E.; Green, M.H.; Tang, G.; Grijalva-Haro, M.I.; Mendez-Estrada, R.O.; Pacheco-Moreno, B.I.; et al. Use of deuterated retinol dilution technique to assess total body vitamin a stores in Mexican preschoolers consuming vitamin a fortified milk. Ann. Nutr. Metab. 2013, 63, 94. [Google Scholar] [CrossRef]
- Girard, A.W.; Deneen, M.; Lubowa, A.; Okuku, H.; Low, J.; Grant, F. An integrated agriculture, health and nutrition program increased vitamin a intakes among mothers and their infants in western Kenya. FASEB J. 2015, 29, 729. [Google Scholar]
- Boateng, L.; Ashley, I.; Ohemeng, A.; Asante, M.; Steiner-Asiedu, M. Improving Blood Retinol Concentrations with Complementary Foods Fortified with Moringa oleifera Leaf Powder—A Pilot Study. Yale J. Biol. Med. 2018, 91, 83–94. [Google Scholar]
- Muzhingi, T.; Tang, G.; Yeum, K.J.; Bermudez, O.; Siwela, A. Peanut butter increases kale beta-carotene absorption and conversion to vitamin A in pre-school children. FASEB J. 2014, 28, LB417. [Google Scholar] [CrossRef]
- Nawiri, M.P.; Nyambaka, H.; Murungi, J.I. Sun-dried cowpeas and amaranth leaves recipe improves beta-carotene and retinol levels in serum and hemoglobin concentration among preschool children. Eur. J. Nutr. 2013, 52, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.L.S.; Augusto, R.A.; Tietzmann, D.C.; Sequeira, L.A.S.; Hadler, M.; Muniz, P.T.; de Lira, P.I.C.; Cardoso, M.A. The impact of home fortification with multiple micronutrient powder on vitamin A status in young children: A multicenter pragmatic controlled trial in Brazil. Matern. Child. Nutr. 2017, 13, e12304. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.L.; Green, J.B.; Haskell, M.J.; Ahmad, S.M.; Cordero, D.I.M.; Oxley, A.; Engle-Stone, R.; Lietz, G.; Green, M.H. Use of model-based compartmental analysis and a super-child design to study whole-body retinol kinetics and Vitamin A total body stores in children from 3 lower-income countries. J. Nutr. 2020, 150, 411–418. [Google Scholar] [CrossRef]
- NCT03000543. Novel Isotope Dilution Technique to Assess Vitamin A Status. 2016. Available online: https://clinicaltrials.gov/show/NCT03000543 (accessed on 10 January 2022).
- Ford, J.L.; Lopez-Teros, V. Prediction of Vitamin A Stores in Young Children Provides Insights into the Adequacy of Current Dietary Reference Intakes. Curr. Dev. Nutr. 2020, 4, nzaa119. [Google Scholar] [CrossRef]
- Lopez-Teros, V.; Ford, J.L.; Green, M.H.; Monreal-Barraza, B.; Garcia-Miranda, L.; Tanumihardjo, S.A.; Valencia, M.E.; Astiazaran-Garcia, H. The “Super-Child” Approach Is Applied To Estimate Retinol Kinetics and Vitamin A Total Body Stores in Mexican Preschoolers. J. Nutr. 2020, 150, 1644–1651. [Google Scholar] [CrossRef]
