Influence of Nutritional Intakes in Japan and the United States on COVID-19 Infection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Differences in Cases and Deaths between Japanese and U.S. Groups
3.2. Prevalence of Obesity and Noncommunicable Diseases in Japan and the U.S.
3.3. Effects of Different Nutrient Intakes between Japan and the U.S. on COVID-19 Infection
3.3.1. Difference in Intakes of Saturated Fat, n-6 Polyunsaturated Fatty acids, and Sugar
3.3.2. Differences in Intakes of n-3 Polyunsaturated Fatty Acids
3.3.3. Differences in Intakes of Vitamins between Japan and the U.S.
3.3.4. Differences in Intakes of Minerals between Japan and the U.S.
3.4. Effects of Different Food Intakes between Japan and the U.S. on COVID-19 Infection
3.4.1. Intakes of Red Meat and Milk
3.4.2. Intake of Sugar and Sweeteners
3.4.3. Intake of Fish
3.4.4. Intake of Soybeans
3.4.5. Intake of Seaweeds
3.4.6. Intake of Green Tea
3.4.7. Intakes of Rice and Wheat
3.5. Dietary Patterns
4. Discussion
4.1. Socioeconomic Factors
4.2. Dietary and Nutritional Factors
4.3. The Japanese American
4.4. Immunological Considerations Regarding Diet and Obesity
4.5. Evidence of a Causal Relationship between COVID-19 Infection and Obesity: Mendelian Randomization Approach
4.6. Study Limitations
4.6.1. Comparison of Many Factors Other Than Diet and Nutrition between Japan and the U.S.
4.6.2. Statistical Analyses of the Nutrients and Foods of Japan and the U.S.
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worldometers. COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/ (accessed on 2 January 2022).
- Centers for Disease Control and Prevention. COVID View. Key Updates for Week 43, Ending 24 October 2020. Available online: www.cdc.gov/coronavirus/2019-ncov/covid-data/pdf/covidview-10-30-2020.pdf (accessed on 10 December 2021).
- Akhtar, S.; Das, J.K.; Ismail, T.; Wahid, M.; Saeed, W.; Bhutta, Z.A. Nutritional perspectives for the prevention and mitigation of COVID-19. Nutr. Rev. 2021, 79, 289–300. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Available online: www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html (accessed on 10 December 2021).
- Mohammad, S.; Aziz, R.; Al Mahri, S.; Malik, S.S.; Haji, E.; Khan, A.H.; Khatlani, T.S.; Bouchama, A. Obesity and COVID-19: What makes obese host so vulnerable? Immun. Ageing 2021, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Available online: http://apps.who.int/gho/date/note.main.A867?lang₌en (accessed on 10 December 2021).
- Mui, P.; Hill, S.E.; Thorpe, R.J., Jr. Overweight and obesity differences across ethnically diverse subgroups of Asian American men. Am. J. Mens Health 2018, 12, 1958–1965. [Google Scholar] [CrossRef] [PubMed]
- Prata Menezes, N.; Malone, J.; Lyons, C.; Cadet, K.; Dean, L.; Millett, G.; Baral, S. Racial and ethnic disparities in viral acute respiratory infections in the United States: Protocol of a systematic review. Syst. Rev. 2021, 10, 196. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Kanaya, A.M.; Araneta, M.R.G.; Saydah, S.H.; Kahn, H.S.; Gregg, E.W.; Fujimoto, W.Y.; Imperatore, G. Prevalence of diabetes by race and ethnicity in the U.S., 2011–2016. JAMA 2019, 322, 2389–2398. [Google Scholar] [CrossRef]
- Goto, A.; Noda, M.; Inoue, M.; Goto, M.; Hadrien, C. Increasing number of people with diabetes in Japan: Is this trend real? Intern. Med. 2016, 55, 1827–1830. [Google Scholar] [CrossRef] [Green Version]
- Kagawa, Y.; Yanagisawa, Y.; Hasegawa, K.; Suzuki, H.; Yasuda, K.; Kudo, H.; Abe, M.; Matsuda, S.; Ishikawa, Y.; Tsuchiya, N.; et al. Single nucleotide polymorphism of thrifty genes for energy metabolism: Evolutionary origins and prospects for intervention to prevent obesity-related diseases. Biochem. Biophys. Res. Commun. 2002, 295, 207–222. [Google Scholar] [CrossRef]
- Kagawa, Y. Impact of westernization on the nutrition of Japanese: Changes in physique, cancer, longevity and centenarians. Prev. Med. 1978, 7, 205–217. [Google Scholar] [CrossRef]
- United States Department of Agriculture. NHANES 2017–2018, Individuals 2 Years and over (Excluding Breast-Fed Children). Available online: www.ars.usda.gov/nea/bhnrc/fsrg (accessed on 10 December 2021).
