Traditional and Medical Applications of Fasting
Abstract
:1. Introduction
1.1. What Is Fasting
1.2. Practice of Fasting in the Monotheist Religions
1.2.1. Judaism
1.2.2. Christianity
1.2.3. Islam
1.3. Other Religions
1.3.1. Buddhism
1.3.2. Jainism
1.4. Modern Fasting Protocols: The Buchinger-Wilhelmi Example
1.5. Prolonged Fasting in Humans
1.6. Refeeding
1.7. Fasting and Animals
1.7.1. Glucose and Glycogen
1.7.2. Lipids
1.7.3. Proteins and Amino Acids
1.8. Fasting and Human Health: The Available Data
1.8.1. Fasting and Brain Function
1.8.2. Fasting and Obesity
1.8.3. Fasting and Hypertension
1.8.4. Fasting and Cancer
1.9. Mechanisms of Action
Ketone Bodies as Potential Effectors of Fasting
2. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fanti, M.; Mishra, A.; Longo, V.D.; Brandhorst, S. Time-Restricted Eating, Intermittent Fasting, and Fasting-Mimicking Diets in Weight Loss. Curr. Obes. Rep. 2021, 10, 70–80. [Google Scholar] [CrossRef]
- Longo, V.D.; Mattson, M.P. Fasting: Molecular mechanisms and clinical applications. Cell Metab. 2014, 19, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, R.E.; Sears, D.D. Metabolic Effects of Intermittent Fasting. Annu. Rev. Nutr. 2017, 37, 371–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinsley, G.M.; La Bounty, P.M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr. Rev. 2015, 73, 661–674. [Google Scholar] [CrossRef]
- Wilhelmi de Toledo, F.; Grundler, F.; Bergouignan, A.; Drinda, S.; Michalsen, A. Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS ONE 2019, 14, e0209353. [Google Scholar] [CrossRef] [Green Version]
- Anton, S.D.; Moehl, K.; Donahoo, W.T.; Marosi, K.; Lee, S.A.; Mainous, A.G., 3rd; Leeuwenburgh, C.; Mattson, M.P. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring) 2018, 26, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Alirezaei, M.; Kemball, C.C.; Flynn, C.T.; Wood, M.R.; Whitton, J.L.; Kiosses, W.B. Short-term fasting induces profound neuronal autophagy. Autophagy 2010, 6, 702–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venegas-Borsellino, C.; Sonikpreet; Martindale, R.G. From Religion to Secularism: The Benefits of Fasting. Curr. Nutr. Rep. 2018, 7, 131–138. [Google Scholar] [CrossRef]
- Schuster, R. The Science of Yom Kippur Fasting. Available online: https://www.haaretz.com/jewish/.premium-the-science-of-yom-kippur-fasting-1.5303423 (accessed on 16 November 2021).
- Becker, M.; Karpati, T.; Valinsky, L.; Heymann, A. The impact of the Yom Kippur fast on emergency room visits among people with diabetes. Diabetes Res. Clin. Pract. 2013, 99, e12–e13. [Google Scholar] [CrossRef] [PubMed]
- Jaleel, M.A.; Raza, S.A.; Fathima, F.N.; Jaleel, B.N. Ramadan and diabetes: As-Saum (The fasting). Indian J. Endocrinol. Metab. 2011, 15, 268–273. [Google Scholar] [CrossRef]
- Trepanowski, J.F.; Bloomer, R.J. The impact of religious fasting on human health. Nutr. J. 2010, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Sanvictores, T.; Casale, J.; Huecker, M.R. Physiology, Fasting; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- The British Islamic Medical Association (BIMA). Ramadan Rapid Review. 2020. Available online: https://britishima.org/ (accessed on 16 November 2021).
