Distribution and Determinants of Serum Zinc, Copper, and Selenium Levels among Children under Five Years from Popokabaka, Democratic Republic of Congo: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Location
2.2. Participants and Sampling
2.3. Data Collection Technique
2.4. Blood Processing and Management
2.5. Sample Preparation for Mineral Analysis
2.6. Sample Analysis
2.7. Quality Control
2.8. TE Threshold Definitions
2.9. Statistical Management
3. Results
3.1. Characteristics of the Study Population
3.2. Distribution of Serum Zn, Cu, and Se
3.3. Prevalence of Deficiencies of Zn, Cu, and Se
3.4. Correlations between the Biomarkers
3.5. Determinants of Serum Zn, Cu, and Se
4. Discussion
4.1. Zn Deficiency
4.2. Cu Deficiency, Cu-Deficiency Anemia, and Cu/Zn Ratio
4.3. Se Deficiency
4.4. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mertz, W. The essential trace elements. Science 1981, 213, 1332–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Michalak, M.; Agellon, L.B. Importance of nutrients and nutrient metabolism on human health. Yale J. Biol. Med. 2018, 91, 95–103. [Google Scholar] [PubMed]
- Erdman, J.W.; Macdonald, I.A.; Zeisel, S.H. Present Knowledge in Nutrition, 10th ed.; Blac, W., Erdman, J.W., Macdonald, I.A., Zeisel, S.H., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2012; p. 1269. [Google Scholar]
- Zyba, S.J.; Shenvi, S.V.; Killilea, D.W.; Holland, T.C.; Kim, E.; Moy, A.; Sutherland, B.; Gildengorin, V.; Shigenaga, M.K.; King, J.C. A moderate increase in dietary zinc reduces DNA strand breaks in leukocytes and alters plasma proteins without changing plasma zinc. Am. J. Clin. Nutr. 2016, 105, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventura, M.; Melo, M.; Carrilho, F. Selenium and thyroid disease: From pathophysiology to treatment. Int. J. Endocrinol. 2017, 2017, 1297658. [Google Scholar] [CrossRef] [Green Version]
- Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeedm, H. Copper deficiency anemia: Review article. Ann. Hematol. 2018, 97, 1527–1534. [Google Scholar] [CrossRef]
- Mozrzymas, R. Trace elements in human health. In Recent Advances in Trace Elements; Chojnacka, K., Saeid, A.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 373–402. [Google Scholar]
- Konikowska, K.; Mandecka, A. Trace elements in human nutrition. Recent Adv. Trace Elem. 2017, 339–372. [Google Scholar] [CrossRef]
- Mehri, A. Trace elements in human nutrition (II)—An update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [CrossRef]
- Gibson, R.S. Principles of Nutritional Assessment, 2nd ed.; Oxford University Press: Oxford, UK, 2005; p. 907. [Google Scholar]
- Yakoob, M.Y.; Lo, C.W. Nutrition (micronutrients) in child growth and development: A systematic review on current evidence, recommendations and opportunities for further research. J. Dev. Behav. Pediatr. 2017, 38, 665–679. [Google Scholar] [CrossRef]
- WHO. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996; p. 360. [Google Scholar]