- Ministry of Health, Labour and Welfare of Japan. The National Health and Nutrition Survey Japan. 2019. Available online: https://www.mhlw.go.jp/bunya/kenkou/kenkou_eiyou_chousa.html (accessed on 10 December 2021).
- Sahin, I.; Haymana, C.; Demir, T.; Demirci, I.; Tasci, I.; Atmaca, A.; Cakal, E.; Ata, N.; Emral, R.; Unluturk, U.; et al. Clinical characteristics and outcomes of COVID-19 patients with overweight and obesity: Turkish Nationwide Cohort Study (TurCObesity). Exp. Clin. Endocrinol. Diabetes 2021. [Google Scholar] [CrossRef]
- Guo, L.J.; Oshida, Y.; Fuku, N.; Takeyasu, T.; Fujita, Y.; Kurata, M.; Sato, Y.; Ito, M.; Tanaka, M. Mitochondrial genome polymorphisms associated with type-2 diabetes or obesity. Mitochondrion 2005, 5, 15–33. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Momoi, M.Y.; Tominaga, K.; Momoi, T.; Nihei, K.; Yanagisawa, M.; Kagawa, Y.; Ohta, S. A point mutation in the mitochondrial tRNALeu(UUR) gene in melas (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem. Biophys. Res. Commun. 1990, 173, 816–822. [Google Scholar] [CrossRef]
- Ferdinand, K.C.; Vo, T.N.; Echols, M.R. State-of-the-art review: Hypertension practice guidelines in the era of COVID-19. Am. J. Prev. Cardiol. 2020, 2, 100038. [Google Scholar] [CrossRef] [PubMed]
- González-Becerra, K.; Ramos-Lopez, O.; Barrón-Cabrera, E.; Riezu-Boj, J.I.; Milagro, F.I.; Martínez-López, E.; Martínez, J.A. Fatty acids, epigenetic mechanisms and chronic diseases: A systematic review. Lipids Health Dis. 2019, 18, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT (Food Balance Data). Available online: http://www.fao.org/faostat/en/#home (accessed on 10 December 2021).
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015, 351, h3576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. Genetic variation, diet, inflammation, and the risk for COVID-19. Lifestyle Genom. 2021, 14, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, Y.; Nishizawa, M.; Suzuki, M.; Miyatake, T.; Hamamoto, T.; Goto, K.; Motonaga, E.; Izumikawa, H.; Hirata, H.; Ebihara, A. Eicosapolyenoic acids of the serum lipids of Japanese islanders with low incidence of cardiovascular diseases. J. Nutr. Sci. Vitaminol. 1982, 28, 441. [Google Scholar] [CrossRef]
- Nakayama, K.; Bayasgalan, T.; Tazoe, F.; Yanagisawa, Y.; Gotoh, T.; Yamanaka, K.; Ogawa, A.; Munkhtulga, L.; Chimedregze, U.; Kagawa, Y.; et al. A single nucleotide polymorphism in the FADS1/FADS2 gene is associated with plasma lipid profiles in two genetically similar Asian ethnic groups with distinctive differences in lifestyle. Hum. Genet. 2010, 127, 685–690. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare of Japan. Japanese Dietary Intake Standards 2020. Edition 2020. Available online: https://www.mhlw.go.jp/stf/newpage_08517.html (accessed on 10 December 2021).