- Malik, S.; Bhanji, A.; Abuleiss, H.; Hamer, R.; Shah, S.H.; Rashad, R.; Junglee, N.; Waqar, S.; Ghouri, N. Effects of fasting on patients with chronic kidney disease during Ramadan and practical guidance for healthcare professionals. Clin. Kidney J. 2021, 14, 1524–1534. [Google Scholar] [CrossRef]
- Tootee, A.; Larijani, B. Ramadan fasting and diabetes, latest evidence and technological advancements: 2021 update. J. Diabetes Metab. Disord. 2021, 20, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.M.; Ghouri, N.; Chahal, C.A.A.; Patel, R.; Ricci, F.; Sattar, N.; Waqar, S.; Khanji, M.Y. Ramadan fasting: Recommendations for patients with cardiovascular disease. Heart 2021. [Google Scholar] [CrossRef] [PubMed]
- Möhring, H. Saladin: The Sultan and His Times, 1138–1193; Johns Hopkins University Press: Baltimore, MD, USA, 2008. [Google Scholar]
- Grindrod, K.; Alsabbagh, W. Managing medications during Ramadan fasting. Can. Pharm. J. 2017, 150, 146–149. [Google Scholar] [CrossRef]
- Lobetti, T.F. Ascetic Practices in Japanese Religon; Routledge: Oxon, UK, 2014. [Google Scholar]
- Wiley, K.L. The A to Z of Jainism; Scarecrow Press: Lanham, MD, USA, 2004. [Google Scholar]
- Wilhelmi de Toledo, F.; Buchinger, A.; Burggrabe, H.; Holz, G.; Kuhn, C.; Lischka, E.; Lischka, N.; Lutzner, H.; May, W.; Ritzmann-Widderich, M.; et al. Fasting therapy—An expert panel update of the 2002 consensus guidelines. Komplementmed 2013, 20, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Benedict, F.G. Chemical and Physiological Studies of a Man Fasting Thirtyone Days. Proc. Natl. Acad. Sci. USA 1915, 1, 228–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedict, F.G. A Study of Prolonged Fasting; Carnegie Institution of Washington: Washington, DC, USA, 1915. [Google Scholar]
- Korbonits, M.; Blaine, D.; Elia, M.; Powell-Tuck, J. Metabolic and hormonal changes during the refeeding period of prolonged fasting. Eur. J. Endocrinol. 2007, 157, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Korbonits, M.; Blaine, D.; Elia, M.; Powell-Tuck, J. Refeeding David Blaine—Studies after a 44-day fast. N. Engl. J. Med. 2005, 353, 2306–2307. [Google Scholar] [CrossRef]
- Munro, J.F.; Maccuish, A.C.; Goodall, J.A.; Fraser, J.; Duncan, L.J. Further experience with prolonged therapeutic starvation in gross refractory obesity. Br. Med. J. 1970, 4, 712–714. [Google Scholar] [CrossRef] [Green Version]
- Stewart, W.K.; Fleming, L.W. Features of a successful therapeutic fast of 382 days’ duration. Postgrad. Med. J. 1973, 49, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, J. The tale of Angus Barbieri who fasted for more than a year—And lost 21 stone. Evening Telegraph, 12 November 2016. [Google Scholar]
- Thomson, T.J.; Runcie, J.; Miller, V. Treatment of obesity by total fasting for up to 249 days. Lancet 1966, 2, 992–996. [Google Scholar] [CrossRef]
- Machado, J.D.; Suen, V.M.; Chueire, F.B.; Marchini, J.F.; Marchini, J.S. Refeeding syndrome, an undiagnosed and forgotten potentially fatal condition. BMJ Case Rep. 2009, 2009, bcr0720080521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brozek, J.; Chapman, C.B.; Keys, A. Drastic food restriction; effect on cardiovascular dynamics in normotensive and hypertensive conditions. J. Am. Med. Assoc. 1948, 137, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.M.; Kirby, D.F. The refeeding syndrome: A review. JPEN J. Parenter. Enter. Nutr. 1990, 14, 90–97. [Google Scholar] [CrossRef]