- Ligowe, I.S.; Phiri, F.P.; Ander, E.L.; Bailey, E.H.; Chilimba, A.D.C.; Gashu, D.; Joy, E.J.M.; Lark, R.M.; Kabambe, V.; Kalimbira, A.A.; et al. Selenium deficiency risks in sub-Saharan African food systems and their geospatial linkages. Proc. Nutr. Soc. 2020, 79, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Brazier, A.K.M.; Lowe, N.M. Low- and middle-income countries zinc deficiency in low- and middle-income countries: Prevalence and approaches for mitigation. J. Hum. Nutr. Diet 2020, 33, 624–643. [Google Scholar] [CrossRef]
- Wessells, K.R.; Brown, K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, C.M.; Suchdev, P.; Krebs, N.F.; Hess, S.Y.; Wessells, K.R.; Ismaily, S.; Rahman, S.; Wieringa, F.T.; Williams, A.M.; Brown, K.H.; et al. Adjusting plasma or serum zinc concentrations for inflammation: Biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Am. J. Clin. Nutr. 2020, 111, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.P.; Rinaldi, N.A.; Ho, E. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol. Nutr. Food Res. 2015, 59, 991–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, T.; Caviezel, D.; Ayata, C.K.; Kiss, C. The copper/zinc ratio correlates with markers of disease activity in patients with. Inflam. Bowel. Dis. 2020, 2, 1–7. [Google Scholar]
- MacDonell, S.O.; Miller, J.C.; Harper, M.J.; Reid, M.R.; Haszard, J.J.; Gibson, R.S.; A Houghton, L. A comparison of methods for adjusting biomarkers of iron, zinc, and selenium status for the effect of inflammation in an older population: A case for interleukin 6. Am. J. Clin. Nutr. 2018, 107, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Namaste, S.M.; Aaron, G.J.; Varadhan, R.; Peerson, J.M.; Suchdev, P.S. Methodologic approach for the biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106, 333S–347S. [Google Scholar] [PubMed]
- Harvey-Leeson, S.; Karakochuk, C.D.; Hawes, M.; Tugirimana, P.L.; Bahizire, E.; Akilimali, P.Z.; Michaux, K.D.; Lynd, L.D.; Whitfield, K.C.; Moursi, M.; et al. Anemia and micronutrient status of women of childbearing age and children 6–59 months in the Democratic Republic of the Congo. Nutrients 2016, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Musimwa, A.M.; Kanteng, G.W.; Kitoko, H.T.; Luboya, O.N. Trace elements in serum of malnourished and well-nourished children living in Lubumbashi and Kawama Aimée. Pan. Afr. Med. J. 2016, 8688, 1–8. [Google Scholar]
- Bumoko, G.-M.; Sadiki, N.; Rwatambuga, A.; Kayembe, K.; Okitundu, D.; Ngoyi, D.M.; Muyembe, J.-J.; Banea, J.-P.; Boivin, M.; Tshala-Katumbay, D. Lower serum levels of selenium, copper, and zinc are related to neuromotor impairments in children with konzo. J. Neurol. Sci. 2015, 349, 149–153. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Statistics. Multiple Indicators Clustered Survey 2017. 2018—Congo Democratic. Survey Finding Report. Available online: https://www.unicef.org/drcongo/en/reports/mics-palu-2018 (accessed on 21 November 2021).
- MinisterePlan_DRC. Congo Democratic Republic—Democratic Health Survey (DHS) 2013–2014. Available online: https://dhsprogram.com/pubs/pdf/FR300/FR300.pdf (accessed on 13 November 2021).