- Lopez-Teros, V.; Ford, J.L.; Green, M.H.; Tang, G.; Grusak, M.A.; Quihui-Cota, L.; Muzhingi, T.; Paz-Cassini, M.; Astiazaran-Garcia, H. Use of a “Super-child” Approach to Assess the Vitamin A Equivalence of Moringa oleifera Leaves, Develop a Compartmental Model for Vitamin A Kinetics, and Estimate Vitamin A Total Body Stores in Young Mexican Children. J. Nutr. 2017, 147, 2356–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez Teros, V.; Green, M.; Ford, J.; Astiazaran-Garcia, H.; Tang, G. Development of a “Super-Kid” Model Based on Plasma [13c10]-Retinol Kinetics in Well-Nourished Mexican Infants. FASEB J. 2015, 29, 604–611. [Google Scholar] [CrossRef]
- Lopez-Teros, V.; Limon-Miro, A.T.; Astiazaran-Garcia, H.; Tanumihardjo, S.A.; Tortoledo-Ortiz, O.; Valencia, M.E. ‘Dose-to-Mother’ Deuterium Oxide Dilution Technique: An Accurate Strategy to Measure Vitamin A Intake in Breastfed Infants. Nutrients 2017, 9, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez Teros, V.; Limón-Miró, A.; Villegas-Valle, R.; Antunez-Roman, L.; Tortoledo-Ortiz, O.; Astiazaran-Garcia, H.; Valencia, M. Dose to the Mother Method: Milk Intake and Vitamin A Transfer to the Lactating Infant of Mexican Mothers, Using Stable Isotopes. FASEB J. 2015, 29, 32–35. [Google Scholar] [CrossRef]
- Lopez-Teros, V.; Quihui-Cota, L.; Mendez-Estrada, R.O.; Grijalva-Haro, M.I.; Esparza-Romero, J.; Valencia, M.E.; Green, M.H.; Tang, G.; Pacheco-Moreno, B.I.; Tortoledo-Ortiz, O.; et al. Vitamin A-fortified milk increases total body vitamin A stores in Mexican preschoolers. J. Nutr. 2013, 143, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Mondloch, S.; Gannon, B.M.; Davis, C.R.; Chileshe, J.; Kaliwile, C.; Masi, C.; Rios-Avila, L.; Gregory, J.F., 3rd; Tanumihardjo, S.A. High provitamin A carotenoid serum concentrations, elevated retinyl esters, and saturated retinol-binding protein in Zambian preschool children are consistent with the presence of high liver vitamin A stores. Am. J. Clin. Nutr. 2015, 102, 497–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzhingi, T.; Yeum, K.-J.; Bermudez, O.; Tang, G.; Siwela, A.H. Peanut butter increases the bioavailability and bioconversion of kale beta-carotene to vitamin A. Asia Pac. J. Clin. Nutr. 2017, 26, 1039–1047. [Google Scholar] [CrossRef]
- NCT03801161. Influence of Inflammation on Micronutrient Status Assessment. 2019. Available online: https://clinicaltrials.gov/show/NCT03801161 (accessed on 10 January 2022).
- NCT02363985. Using Stable Isotope Techniques to Monitor and Assess the Vitamin A Status of Children Susceptible to Infection. 2015. Available online: https://clinicaltrials.gov/show/NCT02363985 (accessed on 10 January 2022).
- Palmer, A.C.; Jobarteh, M.L.; Chipili, M.; Greene, M.D.; Oxley, A.; Lietz, G.; Mwanza, R.; Haskell, M.J. Biofortified and fortified maize consumption reduces prevalence of low milk retinol, but does not increase vitamin A stores of breastfeeding Zambian infants with adequate reserves: A randomized controlled trial. Am. J. Clin. Nutr. 2021, 13, 1209–1220. [Google Scholar] [CrossRef]
- NCT01199445. Efficacy of Vitamin A in Fortified Extruded Rice in School Children. 2010. Available online: https://clinicaltrials.gov/show/NCT01199445 (accessed on 10 January 2022).