- Fontana, L.; Partridge, L.; Longo, V.D. Extending healthy life span-from yeast to humans. Science 2010, 328, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lydersen, C.; Kovacs, K.M.; Hammill, M.O. Energetics during nursing and early postweaning fasting in hooded seal (Cystophora cristata) pups from the Gulf of St Lawrence, Canada. J. Comp. Physiol. B 1997, 167, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Verrier, D.; Groscolas, R.; Guinet, C.; Arnould, J.P. Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: Metabolic rates, energy reserve utilization, and water fluxes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R1582–R1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secor, S.M.; Carey, H.V. Integrative Physiology of Fasting. Compr. Physiol. 2016, 6, 773–825. [Google Scholar] [CrossRef]
- Secor, S.M. Specific dynamic action: A review of the postprandial metabolic response. J. Comp. Physiol. B 2009, 179, 1–56. [Google Scholar] [CrossRef]
- Staples, J.F. Metabolic Flexibility: Hibernation, Torpor, and Estivation. Compr. Physiol. 2016, 6, 737–771. [Google Scholar] [CrossRef] [PubMed]
- Cowan, K.J.; Storey, K.B. Reversible phosphorylation control of skeletal muscle pyruvate kinase and phosphofructokinase during estivation in the spadefoot toad, Scaphiopus couchii. Mol. Cell. Biochem. 1999, 195, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Cahill, G.F., Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 2006, 26, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corssmit, E.P.; Romijn, J.A.; Sauerwein, H.P. Review article: Regulation of glucose production with special attention to nonclassical regulatory mechanisms: A review. Metabolism 2001, 50, 742–755. [Google Scholar] [CrossRef]
- Buck, M.J.; Squire, T.L.; Andrews, M.T. Coordinate expression of the PDK4 gene: A means of regulating fuel selection in a hibernating mammal. Physiol. Genom. 2002, 8, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, A.M.; Williamson, D.H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 1980, 60, 143–187. [Google Scholar] [CrossRef]
- Collier, R. Intermittent fasting: The next big weight loss fad. Can. Med Assoc. J. 2013, 185, E321–E322. [Google Scholar] [CrossRef] [Green Version]
- Stipp, D. Is fasting good for you? Sci. Am. 2013, 308, 23–24. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Lakhanpal, D.; Kumar, S.; Sharma, S.; Kataria, H.; Kaur, M.; Kaur, G. Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age (Dordr) 2012, 34, 917–933. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Seroogy, K.B.; Mattson, M.P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem. 2002, 80, 539–547. [Google Scholar] [CrossRef]
- Rothman, S.M.; Griffioen, K.J.; Wan, R.; Mattson, M.P. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health. Ann. N. Y. Acad. Sci. 2012, 1264, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012, 16, 706–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arumugam, T.V.; Phillips, T.M.; Cheng, A.; Morrell, C.H.; Mattson, M.P.; Wan, R. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann. Neurol. 2010, 67, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plunet, W.T.; Streijger, F.; Lam, C.K.; Lee, J.H.; Liu, J.; Tetzlaff, W. Dietary restriction started after spinal cord injury improves functional recovery. Exp. Neurol. 2008, 213, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Jerums, G.; Proietto, J. Effects and clinical potential of very-low-calorie diets (VLCDs) in type 2 diabetes. Diabetes Res. Clin. Pract. 2009, 85, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Konz, E.C.; Frederich, R.C.; Wood, C.L. Long-term weight-loss maintenance: A meta-analysis of US studies. Am. J. Clin. Nutr. 2001, 74, 579–584. [Google Scholar] [CrossRef]