- Mbunga, B.; Mapatano, M.; Strand, T.; Gjengedal, E.; Akilimali, P.; Engebretsen, I. Prevalence of anemia, iron-deficiency anemia, and associated factors among children aged 1–5 years in the rural, malaria-endemic setting of Popokabaka, Democratic Republic of Congo: A cross-sectional study. Nutrients 2021, 13, 1010. [Google Scholar] [CrossRef]
- De Benoist, B.; Darnton-Hill, I.; Davidsson, L.; Fontaine, O.; Hotz, C. Conclusions of the joint WHO/UNICEF/IAEA/IZiNCG interagency meeting on zinc status indicators. Food Nutr. Bull. 2007, 28, S480–S484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLoughery, T.G. Iron deficiency anemia. Med. Clin. N. Am. 2017, 101, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Namaste, S.M.; Rohner, F.; Huang, J.; Bhushan, N.L.; Flores-Ayala, R.; Kupka, R.; Mei, Z.; Rawat, R.; Williams, A.M.; Raiten, D.J.; et al. Adjusting ferritin concentrations for inflammation: Biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106, 359S–371S. [Google Scholar]
- Krebs, N.F.; Miller, L.V.; Hambidge, K.M. Zinc deficiency in infants and children: A review of its complex and synergistic interactions. Paediatr. Int. Child Health 2014, 34, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Zubillaga, M.; Salgueiro, J.; Zubillaga, M.B.; Lysionek, A.E.; Caro, R.A.; Weill, R.; Boccio, J.R. The role of zinc in the growth and development of children. Nutrition 2002, 18, 510–519. [Google Scholar]
- Moumin, N.A.; Angel, M.D.; Karakochuk, C.D.; Michaux, K.D.; Moursi, M.; Sawadogo, K.A.A.; Foley, J.; Hawes, M.D.; Whitfield, K.C.; Tugirimana, P.L.; et al. Micronutrient intake and prevalence of micronutrient inadequacy among women (15–49 y) and children (6–59 mo) in South Kivu and Kongo Central, Democratic Republic of the Congo (DRC). PLoS ONE 2020, 15, e022339. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Fan, H.; Tian, X. Rising food accessibility contributed to the increasing dietary diversity in rural and urban China. Asia Pac. J. Clin. Nutr. 2017, 26, 738–747. [Google Scholar]
- Phiri, F.P.; Ander, E.L.; Lark, R.M.; Joy, E.J.M.; Kalimbira, A.A.; Suchdev, P.S.; Gondwe, J.; Hamilton, E.M.; Watts, M.J.; Broadley, M.R. Spatial analysis of urine zinc (Zn) concentration for women of reproductive age and school age children in Malawi. Environ. Geochem. Health 2021, 43, 259–271. [Google Scholar] [CrossRef]
- Belay, A.; Gashu, D.; Joy, E.J.M.; Lark, R.M.; Chagumaira, C.; Likoswe, B.H.; Zerfu, D.; Ander, E.L.; Young, S.D.; Bailey, E.H.; et al. Zinc deficiency is highly prevalent and spatially dependent over short distances in Ethiopia. Sci. Rep. 2021, 11, 6510. [Google Scholar] [CrossRef]
- Likoswe, B.H.; Phiri, F.P.; Broadley, M.R.; Joy, E.J.M.; Patson, N.; Maleta, K.M.; Phuka, J.C. Inflammation adjustment by two methods decreases the estimated prevalence of zinc deficiency in Malawi. Nutrients 2020, 12, 1563. [Google Scholar] [CrossRef]
- Gebremedhin, S. Adjusting serum zinc concentration for inflammation based on the data of Malawian preschool children and women of reproductive age. Nutrition 2020, 79–80, 110841. [Google Scholar] [CrossRef] [PubMed]