- Suri, D.J.; Tanumihardjo, J.P.; Gannon, B.M.; Pinkaew, S.; Kaliwile, C.; Chileshe, J.; Tanumihardjo, S.A. Serum retinol concentrations demonstrate high specificity after correcting for inflammation but questionable sensitivity compared with liver stores calculated from isotope dilution in determining vitamin A deficiency in Thai and Zambian children. Am. J. Clin. Nutr. 2015, 102, 1259–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Stuijvenberg, M.E.; Dhansay, M.A.; Nel, J.; Suri, D.; Grahn, M.; Davis, C.R.; Tanumihardjo, S.A. South African preschool children habitually consuming sheep liver and exposed to vitamin A supplementation and fortification have hypervitaminotic A liver stores: A cohort study. Am. J. Clin. Nutr. 2019, 110, 91–101. [Google Scholar] [CrossRef]
- Davidsson, L.; Haskell, M. Bioavailability of micronutrients: Stable isotope techniques to develop effective food-based strategies to combat micronutrient deficiencies. Food Nutr. Bull. 2011, 32, S24–S30. [Google Scholar] [CrossRef] [Green Version]
- Aklamati, E.; Brown, K.H.; Mulenga, M.; Kafwembe, E.; Peerson, J.M.; Stephensen, C.; Haskell, M.J. Impact of High-Dose Vitamin a Supplements on Vitamin a Status of 3–4 Y Old Zambian Boys. FASEB J. 2006, 20. [Google Scholar] [CrossRef]
- Furr, H.C.; Green, M.H.; Haskell, M.; Mokhtar, N.; Nestel, P.; Newton, S.; Ribaya-Mercado, J.D.; Tang, G.; Tanumihardjo, S.; Wasantwisut, E. Stable isotope dilution techniques for assessing vitamin A status and bioefficacy of provitamin A carotenoids in humans. Public Health Nutr. 2005, 8, 596–607. [Google Scholar] [CrossRef] [Green Version]
- Haskell, M.J.; Lembcke, J.L.; Salazar, M.; Green, M.H.; Peerson, J.M.; Brown, K.H. Population-based plasma kinetics of an oral dose of [2H4]retinyl acetate among preschool-aged, Peruvian children. Am. J. Clin. Nutr. 2003, 77, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Wasantwisut, E. Application of isotope dilution technique in vitamin A nutrition. Food Nutr. Bull. 2002, 23, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Gu, X.; Hu, S.; Xu, Q.; Qin, J.; Dolnikowski, G.G.; Fjeld, C.R.; Gao, X.; Russell, R.M.; Yin, S. Green and yellow vegetables can maintain body stores of vitamin A in Chinese children. Am. J. Clin. Nutr. 1999, 70, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- Olson, J.A. Serum levels of vitamin A and carotenoids as reflectors of nutritional status. J. Natl. Cancer Inst. 1984, 73, 1439–1444. [Google Scholar] [PubMed]
- Sivakumar, B.; Reddy, V. Absorption of labelled vitamin A in children during infection. Br. J. Nutr. 1972, 27, 299–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbeddou, S.; Yakes Jimenez, E.; Some, J.W.; Ouedraogo, J.B.; Brown, K.H.; Hess, S.Y. Small-quantity lipid-based nutrient supplements containing different amounts of zinc along with diarrhea and malaria treatment increase iron and vitamin A status and reduce anemia prevalence, but do not affect zinc status in young Burkinabe children: A cluster-randomized trial. BMC Pediatrics 2017, 17, 46. [Google Scholar] [CrossRef] [Green Version]
- Addo, O.Y.; Locks, L.M.; Jefferds, M.E.; Nanama, S.; Albert, B.; Sandalinas, F.; Nanema, A.; Whitehead, R.D.; Mei, Z.; Clayton, H.B.; et al. Combined infant and young child feeding with small-quantity lipid-based nutrient supplementation is associated with a reduction in anemia but no changes in anthropometric status of young children from Katanga Province of the Democratic Republic of Congo: A quasi-experimental effectiveness study. Am. J. Clin. Nutr. 2020, 112, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.P.; Fernald, L.C.H.; Weber, A.M.; Arnold, C.; Galasso, E. Lipid-Based Nutrient Supplementation Reduces Child Anemia and Increases Micronutrient Status in Madagascar: A Multiarm Cluster-Randomized Controlled Trial. J. Nutr. 2020, 150, 958–966. [Google Scholar] [CrossRef]
- RBR-5ktv6b. Home Fortification of Complementary Feeding in Brazil: A Multicenter Pragmatic Trial. Available online: http://www.who.int/trialsearch/Trial2.aspx?TrialID=RBR-5ktv6b (accessed on 10 January 2022).