- Johnson, J.B.; Summer, W.; Cutler, R.G.; Martin, B.; Hyun, D.H.; Dixit, V.D.; Pearson, M.; Nassar, M.; Telljohann, R.; Maudsley, S.; et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic. Biol. Med. 2007, 42, 665–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varady, K.A.; Bhutani, S.; Klempel, M.C.; Kroeger, C.M.; Trepanowski, J.F.; Haus, J.M.; Hoddy, K.K.; Calvo, Y. Alternate day fasting for weight loss in normal weight and overweight subjects: A randomized controlled trial. Nutr. J. 2013, 12, 146. [Google Scholar] [CrossRef] [Green Version]
- Catenacci, V.A.; Pan, Z.; Ostendorf, D.; Brannon, S.; Gozansky, W.S.; Mattson, M.P.; Martin, B.; MacLean, P.S.; Melanson, E.L.; Troy Donahoo, W. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity (Silver Spring) 2016, 24, 1874–1883. [Google Scholar] [CrossRef] [PubMed]
- Varady, K.A.; Bhutani, S.; Church, E.C.; Klempel, M.C. Short-term modified alternate-day fasting: A novel dietary strategy for weight loss and cardioprotection in obese adults. Am. J. Clin. Nutr. 2009, 90, 1138–1143. [Google Scholar] [CrossRef] [Green Version]
- Rynders, C.A.; Thomas, E.A.; Zaman, A.; Pan, Z.; Catenacci, V.A.; Melanson, E.L. Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients 2019, 11, 2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnstone, A.M. Fasting—The ultimate diet? Obes. Rev. 2007, 8, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Goldhamer, A.; Lisle, D.; Parpia, B.; Anderson, S.V.; Campbell, T.C. Medically supervised water-only fasting in the treatment of hypertension. J. Manip. Physiol. 2001, 24, 335–339. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Schoufour, J.; Wang, D.D.; Dhana, K.; Pan, A.; Liu, X.; Song, M.; Liu, G.; Shin, H.J.; Sun, Q.; et al. Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: Prospective cohort study. BMJ 2020, 368, l6669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Descamps, O.; Riondel, J.; Ducros, V.; Roussel, A.M. Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: Effect of alternate-day fasting. Mech. Ageing Dev. 2005, 126, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Berrigan, D.; Perkins, S.N.; Haines, D.C.; Hursting, S.D. Adult-onset calorie restriction and fasting delay spontaneous tumorigenesis in p53-deficient mice. Carcinogenesis 2002, 23, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Safdie, F.M.; Raffaghello, L.; Wei, M.; Madia, F.; Parrella, E.; Hwang, D.; Cohen, P.; Bianchi, G.; Longo, V.D. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 2010, 70, 1564–1572. [Google Scholar] [CrossRef] [Green Version]
- Raffaghello, L.; Lee, C.; Safdie, F.M.; Wei, M.; Madia, F.; Bianchi, G.; Longo, V.D. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc. Natl. Acad. Sci. USA 2008, 105, 8215–8220. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Raffaghello, L.; Brandhorst, S.; Safdie, F.M.; Bianchi, G.; Martin-Montalvo, A.; Pistoia, V.; Wei, M.; Hwang, S.; Merlino, A.; et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med. 2012, 4, 124ra127. [Google Scholar] [CrossRef] [Green Version]
- Safdie, F.; Brandhorst, S.; Wei, M.; Wang, W.; Lee, C.; Hwang, S.; Conti, P.S.; Chen, T.C.; Longo, V.D. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS ONE 2012, 7, e44603. [Google Scholar] [CrossRef] [Green Version]
- Brandhorst, S.; Longo, V.D. Fasting and Caloric Restriction in Cancer Prevention and Treatment. Recent Results Cancer Res. 2016, 207, 241–266. [Google Scholar] [CrossRef] [PubMed]
- Gabel, K.; Cares, K.; Varady, K.A.; Gadi, V.; Tussing-Humphreys, L. Current Evidence and Directions for Intermittent Fasting During Cancer Chemotherapy. Adv. Nutr. 2022. in press. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.A.; Sandesara, P.B.; Dhindsa, D.S.; Mehta, A.; Arneson, L.C.; Dollar, A.L.; Taub, P.R.; Sperling, L.S. Intermittent Fasting: A Heart Healthy Dietary Pattern? Am. J. Med. 2020, 133, 901–907. [Google Scholar] [CrossRef]
- Rous, P. The Influence of Diet on Transplanted and Spontaneous Mouse Tumors. J. Exp. Med. 1914, 20, 433–451. [Google Scholar] [CrossRef]