- Mikkelsen, K.; Stojanovska, L.; Prakash, M.; Apostolopoulos, V. The effects of vitamin B on the immune/cytokine network and their involvement in depression. Maturitas 2017, 96, 58–71. [Google Scholar] [CrossRef]
- Grant, W.; Lahore, H.; McDonnell, S.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [Green Version]
- AlSafar, H.; Grant, W.B.; Hijazi, R.; Uddin, M.; Alkaabi, N.; Tay, G.; Mahboub, B. COVID-19 disease severity and death in relation to vitamin D status among SARS-CoV-2-positive UAE residents. Nutrients 2021, 13, 1714. [Google Scholar] [CrossRef]
- Mercola, J.; Grant, W.B.; Wagner, C.L. Evidence regarding vitamin D and risk of COVID-19 and its severity. Nutrients 2020, 12, 3361. [Google Scholar] [CrossRef] [PubMed]
- Goddek, S. Vitamin D3 and K2 and their potential contribution to reducing the COVID-19 mortality rate. Int. J. Infect. Dis. 2020, 99, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, Y.; Hiraoka, M.; Kageyama, M.; Kontai, Y.; Yurimoto, M.; Nishijima, C.; Sakamoto, K. Medical cost savings in Sakado City and worldwide achieved by preventing disease by folic acid fortification. Congenit. Anom. 2017, 57, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louca, P.; Murray, B.; Klaser, K.; Graham, M.S.; Mazidi, M.; Leeming, E.R.; Thompson, E.; Bowyer, R.; Drew, D.A.; Nguyen, L.H.; et al. Modest effects of dietary supplements during the COVID-19 pandemic: Insights from 445,850 users of the COVID-19 Symptom Study app. BMJ Nutr. Prev. Health 2021, 4, 149–157. [Google Scholar] [CrossRef] [PubMed]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.O.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Alfano, G.; Ferrari, A.; Fontana, F.; Perrone, R.; Mori, G.; Ascione, E.; Magistroni, R.; Venturi, G.; Pederzoli, S.; Margiotta, G.; et al. Hypokalemia in patients with COVID-19. Clin. Exp. Nephrol. 2021, 25, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Veronese, N.; Guerrero-Romero, F.; Barbagallo, M. Magnesium in infectious diseases in older people. Nutrients 2021, 13, 180. [Google Scholar] [CrossRef]
- Dardenne, M. Zinc and immune function. Eur. J. Clin. Nutr. 2002, 56, S20–S23. [Google Scholar] [CrossRef] [Green Version]
- Kamyari, N.; Soltanian, A.R.; Mahjub, H.; Moghimbeigi, A. Diet, nutrition, obesity, and their implications for COVID-19 mortality: Development of a marginalized two-part model for semicontinuous data. JMIR Public Health Surveill. 2021, 7, e22717. [Google Scholar] [CrossRef]
- Yamagishi, K.; Iso, H.; Tsugane, S. Saturated fat intake and cardiovascular disease in Japanese population. J. Atheroscler. Thromb. 2015, 22, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.-F.; Pan, M.-H.; Chi-Tang Ho, C.-T.; Tseng, Y.-H.; Wang, W.W.-L.; Chau, C.-F. Variations in the efficacy of resistant maltodextrin on body fat reduction in rats fed different high-fat models. J. Agric. Food Chem. 2014, 62, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hayden, K.; Jackson, R.; Schutte, R. Association of red and processed meat consumption with cardiovascular morbidity and mortality in participants with and without obesity: A prospective cohort study. Clin. Nutr. 2021, 40, 3643–3649. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.-P.; Hu, F.B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Hustad, K.S.; Rundblad, A.; Ottestad, I.; Christensen, J.J.; Holven, K.B.; Ulven, S.M. Comprehensive lipid and metabolite profiling in healthy adults with low and high consumption of fatty fish: A cross-sectional study. Brit. J. Nutr. 2020, 125, 1034–1042. [Google Scholar] [CrossRef]
- Asher, A.; Tintle, N.L.; Myers, M.; Lockshon, L.; Bacareza, H.; Harris, W.S. Blood omega-3 fatty acids and death from COVID-19: A pilot study. Prostaglandins Leukot. Essent. Fatty Acids 2021, 166, 102250. [Google Scholar] [CrossRef]
- Nita, R.; Kawabata, T.; Kagawa, Y.; Nakayama, K.; Yanagisawa, Y.; Iwamoto, S.; Kimura, F.; Miyazawa, T.; Tatsuta, N.; Arima, T.; et al. Associations of erythrocyte fatty acid compositions with FADS1 gene polymorphism in Japanese mothers and infants. Prostaglandins Leukot. Essent. Fatty Acids 2020, 152, 102031. [Google Scholar] [CrossRef] [Green Version]