- Serdula, M.K.; Lundeen, E.; Nichols, E.K.; Imanalieva, C.; Minbaev, M.; Mamyrbaeva, T.; Timmer, A.; Aburto, N.J.; Kyrgyz Republic Working, G. Effects of a large-scale micronutrient powder and young child feeding education program on the micronutrient status of children 6-24 months of age in the Kyrgyz Republic. Eur. J. Clin. Nutr. 2013, 67, 703–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Zhang, L.; Luo, H.-y.; Wang, J.; Li, Q.; Mao, M. No enhancing effect of vitamin A administration on iron absorption or body total iron content in preschool children from Chengdu, China. J. Nutr. Sci. Vitaminol. 2014, 60, 223–230. [Google Scholar] [CrossRef]
- NCT02675140. Effect of Hookworm Elimination and Vitamin A Intervention on Iron Status of Preschool Children in Sichuan, China. 2015. Available online: https://clinicaltrials.gov/show/NCT02675140 (accessed on 10 January 2022).
- Devadas, R.P.; Murthy, N.K. Biological utilization of beta-carotene from amaranth and leaf protein in preschool children. World Rev. Nutr. Diet 1978, 31, 159–161. [Google Scholar]
- Figueira, F.; Mendonca, S.; Rocha, J.; Azevedo, M.; Bunce, G.E.; Reynolds, J.W. Absorption of vitamin A by infants receiving fat-free or fat-containing dried skim milk formulas. Am. J. Clin. Nutr. 1969, 22, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, Y.-F.; Chen, L.; Zhang, X.; Liu, Y.-X.; Chen, J.; Li, T.-Y. Effects of vitamin A, vitamin A plus iron and multiple micronutrient-fortified seasoning powder on iron metabolic homeostasis. Zhonghua Er Ke Za Zhi Chin. J. Pediatrics 2011, 49, 926–932. [Google Scholar]
- Pollitt, E.; Durnin, J.V.; Husaini, M.; Jahari, A. Effects of an energy and micronutrient supplement on growth and development in undernourished children in Indonesia: Methods. Eur. J. Clin. Nutr. 2000, 54 (Suppl. 2), S16–S20. [Google Scholar] [CrossRef] [Green Version]
- West, K.P., Jr.; Khatry, S.K.; LeClerq, S.C.; Adhikari, R.; See, L.; Katz, J.; Shrestha, S.R.; Pradhan, E.K.; Pokhrel, R.P.; Sommer, A. Tolerance of young infants to a single, large dose of vitamin A: A randomized community trial in Nepal. Bull. World Health Organ. 1992, 70, 733–739. [Google Scholar]
- Flores, H.; Campos, F.; Araujo, R.C.; Underwood, B.A. Assessment of marginal vitamin A deficiency in Brazilian children using the relative dose response procedure. Am. J. Clin. Nutr. 1984, 40, 1281–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusin, J.A.; Reddy, V.; Sivakumar, B. Vitamin E supplements and the absorption of a massive dose of vitamin A. Am. J. Clin. Nutr. 1974, 27, 774–776. [Google Scholar] [CrossRef]
- Pereira, S.M.; Begum, A. Retention of a single oral massive dose of vitamin A. Clin. Sci. Mol. Med. 1973, 45, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Mahalanabis, D.; Alvarez, J.O.; Wahed, M.A.; Islam, M.A.; Habte, D.; Khaled, M.A. Acute respiratory infections prevent improvement of vitamin A status in young infants supplemented with vitamin A. J. Nutr. 1996, 126, 628–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCT01583972. Efficacy of Newborn Vitamin A Supplementation in Improving Immune Function. 2012. Available online: https://clinicaltrials.gov/show/NCT01583972 (accessed on 14 June 2021).