- McCay, C.M.; Crowell, M.F.; Maynard, L.A. The effect of retarded growth upon the length of life span and upon the ultimate body size. Nutrition 1989, 5, 155–171. [Google Scholar] [CrossRef]
- Asadi Shahmirzadi, A.; Edgar, D.; Liao, C.Y.; Hsu, Y.M.; Lucanic, M.; Asadi Shahmirzadi, A.; Wiley, C.D.; Gan, G.; Kim, D.E.; Kasler, H.G.; et al. Alpha-Ketoglutarate, an Endogenous Metabolite, Extends Lifespan and Compresses Morbidity in Aging Mice. Cell Metab. 2020, 32, 447–456.e6. [Google Scholar] [CrossRef] [PubMed]
- Seals, D.R.; Justice, J.N.; LaRocca, T.J. Physiological geroscience: Targeting function to increase healthspan and achieve optimal longevity. J. Physiol. 2016, 594, 2001–2024. [Google Scholar] [CrossRef] [PubMed]
- Teo, E.; Fong, S.; Tolwinski, N.; Gruber, J. Drug synergy as a strategy for compression of morbidity in a Caenorhabditis elegans model of Alzheimer’s disease. Geroscience 2020, 42, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, A. Ponce De Leon: Juan Ponce De Leon Searches for the Fountain of Youth (Exploring the World); Compass Point Books: Minneapolis, MN, USA, 2002. [Google Scholar]
- Mehrabani, S.; Bagherniya, M.; Askari, G.; Read, M.I.; Sahebkar, A. The effect of fasting or calorie restriction on mitophagy induction: A literature review. J. Cachexia Sarcopenia Muscle 2020, 11, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Brandhorst, S.; Harputlugil, E.; Mitchell, J.R.; Longo, V.D. Protective effects of short-term dietary restriction in surgical stress and chemotherapy. Ageing Res. Rev. 2017, 39, 68–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta-Rodriguez, V.A.; de Groot, M.H.M.; Rijo-Ferreira, F.; Green, C.B.; Takahashi, J.S. Mice under Caloric Restriction Self-Impose a Temporal Restriction of Food Intake as Revealed by an Automated Feeder System. Cell Metab. 2017, 26, 267–277.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pak, H.H.; Haws, S.A.; Green, C.L.; Koller, M.; Lavarias, M.T.; Richardson, N.E.; Yang, S.E.; Dumas, S.N.; Sonsalla, M.; Bray, L.; et al. Fasting drives the metabolic, molecular and geroprotective effects of a calorie-restricted diet in mice. Nat. Metab. 2021, 3, 1327–1341. [Google Scholar] [CrossRef]
- Smith, A.R.; Visioli, F.; Hagen, T.M. Vitamin C matters: Increased oxidative stress in cultured human aortic endothelial cells without supplemental ascorbic acid. FASEB J. 2002, 16, 1102–1104. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Cell culture, oxidative stress, and antioxidants: Avoiding pitfalls. Biomed. J. 2014, 37, 99–105. [Google Scholar] [CrossRef]
- Visioli, F.; Poli, A. Fatty Acids and Cardiovascular Risk. Evidence, Lack of Evidence, and Diligence. Nutrients 2020, 12, 3782. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.C.; Verdin, E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab. 2014, 25, 42–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenberghe, C.; St-Pierre, V.; Fortier, M.; Castellano, C.A.; Cuenoud, B.; Cunnane, S.C. Medium Chain Triglycerides Modulate the Ketogenic Effect of a Metabolic Switch. Front. Nutr. 2020, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, T.; Hirschey, M.D.; Newman, J.; He, W.; Shirakawa, K.; Le Moan, N.; Grueter, C.A.; Lim, H.; Saunders, L.R.; Stevens, R.D.; et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013, 339, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Kolb, H.; Kempf, K.; Rohling, M.; Lenzen-Schulte, M.; Schloot, N.C.; Martin, S. Ketone bodies: From enemy to friend and guardian angel. BMC Med. 2021, 19, 313. [Google Scholar] [CrossRef]