- Suchdev, P.S.; Namaste, S.M.; Aaron, G.J.; Raiten, D.J.; Brown, K.H.; Flores-Ayala, R. Overview of the biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Adv. Nutr. Int. Rev. J. 2016, 7, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strand, A.T.; Adhikari, R.K.; Chandyo, R.K.; Sharma, P.R.; Sommerfelt, H. Predictors of plasma zinc concentrations in children with acute diarrhea. Am. J. Clin. Nutr. 2004, 79, 451–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strand, T.A.; Chandyo, R.K.; Bahl, R.; Sharma, P.R.; Adhikari, R.K.; Bhandari, N.; Ulvik, R.J.; Mølbak, K.; Bhan, M.K.; Sommerfelt, H. Effectiveness and efficacy of zinc for the treatment of acute diarrhea in young children. Pediatrics 2021, 109, 898–903. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.L.F.; Black, R.E. Zinc for the treatment of diarrhea: Effect on diarrhea morbidity, mortality, and incidence of future episodes. Int. J. Epidemiol. 2010, 39, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Yakoob, M.Y.; Theodoratou, E.; Jabeen, A.; Imdad, A.; Eisele, T.P.; Ferguson, J.; Jhass, A.; Rudan, I.; Campbell, H.; E Black, R.; et al. Preventive zinc supplementation in developing countries: Impact on mortality and morbidity due to diarrhea, pneumonia and malaria. BMC Public Health 2011, 11, S23. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.; Tinkov, A.; Strand, T.A.; Alehagen, U.; Skalny, A.; Aaseth, J. Early Nutritional interventions with zinc, selenium and vitamin D for raising anti-viral resistance against progressive COVID-19. Nutrients 2020, 12, 2358. [Google Scholar] [CrossRef]
- Tontisirin, K.; Nantel, G.; Bhattacharjee, L. Food-based strategies to meet the challenges of micronutrient malnutrition in the developing world. Proc. Nutr. Soc. 2002, 61, 243–250. [Google Scholar] [CrossRef]
- Fesharakinia, A.; Zarban, A.S.G. Prevalence of zinc deficiency in elementary School of South Khorasan Province(East Iran). Iran. J Pediatr. 2009, 19, 249–254. [Google Scholar]
- Takyi, E.E.K. Hair zinc status and its correlation with height indicator in preschool and school children from a mixed-income, low density (mild) community in southern Ghana. East Afr. Med. J. 2004, 81, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Mayo-Wilson, E.; Imdad, A.; Junior, J.; Dean, S.; A Bhutta, Z. Preventive zinc supplementation for children, and the effect of additional iron: A systematic review and meta-analysis. BMJ Open 2014, 4, e004647. [Google Scholar] [CrossRef] [PubMed]
- Samuel, F.O.; Egal, A.A.; Oldewage-Theron, W.H.; Napier, C.E.; Venter, C.S. Prevalence of zinc deficiency among primary school children in a poor peri-urban informal settlement in South Africa. Health SA Gesondheid 2010, 15, 1–6. [Google Scholar] [CrossRef]
- Engle-Stone, R.; Ndjebayi, A.O.; Nankap, M.; Killilea, D.W.; Brown, K.H. Stunting prevalence, plasma zinc concentrations, and dietary zinc intakes in a nationally representative sample suggest a high risk of zinc deficiency among women and young children in cameroon. J. Nutr. 2013, 144, 382–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Zinc Supplementation and Growth in Children. Available online: http://www.who.int/elena/titles/zinc_stunting/en/ (accessed on 8 November 2021).