- NCT01476358. Effect of Vitamin A Supplementation on Immune Responses in Human Neonates. 2011. Available online: https://clinicaltrials.gov/show/NCT01476358 (accessed on 14 June 2021).
- Kutukculer, N.; Akil, T.; Egemen, A.; Kurugol, Z.; Aksit, S.; Ozmen, D.; Turgan, N.; Bayindir, O.; Caglayan, S. Adequate immune response to tetanus toxoid and failure of vitamin A and E supplementation to enhance antibody response in healthy children. Vaccine 2000, 18, 2979–2984. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mahalanabis, D.; Alvarez, J.O.; Wahed, M.A.; Islam, M.A.; Habte, D. Effect of early vitamin A supplementation on cell-mediated immunity in infants younger than 6 mo. Am. J. Clin. Nutr. 1997, 65, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Araki, S.; Kato, S.; Namba, F.; Ota, E. Vitamin A to prevent bronchopulmonary dysplasia in extremely low birth weight infants: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0207730. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, E.; Zelig, R.; Parker, A.; Johnson, S. Vitamin A Supplementation for the Prevention of Bronchopulmonary Dysplasia in Preterm Infants: An Update. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2017, 32, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Myhre, A.M.; Carlsen, M.H.; Bohn, S.K.; Wold, H.L.; Laake, P.; Blomhoff, R. Water-miscible, emulsified, and solid forms of retinol supplements are more toxic than oil-based preparations. Am. J. Clin. Nutr. 2003, 78, 1152–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanumihardjo, S.A.; Gannon, B.M.; Kaliwile, C.; Chileshe, J.; Binkley, N.C. Restricting vitamin A intake increases bone formation in Zambian children with high liver stores of vitamin. Arch. Osteoporos. 2019, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.M.; Raqib, R.; Huda, M.N.; Alam, M.J.; Monirujjaman, M.; Akhter, T.; Wagatsuma, Y.; Qadri, F.; Zerofsky, M.S.; Stephensen, C.B. High-Dose Neonatal Vitamin A Supplementation Transiently Decreases Thymic Function in Early Infancy. J. Nutr. 2020, 150, 176–183. [Google Scholar] [CrossRef]
- Soofi, S.; Ariff, S.; Sadiq, K.; Habib, A.; Bhatti, Z.; Ahmad, I.; Hussain, M.; Ali, N.; Cousens, S.; Bhutta, Z.A. Evaluation of the uptake and impact of neonatal vitamin A supplementation delivered through the Lady Health Worker programme on neonatal and infant morbidity and mortality in rural Pakistan: An effectiveness trial. Arch. Dis. Child. 2017, 102, 216–223. [Google Scholar] [CrossRef]
- Mathew, J.L. Does early neonatal vitamin A supplementation reduce infant mortality? Indian Pediatrics 2015, 52, 329–332. [Google Scholar] [CrossRef]
- Kiraly, N.; Balde, A.; Lisse, I.M.; Eriksen, H.B.; Aaby, P.; Benn, C.S. Vitamin A supplementation and risk of atopy: Long-term follow-up of a randomized trial of vitamin A supplementation at six and nine months of age. BMC Pediatrics 2013, 13, 190. [Google Scholar] [CrossRef] [Green Version]
- Mazumder, S.; Taneja, S.; Bhatia, K.; Yoshida, S.; Kaur, J.; Dube, B.; Toteja, G.S.; Bahl, R.; Fontaine, O.; Martines, J.; et al. Efficacy of early neonatal supplementation with vitamin A to reduce mortality in infancy in Haryana, India (Neovita): A randomised, double-blind, placebo-controlled trial. Lancet 2015, 385, 1333–1342. [Google Scholar] [CrossRef]