- Finn, P.F.; Dice, J.F. Ketone bodies stimulate chaperone-mediated autophagy. J. Biol. Chem. 2005, 280, 25864–25870. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Iavicoli, I.; Di Paola, R.; Koverech, A.; Cuzzocrea, S.; Rizzarelli, E.; Calabrese, E.J. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim. Biophys. Acta 2012, 1822, 753–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dattilo, S.; Mancuso, C.; Koverech, G.; Di Mauro, P.; Ontario, M.L.; Petralia, C.C.; Petralia, A.; Maiolino, L.; Serra, A.; Calabrese, E.J.; et al. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun. Ageing 2015, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Pennisi, M.; Crupi, R.; Di Paola, R.; Ontario, M.L.; Bella, R.; Calabrese, E.J.; Crea, R.; Cuzzocrea, S.; Calabrese, V. Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J. Neurosci. Res. 2017, 95, 1360–1372. [Google Scholar] [CrossRef]
- Sharma, R. Bioactive food components for managing cellular senescence in aging and disease: A critical appraisal and perspectives. PharmaNutrition 2021, 18, 100281. [Google Scholar] [CrossRef]
- Franco, R.; Navarro, G.; Pinilla-Martinez, E. Plant-derived compounds, vitagens, vitagenes and mitochondrial function. PharmaNutrition 2021. in press. [Google Scholar] [CrossRef]
- Visioli, F.; Ingram, A.; Beckman, J.S.; Magnusson, K.R.; Hagen, T.M. Strategies to protect against age-related mitochondrial decay: Do natural products and their derivatives help? Free Radic. Biol. Med. 2021, 178, 330–346. [Google Scholar] [CrossRef] [PubMed]
- Poff, M.A.; Moss, S.; Soliven, M.; D’’Agostino, D.P. Ketone Supplementation: Meeting the Needs of the Brain in an Energy Crisis. Front. Nutr. 2021, 8, 783659. [Google Scholar] [CrossRef] [PubMed]
- Burns, A.; Iliffe, S. Alzheimer’s disease. BMJ 2009, 338, b158. [Google Scholar] [CrossRef] [Green Version]
- Perez-Galvez, A.; Jaren-Galan, M.; Garrido-Fernandez, J.; Calvo, M.V.; Visioli, F.; Fontecha, J. Activities, bioavailability, and metabolism of lipids from structural membranes and oils: Promising research on mild cognitive impairment. Pharm. Res. 2018, 134, 299–304. [Google Scholar] [CrossRef]
- Garcia-Serrano, A.; Tome-Carneiro, J.; Carmen Crespo, M.; Visitacion Calvo, M.; Pereda-Perez, I.; Baliyan, S.; Burgos-Ramos, E.; Montero, O.; Davalos, A.; Venero, C.; et al. Concentrates of buttermilk and krill oil improve cognition in aged rats. Prostaglandins Leukot. Essent. Fat. Acids 2020, 155, 102077. [Google Scholar] [CrossRef] [PubMed]
- Fortier, M.; Castellano, C.A.; St-Pierre, V.; Myette-Cote, E.; Langlois, F.; Roy, M.; Morin, M.C.; Bocti, C.; Fulop, T.; Godin, J.P.; et al. A ketogenic drink improves cognition in mild cognitive impairment: Results of a 6-month RCT. Alzheimer’s Dement. 2021, 17, 543–552. [Google Scholar] [CrossRef]
- Roy, M.; Fortier, M.; Rheault, F.; Edde, M.; Croteau, E.; Castellano, C.A.; Langlois, F.; St-Pierre, V.; Cuenoud, B.; Bocti, C.; et al. A ketogenic supplement improves white matter energy supply and processing speed in mild cognitive impairment. Alzheimer’s Dement (N. Y.) 2021, 7, e12217. [Google Scholar] [CrossRef]
- Cunnane, S.C. Metabolism of polyunsaturated fatty acids and ketogenesis: An emerging connection. Prostaglandins Leukot. Essent. Fat. Acids 2004, 70, 237–241. [Google Scholar] [CrossRef]
- Hemrich, G. The Role of Food Systems in Shaping Diets and Addressing Malnutrition: Delivering on the Sustainable Development Agenda. World Rev. Nutr. Diet 2020, 121, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Kalache, A.; Bazinet, R.P.; Carlson, S.; Evans, W.J.; Kim, C.H.; Lanham-New, S.; Visioli, F.; Griffiths, J.C. Science-based policy: Targeted nutrition for all ages and the role of bioactives. Eur. J. Nutr. 2021, 60, 1–17. [Google Scholar] [CrossRef]
- Council, I.F.I. Available online: www.foodinsight.org/2020-food-and-health-survey/ (accessed on 16 November 2021).