- Oba, M.; Rongduo, W.; Saito, A.; Okabayashi, T.; Yokota, T.; Yasuoka, J.; Sato, Y.; Nishifuji, K.; Wake, H.; Nibu, Y.; et al. Natto extract, a Japanese fermented soybean food, directly inhibits viral infections including SARS-CoV-2 in vitro. Biochem. Biophys. Res. Commun. 2021, 570, 21–25. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, Q.; Qiu, Y.; Zhang, Y.; Cui, S.; Yu, Y.; Chen, B.; Zhu, M.; Wang, N.; Liu, X.; et al. Soy isoflavones intake and obesity in Chinese adults: A cross-sectional study in Shanghai, China. Nutrients 2021, 13, 2715. [Google Scholar] [CrossRef]
- Alesawy, M.S.; Abdallah, A.E.; Taghour, M.S.; Elkaeed, E.B.; Eissa, I.H.; Metwaly, A.M. In silico studies of some isoflavonoids as potential candidates against COVID-19 targeting human ACE2 (hACE2) and viral main protease (M pro). Molecules 2021, 26, 2806. [Google Scholar] [CrossRef]
- Tamama, K. Potential benefits of dietary seaweeds as protection against COVID-19. Nutr. Rev. 2021, 79, 814–823. [Google Scholar] [CrossRef]
- Reynolds, D.; Huesemann, M.; Edmundson, S.; Sims, A.; Hurst, B.; Cady, S.; Beirne, N.; Freeman, J.; Berger, A.; Gao, S. Viral inhibitors derived from macroalgae, microalgae, and cyanobacteria: A review of antiviral potential throughout pathogenesis. Algal Res. 2021, 57, 102331. [Google Scholar] [CrossRef]
- Chen, N.; Bezzina, R.; Hinch, E.; Lewandowski, P.A.; Cameron-Smith, D.; Mathai, M.L.; Jois, M.; Sinclair, A.J.; Begg, D.P.; Wark, J.D.; et al. Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutr. Res. 2009, 29, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Kotzé-Hörstmann, L.M.; Sadie-Van Gijsen, H. Modulation of glucose metabolism by leaf tea constituents: A systematic review of recent clinical and pre-clinical findings. J. Agric. Food Chem. 2020, 68, 2973–3005. [Google Scholar] [CrossRef] [PubMed]
- Kumazoe, M.; Nakamura, Y.; Yamashita, M.; Suzuki, T.; Takamatsu, K.; Huang, Y.; Bae, J.; Yamashita, S.; Murata, M.; Yamada, S.; et al. Green tea polyphenol epigallocatechin-3-gallate suppresses toll-like receptor 4 expression via up-regulation of E3 ubiquitin-protein ligase RNF216. J. Biol. Chem. 2017, 292, 4077–4088. [Google Scholar] [CrossRef] [Green Version]
- Mhatre, S.; Srivastava, T.; Naik, S.; Patravale, V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine 2021, 85, 153286. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Wahlqvist, M.L. Covid-19 and dietary socioecology: Risk minimization. Asia Pac. J. Clin. Nutr. 2020, 29, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Francisqueti-Ferron, F.V.; Garcia, J.L.; Ferron, A.J.T.; Nakandakare-Maia, E.T.; Gregolin, C.S.; Silva, J.P.C.; Dos Santos, K.C.; Lo, A.T.C.; Siqueira, J.S.; de Mattei, L.; et al. Gamma-oryzanol as a potential modulator of oxidative stress and inflammation via PPAR-γ in adipose tissue: A hypothetical therapeutic for cytokine storm in COVID-19? Mol. Cell Endocrinol. 2021, 520, 111095. [Google Scholar] [CrossRef]
- English, L.K.; Ard, J.M.; Bailey, R.L.; Bates, M.; Bazzano, L.A.; Boushey, C.J.; Brown, C.; Butera, G.; Callahan, E.H.; de Jesus, J.; et al. Evaluation of dietary patterns and all-cause mortality: A systematic review. JAMA New Open 2021, 4, e2122277. [Google Scholar] [CrossRef]
- Fedullo, A.L.; Schiattarella, A.; Morlando, M.; Raguzzini, A.; Elisabetta Toti, E.; De Franciscis, P.; Peluso, I. Mediterranean diet for the prevention of gestational diabetes in the Covid-19 era: Implications of Il-6 in diabesity. Int. J. Mol. Sci. 2021, 22, 1213. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Rebholz, C.M.; Hegde, S.; LaFiura, C.; Raghavan, M.; Lloyd, J.F.; Cheng, S.; Seidelmann, S.B. Plant-based diets, pescatarian diets and COVID-19 severity: A population-based case-control study in six countries. BMJ Nutr. Prev. Health 2021, 4, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Foods to deliver immune-supporting nutrients. Curr. Opin. Food Sci. 2022, 43, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Chawla, U.; Kashyap, M.K.; Husain, A. Aging and diabetes drive the COVID-19 forwards; Unveiling nature and existing therapies for the treatment. Mol. Cell Biochem. 2021, 476, 3911–3922. [Google Scholar] [CrossRef] [PubMed]