- Lund, N.; Biering-Sorensen, S.; Andersen, A.; Monteiro, I.; Camala, L.; Jorgensen, M.J.; Aaby, P.; Benn, C.S. Neonatal vitamin A supplementation associated with a cluster of deaths and poor early growth in a randomised trial among low-birth-weight boys of vitamin A versus oral polio vaccine at birth. BMC Pediatrics 2014, 14, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisker, A.B.; Bale, C.; Jorgensen, M.J.; Balde, I.; Hornshoj, L.; Bibby, B.M.; Aaby, P.; Benn, C.S. High-dose vitamin A supplementation administered with vaccinations after 6 months of age: Sex-differential adverse reactions and morbidity. Vaccine 2013, 31, 3191–3198. [Google Scholar] [CrossRef]
- Xuan, N.N.; Wang, D.; Grathwohl, D.; Lan, P.N.T.; Kim, H.V.T.; Goyer, A.; Benyacoub, J. Effect of a Growing-up Milk Containing Synbiotics on Immune Function and Growth in Children: A Cluster Randomized, Multicenter, Double-blind, Placebo Controlled Study. Clin. Med. Insights Pediatrics 2013, 7, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Blomhoff, R. Vitamin A and Carotenoid Toxicity. Food Nutr. Bull. 2001, 22, 320–334. [Google Scholar] [CrossRef]
- Geubel, A.P.; De Galocsy, C.; Alves, N.; Rahier, J.; Dive, C. Liver damage caused by therapeutic vitamin A administration: Estimate of dose-related toxicity in 41 cases. Gastroenterology 1991, 100, 1701–1709. [Google Scholar] [CrossRef]
- Hathcock, J.N.; Hattan, D.G.; Jenkins, M.Y.; McDonald, J.T.; Sundaresan, P.R.; Wilkening, V.L. Evaluation of vitamin A toxicity. Am. J. Clin. Nutr. 1990, 52, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Green, M.H.; Green, J.B.; Ford, J.L. Vitamin A Absorption Efficiency Determined by Compartmental Analysis of Postprandial Plasma Retinyl Ester Kinetics in Theoretical Humans. J. Nutr. 2020, 150, 2223–2229. [Google Scholar] [CrossRef] [PubMed]
Systematic Reviews | RCTs & Trials | Cohort & Case-Control Studies | Cross-Sectional Studies | |||||
---|---|---|---|---|---|---|---|---|
2013+ | Pre-2013 | 2013+ | Pre-2013 | 2013+ | Pre-2013 | 2013+ | Pre-2013 | |
What is the relationship between exclusive or mixed breastfeeding duration and vitamin A status in children? | 4 [47,48,49,50] | 1 [51] | ||||||
What is the relationship between duration of formula use and vitamin A status in children? | 3 [47,48,50] | 0 | ||||||
What is the relationship between vitamin A intake (from formula, foods and supplements) in infants and children and any health outcome? (See Excel sheet 2A Intake Outcome) | 18 [3,4,25,52] | 26 [53] | 43 [28,29,33,38,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68] | 134 | 9 | 26 | 14 | 21 |
What is the relationship between vitamin A intake (from formula, foods and supplements) and vitamin A status? (See Excel sheet 2B Intake Status) | 3 [24,25,26] | 2 | 31 [27,31,33,34,35,36,37,65,66,67,69,70,71,72,73] | 80 | 12 | 15 | 9 | 25 |
What is the relationship between vitamin A status and any health outcome? (See Excel sheet 2C Status Outcome) | 0 | 0 | 2 | 39 | 17 [39,40,41,42,43,44,45,46] | 42 | 19 | 56 |
Study | Country | Vitamin A Source | Children’s Ages | Vitamin A Outcomes Assessed |
---|---|---|---|---|
Ford 2020 [74], NCT03000543 [75], NCT03345147, NCT03030339 | Bangladesh, Guatemala, Philippines | Some supplemented, others dietary only | 9–65 months | TBS, retinol kinetics |