- Kokten, T.; Hansmannel, F.; Ndiaye, N.C.; Heba, A.C.; Quilliot, D.; Dreumont, N.; Arnone, D.; Peyrin-Biroulet, L. Calorie Restriction as a New Treatment of Inflammatory Diseases. Adv. Nutr. 2021, 12, 1558–1570. [Google Scholar] [CrossRef]
- Brandhorst, S.; Longo, V.D. Dietary Restrictions and Nutrition in the Prevention and Treatment of Cardiovascular Disease. Circ. Res. 2019, 124, 952–965. [Google Scholar] [CrossRef]
- Rizza, W.; Veronese, N.; Fontana, L. What are the roles of calorie restriction and diet quality in promoting healthy longevity? Ageing Res. Rev. 2014, 13, 38–45. [Google Scholar] [CrossRef]
- Caffa, I.; Spagnolo, V.; Vernieri, C.; Valdemarin, F.; Becherini, P.; Wei, M.; Brandhorst, S.; Zucal, C.; Driehuis, E.; Ferrando, L.; et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 2020, 583, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Grande, A.J.; Silva, V.; Sawaris Neto, L.; Teixeira Basmage, J.P.; Peccin, M.S.; Maddocks, M. Exercise for cancer cachexia in adults. Cochrane Database Syst. Rev. 2021, 3, CD010804. [Google Scholar] [CrossRef]
- Dolgin, E. There’s no limit to longevity, says study that revives human lifespan debate. Nature 2018, 559, 14–15. [Google Scholar] [CrossRef]
- Barbi, E.; Lagona, F.; Marsili, M.; Vaupel, J.W.; Wachter, K.W. The plateau of human mortality: Demography of longevity pioneers. Science 2018, 360, 1459–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Milholland, B.; Vijg, J. Evidence for a limit to human lifespan. Nature 2016, 538, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.J.L.; Albers, C.J.; Ritchie, S.J. Contesting the evidence for limited human lifespan. Nature 2017, 546, E6–E7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyrkov, T.V.; Avchaciov, K.; Tarkhov, A.E.; Menshikov, L.I.; Gudkov, A.V.; Fedichev, P.O. Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts human lifespan limit. Nat. Commun. 2021, 12, 2765. [Google Scholar] [CrossRef]
- Bauersfeld, S.P.; Kessler, C.S.; Wischnewsky, M.; Jaensch, A.; Steckhan, N.; Stange, R.; Kunz, B.; Bruckner, B.; Sehouli, J.; Michalsen, A. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: A randomized cross-over pilot study. BMC Cancer 2018, 18, 476. [Google Scholar] [CrossRef] [PubMed]
- Koppold-Liebscher, D.; Kessler, C.S.; Steckhan, N.; Bahr, V.; Kempter, C.; Wischnewsky, M.; Hubner, M.; Kunz, B.; Paul, M.; Zorn, S.; et al. Short-term fasting accompanying chemotherapy as a supportive therapy in gynecological cancer: Protocol for a multicenter randomized controlled clinical trial. Trials 2020, 21, 854. [Google Scholar] [CrossRef] [PubMed]
- Caccialanza, R.; Cereda, E.; De Lorenzo, F.; Farina, G.; Pedrazzoli, P.; Group, A.-S.-F.W. To fast, or not to fast before chemotherapy, that is the question. BMC Cancer 2018, 18, 337. [Google Scholar] [CrossRef] [Green Version]
- Cheshire, A.; Berry, M.; Fixsen, A. What are the key features of orthorexia nervosa and influences on its development? A qualitative investigation. Appetite 2020, 155, 104798. [Google Scholar] [CrossRef]
WEEKLY PLANNING | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 |
---|---|---|---|---|---|---|---|
Alternate day fasting, e.g., the “Fast diet” | Ad libitum | 0–25% of habitual calorie intake | Ad libitum | 0–25% of habitual calorie intake | Ad libitum | 0–25% of habitual calorie intake | Ad libitum |
Time-restricted feeding/Intermittent fasting | Fast for 16–20 h, then eat within 4–8 h | Fast for 16–20 h, then eat within 4–8 h | Fast for 16–20 h, then eat within 4–8 h | Fast for 16–20 h, then eat within 4–8 h | Fast for 16–20 h, then eat within 4–8 h | Fast for 16–20 h, then eat within 4–8 h | Fast for 16–20 h, then eat within 4–8 h |
Whole-day fasts, e.g., for religious purposes | Ad libitum | Ad libitum | Ad libitum | Ad libitum or 24-h fast | Ad libitum | Ad libitum | 24-h fast |