- Glinsky, G.V. Tripartite combination of candidate pandemic mitigation agents: Vitamin D, quercetin, and estradiol manifest properties of medicinal agents for targeted mitigation of the COVID-19 pandemic defined by genomics-guided tracing of SARS-CoV-2 targets in human cells. Biomedicines 2020, 8, 129. [Google Scholar] [CrossRef]
- Ito, T.; Tanisawa, K.; Kawakami, R.; Usui, C.; Ishii, K.; Suzuki, K.; Sakamoto, S.; Muraoka, I.; Oka, K.; Higuchi, M. Micronutrient intake adequacy in men and women with a healthy Japanese dietary pattern. Nutrients 2019, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Port, J.R.; Adney, D.R.; Schwarz, B.; Schulz, J.E.; Sturdevant, D.E.; Smith, B.J.; Avanzato, V.A.; Holbrook, M.G.; Purushotham, J.N.; Stromberg, K.A. High-fat high-sugar diet-induced changes in the lipid metabolism are associated with mildly increased COVID-19 severity and delayed recovery in the Syrian hamster. Viruses 2021, 13, 2506. [Google Scholar] [CrossRef]
- Tsugane, S. Why has Japan become the world’s most long-lived country: Insights from a food and nutrition perspective. Eur. J. Clin. Nutr. 2021, 75, 921–928. [Google Scholar] [CrossRef]
- Nanri, A.; Mizoue, T.; Shimazu, T.; Ishihara, J.; Takachi, R.; Noda, M.; Iso, H.; Sasazuki, S.; Sawada, N.; Tsugane, S.; et al. Dietary patterns and all-cause, cancer, and cardiovascular disease mortality in Japanese men and women: The Japan public health center-based prospective study. PLoS ONE 2017, 12, e0174848. [Google Scholar] [CrossRef]
- Wang, Y.B.; Nitin Shivappa, N.; Hébert, J.R.; Amanda, J.; Page, A.J.; Tiffany, K.; Gill, T.K.; Melaku, Y.A. Association between dietary inflammatory index, dietary patterns, plant-based dietary index and the risk of obesity. Nutrients 2021, 13, 1536. [Google Scholar] [CrossRef]
- Yang, Y.; Hozawa, A.; Kogure, M.; Narita, A.; Hirata, T.; Nakamura, T.; Tsuchiya, N.; Nakaya, N.; Ninomiya, T.; Okuda, N.; et al. Dietary inflammatory index positively associated with high-sensitivity C-reactive protein level in Japanese from NIPPON DATA2010. J. Epidemiol. 2020, 30, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Moludi, J.; Qaisar, S.A.; Alizadeh, M.; Jafari Vayghan, H.; Naemi, M.; Rahimi, A.; Mousavi, R. The relationship between dietary inflammatory index and disease severity and inflammatory status: A case-control study of COVID-19 patients. Br. J. Nutr. 2021, 1–9. [Google Scholar] [CrossRef]
- Mackey, K.; Ayers, C.K.; Kondo, K.K.; Saha, S.; Advani, S.M.; Young, S.; Spencer, H.; Rusek, M.; Anderson, J.; Veazie, S.; et al. Racial and ethnic disparities in COVID-19-related infections, hospitalizations, and deaths: A systematic review. Ann. Intern. Med. 2021, 174, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.A.; Sturm, R.; Lara, M.; Gilbert, M.; Gee, S. Discretionary calorie intake a priority for obesity prevention: Results of rapid participatory approaches in low-income US communities. J. Public Health 2010, 32, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merino, J.; Joshi, A.D.; Nguyen, L.H.; Leeming, E.R.; Mazidi, M.; Drew, D.A.; Gibson, R.; Graham, M.S.; Lo, C.-H.; Capdevila, J.; et al. Diet quality and risk and severity of COVID-19: A prospective cohort study. Gut 2021, 70, 2096–2104. [Google Scholar] [CrossRef] [PubMed]