- Schneider, J.M.; Fujii, M.L.; Lamp, C.L.; Lönnerdal, B.; Zidenberg-Cherr, S. The prevalence of low serum zinc and copper levels and dietary habits associated with serum zinc and copper in 12- to 36-month-old children from low-income families at risk for iron deficiency. J. Am. Diet. Assoc. 2007, 107, 1924–1929. [Google Scholar] [CrossRef] [PubMed]
- Böckerman, P.; Bryson, A.; Viinikainen, J.; Viikari, J.; Lehtimäki, T.; Vuori, E.; Keltikangas-Järvinen, L.; Raitakari, O.; Pehkonen, J. The serum copper/zinc ratio in childhood and educational attainment: A population-based study. J. Public Health 2015, 38, 696–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joy, E.; Ander, E.L.; Young, S.D.; Black, C.R.; Watts, M.; Chilimba, A.D.C.; Chilima, B.; Siyame, E.W.P.; Kalimbira, A.A.; Hurst, R.; et al. Dietary mineral supplies in Africa. Physiol. Plant. 2014, 151, 208–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2013; p. 529. [Google Scholar]
- Ngo, D.B.; Dikassa, L.; Okitolonda, W.; Kashala, T.D.; Gervy, C.; Dumont, J.; Vanovervelt, N.; Contempré, B.; Diplock, A.T.; Peach, S.; et al. Selenium status in pregnant women of a rural population (Zaire) in relationship to iodine deficiency. Trop. Med. Int. Health 1997, 2, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Ngudi, D.D.; Banea-Mayambu, J.-P.; Lambein, F.; Kolsteren, P. Konzo and dietary pattern in cassava-consuming populations of Popokabaka, Democratic Republic of Congo. Food Chem. Toxicol. 2011, 49, 613–619. [Google Scholar] [CrossRef]
- Banea, J.P.; Bradbury, J.H.; Mandombi, C.; Nahimana, D.; Denton, I.C.; Foster, P.; Kuwa, N.; Tshala-Katumbay, D. Konzo prevention in six villages in the DRC and the dependence of konzo prevalence on cyanide intake and malnutrition. Toxicol. Rep. 2015, 2, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Banea, M.; Tylleskär, T.; Rosling, H. Konzo and ebola in bandundu region of zaire. Lancet 1997, 349, 621. [Google Scholar] [CrossRef]
- Bradbury, J.H.; Mandombi, C.; Nahimana, D.; Banea, J.P.; Denton, I.; Kuwa, N. Control of konzo in the Democratic Republic of the Congo. Nat. Prec. 2011. [Google Scholar] [CrossRef]
Characteristics | N (412) | % |
---|---|---|
Age [median (P25–P75)] | 32 (22–43) | |
Sex | ||
Boy | 212 | 51.5 |
Girl | 200 | 48.5 |
Stunting | 228 | 55.3 |
Wasting | 44 | 10.7 |
Underweight | 140 | 34.0 |
Fever in the two preceding weeks | 239 | 58.0 |
Diarrhea in the two preceding weeks | 71 | 17.2 |
Cough in the two preceding weeks | 133 | 32.3 |
Anemia | 280 | 68.0 |
Iron deficiency | 53 | 12.9 |
Iron-deficiency anemia | 31 | 7.5 |
Inflammation state (elevated CRP) | 202 | 49.0 |
Malaria by rapid test | 358 | 86.9 |
Zinc supplementation in the two preceding weeks | 21 | 5.1 |
Iron supplementation in the two preceding weeks | 147 | 35.7 |
Micronutrient powders in the two preceding weeks | 77 | 18.7 |
n | Zn µg/dL | Cu µg/dL | Se µg/dL | ||
---|---|---|---|---|---|
Total | 412 | 61.9(52.8–70.2) | 145.5 (120.0–167.0) | 5.3 (4.3–6.3) | |
Child sex | |||||
Male | 212 | 61.8 (52.3–70.5) | 150.0 (125.0–173.0) | 5.2(4.1–6.3) | |