Religion | Form of Fasting |
---|---|
Islam | It is obligatory for Muslims to fast the month of Ramadan (30–31 days) which consists of no food or drink from dawn to sunset. Muslims also commonly fast the first 10 days of the Islamic lunar month Dhul-Hijjah and some Muslims commonly fast the Monday and Thursday of each week and/or the middle 3 days of each fast. |
Christianity | Catholic Christians abstain from eating meat, but not fish, on Fridays in the 6-week period before Easter, called Lent. Many Catholics also only eat one full meal a day on the days of Ash Wednesday, the first day of Lent, and Good Friday. Some Protestants observe Lent by abstaining from certain favorite foods or habits such as smoking. A similar method of fasting is the ‘Daniel fast’ which lasts 21 days. The Eastern Orthodox church has different fasting periods, including Lent as well as the Nativity fast, Apostles’ Fast and Dormition Fast. These are often several weeks long and entail fasting from specific food items such as red meat and poultry and sometimes fish, oil, and wine. None of the major denominations in Christianity prohibit taking medications while fasting. |
Judaism | There are several days of fasting in Judaism. These include Yom Kippur, Tisha B’Av, the Fast of Gedaliah, the Tenth of Tevet, the Seventeenth of Tammuz and the Fast of Esther. These are single days of fasting from all forms of eating and drinking during this period—with the exception of Yom Kippur and Tisha B’Av where Jews abstained from all oral intake (including water) for 24 h (from sunset to sunset). Historically, reform Jews only observed the Yom Kippur fast while Orthodox Jews the above-mentioned fasts. According to Jewish Law, important and/or regular medications can be taken with drink, and if necessary, with food as well but a patient’s medications should be reviewed by a healthcare professional to ensure the fast as compliant as possible. |
Hinduism | Fasting takes many forms from abstaining from meat to only drinking water and milk. The most common fast in Hinduism is Ekadasi, which takes place twice a month and often consists of eating only fruits, vegetables, and milk products (although a small minority abstain from all eating and drinking for 24 h). Many Hindus also fast during the month of Shravan. Hindus are permitted to take medications while fasting. |
Buddhism | Lay Buddhists fast by abstaining from meat and certain types of food such as processed foods, two or more times per month. Some Buddhists stop eating after midday every day and some monks go further by abstaining from food for 18 days, drinking only a small portion of water. |
Sikhism | Sikhism does not promote fasting except for medical reasons. |
Baha’i | Fasting is observed from sunrise to sunset during the Baha’I month of ‘Ala with the complete abstention of food and drink. Patients are permitted to take medications while fasting. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visioli, F.; Mucignat-Caretta, C.; Anile, F.; Panaite, S.-A. Traditional and Medical Applications of Fasting. Nutrients 2022, 14, 433. https://doi.org/10.3390/nu14030433
Visioli F, Mucignat-Caretta C, Anile F, Panaite S-A. Traditional and Medical Applications of Fasting. Nutrients. 2022; 14(3):433. https://doi.org/10.3390/nu14030433
Chicago/Turabian StyleVisioli, Francesco, Carla Mucignat-Caretta, Francesca Anile, and Stefan-Alexandru Panaite. 2022. "Traditional and Medical Applications of Fasting" Nutrients 14, no. 3: 433. https://doi.org/10.3390/nu14030433
APA StyleVisioli, F., Mucignat-Caretta, C., Anile, F., & Panaite, S.-A. (2022). Traditional and Medical Applications of Fasting. Nutrients, 14(3), 433. https://doi.org/10.3390/nu14030433