- Sugihiro, T.; Yoneda, M.; Ohno, H.; Oki, K.; Hattori, N. Associations of nutrient intakes with obesity and diabetes mellitus in the longitudinal medical surveys of Japanese Americans. J. Diabetes Investig. 2019, 10, 1229–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, N.; Yamamoto, R.; Ariumi, Y.; Mizokami, M.; Shimotohno, K.; Yoshikura, H. Does genetic predisposition contribute to the exacerbation of COVID-19 symptoms in individuals with comorbidities and explain the huge mortality disparity between the east and the west? Int. J. Mol. Sci. 2021, 22, 5000. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.; Patel, U.; Patel, K.; Martin, M.; Shah, C.; Mehta, D.; Malik, F.A.; Sharma, A. Obesity a predictor of outcomes of COVID-19 hospitalized patients—A systematic review and meta-analysis. J. Med. Virol. 2021, 93, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Tisminetzky, M.; Delude, C.; Hebert, T.; Carr, C.; Goldberg, R.J.; Gurwitz, J.H. Age, multiple chronic conditions, and COVID-19: A literature review. J. Gerontol. A Biol. Sci. Med. Sci. 2020, glaa320. [Google Scholar] [CrossRef]
- James, P.T.; Ali, Z.; Armitage, A.E.; Bonell, A.; Cerami, C.; Drakesmith, H.; Jobe, M.; Jones, K.S.; Liew, Z.; Moore, S.E.; et al. The role of nutrition in COVID-19 susceptibility and severity of disease: A systematic review. J. Nutr. 2021, 151, 1854–1878. [Google Scholar] [CrossRef]
- Butlera, M.J.; Barrientosa, R.M. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav. Immun. 2020, 87, 53–54. [Google Scholar] [CrossRef]
- Berger, M.M.; Herter-Aeberli, I.; Zimmermann, M.B.; Spieldenner, J.; Eggersdorfer, M. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin. Nutr. ESPEN 2021, 43, 39–48. [Google Scholar] [CrossRef]
- Ilich, J.Z. Nutritional and behavioral approaches to body composition and low-grade chronic inflammation management for older adults in the ordinary and COVID-19 times. Nutrients 2020, 12, 3898. [Google Scholar] [CrossRef] [PubMed]
- Kostoff, R.N.; Briggs, M.B.; Kanduc, D.; Shores, D.R.; Kovatsi, L.; Vardavas, A.I.; Porter, A.L. Common contributing factors to COVID-19 and inflammatory bowel disease. Toxicol. Rep. 2021, 8, 1616–1637. [Google Scholar] [CrossRef]
- Rogero, M.M.; Calder, P.C. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 2018, 10, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freuer, D.; Linseisen, J.; Meisinger, C. Impact of body composition on COVID-19 susceptibility and severity: A two-sample multivariable Mendelian randomization study. Metabolism 2021, 118, 154732. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N. Metabolic disorders, COVID-19 and vaccine-breakthrough infections. Nat. Rev. Endocrinol. 2021, 6, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Ramos-Campo, D.J.; Mielgo-Ayuso, J.; Nikolaidis, P.A.; Belando, N.; Tornero-Aguilera, J.F. Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic. Physiol. Behav. 2022, 244, 113667. [Google Scholar] [CrossRef] [PubMed]
- Carrignon, S.; Bentley, R.A.; Silk, M.; Fefferman, N.H. How social learning shapes the efficacy of preventative health behaviors in an outbreak. PLoS ONE 2022, 17, e0262505. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Kitamura, A.; Yoshizaki, T.; Nishi, M.; Seino, S.; Taniguchi, Y.; Amano, H.; Narita, M.; Shinkai, S. Score-based and nutrient-derived dietary patterns are associated with depressive symptoms in community-dwelling older Japanese: A cross-sectional study. J. Nutr. Health Aging 2019, 23, 896–903. [Google Scholar] [CrossRef]
- Paulose-Ram, R.; Graber, J.E.; Woodwell, D.; Ahluwalia, N. The National Health and Nutrition Examination Survey (NHANES), 2021–2022: Adapting data collection in a COVID-19 environment. Am. J. Public Health 2021, 111, 2149–2156. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kagawa, Y. Influence of Nutritional Intakes in Japan and the United States on COVID-19 Infection. Nutrients 2022, 14, 633. https://doi.org/10.3390/nu14030633
Kagawa Y. Influence of Nutritional Intakes in Japan and the United States on COVID-19 Infection. Nutrients. 2022; 14(3):633. https://doi.org/10.3390/nu14030633
Chicago/Turabian StyleKagawa, Yasuo. 2022. "Influence of Nutritional Intakes in Japan and the United States on COVID-19 Infection" Nutrients 14, no. 3: 633. https://doi.org/10.3390/nu14030633
APA StyleKagawa, Y. (2022). Influence of Nutritional Intakes in Japan and the United States on COVID-19 Infection. Nutrients, 14(3), 633. https://doi.org/10.3390/nu14030633