Female | 200 | 62.4 (52.9–70.1) | 142.0 (116.0–162.5) | 5.4 (4.4–6.3) | |
p-value | 0.816 | 0.093 | 0.403 | ||
Age group | |||||
12–23 | 117 | 61.7 (53.3–71.6) | 146.0 (124.0–170.0) | 5.4 (4.5–6.3) | |
24–35 | 115 | 61.8 (52.8–69.0) | 143.0 (113.0–166.0) | 5.2 (4.1–5.9) | |
36–47 | 110 | 63.3 (53.2–70.8) | 151.5 (131.0–169.0) | 5.3 (4.8–6.4) | |
48–59 | 70 | 60.6 (52.0–71.0) | 139.0 (110.0–163.0) | 5.3 (3.7–6.2) | |
p-value | 0.826 | 0.099 | 0.442 | ||
Anemia | |||||
No | 132 | 63.4 (54.2–73.0) | 147.0 (118.5–164.5) | 5.5 (4.7–6.4) | |
Yes | 280 | 60.9 (52.1–68.8) | 145.0 (120.5–170.5) | 5.2 (4.1–6.1) | |
p-value | 0.220 | 0.240 | 0.033 | ||
Iron deficiency | |||||
No | 359 | 62.0 (53.7–70.7) | 144.0 (117.0–166.0) | 5.3 (4.3–6.3) | |
Yes | 53 | 60.1 (49.5–69.8) | 150.0 (131.0–173.0) | 5.5 (4.1–6.4) | |
p-value | 0.043 | 0.019 | 0.918 | ||
Stunting | |||||
No | 184 | 62.5 (53.0–72.9) | 146.0 (120.0–173.0) | 5.4 (4.5–6.6) | |
Yes | 228 | 61.5 (52.7–68.4) | 144.0 (119.0–164.0) | 5.2 (3.9–6.0) | |
p-value | 0.293 | 0.456 | 0.004 | ||
Inflammation state | |||||
No | 210 | 63.3 (56.7–71.9) | 135.0 (111.0–155.0) | 5.6 (4.8–6.7) | |
Yes | 202 | 59.5 (50.2–67.7) | 155.5 (136.0 – 181.0) | 5.0 (3.8–5.8) | |
p-value | <0.001 | <0.001 | <0.001 | ||
Malaria | |||||
No | 54 | 64.0 (55.1–75.5) | 152.0 (133.0–173.0) | 5.4 (4.6–5.9) | |
Yes | 358 | 61.4 (52.6–68.9) | 145.0 (119.0–166.0) | 5.3 (4.3–6.4) | |
p-value | 0.140 | 0.533 | 0.415 | ||
Kwango river side | |||||
East | 343 | 60.2 (52.2–68.2) | 146.0 (120.0–168.0) | 5.2 (4.1–5.0) | |
West | 69 | 67.3 (61.9–74.8) | 145.0 (119.0–163.0) | 6.2 (5.2–7.0) | |
p-value | <0.001 | 0.976 | <0.001 |
Unadjusted Prevalence % (95 CI) | CRP-Adjusted Prevalence % (95 CI) | |
---|---|---|
Zn deficiency | 64.6 (59.8–69.0) | 64.6 (59.8–69.0) |
Cu deficiency | 1.5 (0.6–3.2) | 1.5 (0.6–3.2) |
Se deficiency | 86.9 (83.3–89.8) | 84.1 (81.4–87.0) |
Zinc | Copper | Selenium | |
---|---|---|---|
Copper | 0.23 *** | 1.000 | 0.35 *** |
Selenium | 0.35 *** | 0.07 | 1.000 |
Height-for-Age Z Score | 0.07 | 0.05 | 0.15 ** |
Weight-for-Age Z Score | −0.05 | −0.03 | 0.00 |
Household food-insecurity access score | −0.14 ** | −0.09 | 0.05 |
Hemoglobin | 0.14 ** | −0.06 | 0.17 ** |
Transferrin saturation | −0.00 | −0.12 ** | −0.06 |
C-reactive Protein | −0.24 *** | 0.39 *** | −0.33 *** |
Zn-Model | Cu-Model | Se-Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude Estimates | Adjusted Estimates | Crude Estimates | Adjusted Estimates | Crude Estimates | Adjusted Estimates | |||||||
β | 95% CI | β | 95% CI | Β | 95% CI | β | 95% CI | Β | 95% CI | β | 95% CI | |
Sex girl | 1.55 | [−2.07; 5.17] | - | - | −10.02 a | [−17.47; −2.57] | −8.32 b | [−15.37; −1.26] | 0.08 | [−0.22; 0.37] | - | - |
Age | 0.06 | [−0.08; 0.21] | - | - | −0.32 a | [−0.62; −0.03] | −0.26 | [−0.54; 0.02] | 0.00 | [−0.01; 0.01] | - | - |
Diarrhea | −4.50 a | [−9.27; 0.28] | −4.36 | [−9.11; 0.40] | −4.57 | [−14.50; 5.36] | - | - | −0.19 | [−0.58; 0.20] | - | - |
Zinc supplementation | 2.56 | [−5.67; 10.78] | - | - | 8.62 | [−8.42; 25.68] | - | - | 0.38 | [−0.30; 1.04] | - | - |