Ford 2020 [76] | Bangladesh, Phillipines, Guatemala, Mexico | Dietary and supplemental intake | Birth to 5 years | TBS, liver concentration |
Lopez-Teros 2020 [77] | Mexico | Usual diet & supplementation | 3–6 years | Whole-body retinol kinetics, TBS |
Lopez-Teros 2017 [78,79] | Mexico | Moringa oleifera leaves | 17–35 months | VA equivalence, TBS, retinol kinetics |
Lopez-Teros 2017 [80,81] | Mexico | Breast milk | 0–2 years | Breast milk intake, VA intake from breast milk |
Lopez-Teros 2013 [82], Astiazaran-Garcia 2013 [68] | Mexico | Fortified milk | Pre-school | TBS, SR, liver VA concentration |
Mondloch 2015 [83] | Zambia | Biofortified maize | Pre-school | TBS, serum carotenoids, RBP etc |
Muzhingi 2017 [71,84] | Zimbabwe | Peanut butter and kale | 12–36 months | Conversion factor |
NCT03383744 [32] | Cameroon | Supplementation | 3–5 years | TBS, SR, RBP |
NCT03801161 [85] | Bangladesh | Usual dietary intake | 9–18 months | SR, TBS, RBP, beta carotene, CRP, iron status |
NCT02363985, NCT03194724, NCT03207308 [86] | Ethiopia, Cameroon, Botswana, Senegal | Dietary diversity, supplementation, biofortification | 3–5 years | TBS, SR, Liver stores, infection, dietary intake, anthropometry, morbidity |
Palmer 2021 [87], NCT02804490 | Zambia | Biofortified or fortified maize to mother | 9 months | TBS, breast milk retinol |
Pinkaew 2013 [36], NCT01199445 [88] | Thailand | Fortified rice | School age | TBS, SR |
Suri 2015 [89], NCT01061307, NCT01814891 | Thailand, Zambia | Usual intake and status | Pre-school | SR, total liver reserves |
Van Stuijvenberg 2019 [90], NCT02915731 | South Africa | Supplementation, fortification, sheep liver intake | Pre-school | Hypervitaminosis A, TBS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hooper, L.; Esio-Bassey, C.; Brainard, J.; Fynn, J.; Jennings, A.; Jones, N.; Tailor, B.V.; Abdelhamid, A.; Coe, C.; Esgunoglu, L.; et al. Evidence to Underpin Vitamin A Requirements and Upper Limits in Children Aged 0 to 48 Months: A Scoping Review. Nutrients 2022, 14, 407. https://doi.org/10.3390/nu14030407
Hooper L, Esio-Bassey C, Brainard J, Fynn J, Jennings A, Jones N, Tailor BV, Abdelhamid A, Coe C, Esgunoglu L, et al. Evidence to Underpin Vitamin A Requirements and Upper Limits in Children Aged 0 to 48 Months: A Scoping Review. Nutrients. 2022; 14(3):407. https://doi.org/10.3390/nu14030407
Chicago/Turabian StyleHooper, Lee, Chizoba Esio-Bassey, Julii Brainard, Judith Fynn, Amy Jennings, Natalia Jones, Bhavesh V. Tailor, Asmaa Abdelhamid, Calvin Coe, Latife Esgunoglu, and et al. 2022. "Evidence to Underpin Vitamin A Requirements and Upper Limits in Children Aged 0 to 48 Months: A Scoping Review" Nutrients 14, no. 3: 407. https://doi.org/10.3390/nu14030407
APA StyleHooper, L., Esio-Bassey, C., Brainard, J., Fynn, J., Jennings, A., Jones, N., Tailor, B. V., Abdelhamid, A., Coe, C., Esgunoglu, L., Fallon, C., Gyamfi, E., Hill, C., Howard Wilsher, S., Narayanan, N., Oladosu, T., Parkinson, E., Prentice, E., Qurashi, M., ... Lietz, G. (2022). Evidence to Underpin Vitamin A Requirements and Upper Limits in Children Aged 0 to 48 Months: A Scoping Review. Nutrients, 14(3), 407. https://doi.org/10.3390/nu14030407