Fever | 0.52 | [−3.14; 4.19] | - | - | 5.99 a | [−1.60; 13.57] | 1.93 | [−5.32; 9.18] | −0.14 | [−0.44; 0.16] | - | - |
Cough | 0.06 | [−3.81; 3.93] | - | - | 3.38 | [−4.64; 11.40] | - | - | −0.26 a | [−0.57; 0.06] | −0.21 | [−0.50; 0.09] |
Iron supplementation | −0.68 | [−4.45; 3.10] | - | - | 9.89 a | [2.12; 17.67] | 8.25 b | [0.86; 15.63] | −0.06 | [−0.37; 0.25] | - | - |
Micronutrient powder | −1.45 | [−6.09; 3.19] | - | - | −0.80 | [−10.43; 8.82] | - | - | −0.08 | [−0.46; 0.30] | - | - |
Elevated CRP | −2.29 | [−5.90; 1.32] | - | - | 24.5 a | [17.4; 31.64] | 23.4 b | [16.30; 30.45] | −0.76 a | [−1.05; −0.47] | −0.68 b | [−0.95; −0.40] |
Height-for-Age Z Score | −0.27 | [−0.82; 1.35] | - | - | 0.37 | [−1.87; 2.62] | - | - | 0.13 a | [0.04; 0.22] | 0.12 b | [0.04; 0.20] |
Weight-for-Age Z Score | −1.02 a | [−2.45; 0.42] | −0.94 | [−2.37; 0.48] | −0.56 | [−3.54; 2.42] | - | - | −0.04 | [−0.15; 0.08] | - | - |
HFIAS | −0.27 a | [−0.55; 0.02] | −0.25 | [−0.53; 0.04] | −0.38 | [−0.97; 0.22] | - | - | 0.00 | [−0.02; 0.03] | - | - |
Malaria | −1.89 | [−7.25; 3.47] | - | - | −5.57 | [−16.68; 5.54] | - | - | 0.15 | [−0.29; 0.59] | - | - |
Hgb | −0.04 | [−0.46; 0.38] | - | - | −0.34 | [−1.21; 0.54] | - | - | 0.00 | [−0.03; 0.04] | - | - |
Transferrin saturation | 0.02 | [−0.02; 0.05] | - | - | −0.08 a | [−0.15; −0.02] | −0.08 b | [−0.14; −0.02] | 0.00 | [−0.00; 0.00] | - | - |
Western side river | 6.20 a | [1.39; 11.0] | 5.93 b | [1.13; 10.74] | −2.95 | [−13.00; 7.10] | - | - | 1.13 a | [0.76; 1.52] | 1.04 b | [0.67; 1.41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbunga, B.K.; Engebretsen, I.M.S.; Strand, T.A.; Gjengdal, E.L.F.; Akilimali, P.Z.; Langfjord, M.M.; Tugirimana, P.L.; Mapatano, M.A. Distribution and Determinants of Serum Zinc, Copper, and Selenium Levels among Children under Five Years from Popokabaka, Democratic Republic of Congo: A Cross-Sectional Study. Nutrients 2022, 14, 683. https://doi.org/10.3390/nu14030683
Mbunga BK, Engebretsen IMS, Strand TA, Gjengdal ELF, Akilimali PZ, Langfjord MM, Tugirimana PL, Mapatano MA. Distribution and Determinants of Serum Zinc, Copper, and Selenium Levels among Children under Five Years from Popokabaka, Democratic Republic of Congo: A Cross-Sectional Study. Nutrients. 2022; 14(3):683. https://doi.org/10.3390/nu14030683
Chicago/Turabian StyleMbunga, Branly Kilola, Ingunn M. S. Engebretsen, Tor A. Strand, Elin L. F. Gjengdal, Pierre Z. Akilimali, Mina M. Langfjord, Pierrot L. Tugirimana, and Mala Ali Mapatano. 2022. "Distribution and Determinants of Serum Zinc, Copper, and Selenium Levels among Children under Five Years from Popokabaka, Democratic Republic of Congo: A Cross-Sectional Study" Nutrients 14, no. 3: 683. https://doi.org/10.3390/nu14030683
APA StyleMbunga, B. K., Engebretsen, I. M. S., Strand, T. A., Gjengdal, E. L. F., Akilimali, P. Z., Langfjord, M. M., Tugirimana, P. L., & Mapatano, M. A. (2022). Distribution and Determinants of Serum Zinc, Copper, and Selenium Levels among Children under Five Years from Popokabaka, Democratic Republic of Congo: A Cross-Sectional Study. Nutrients, 14(3), 683. https://doi.org/10.3390/nu14030683