Stability and Transformation of Metabolic Syndrome in Adolescents: A Prospective Assessment in Relation to the Change of Cardiometabolic Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Demographic and Cardiometabolic Factors
2.3. MetS Diagnosis
2.4. Transformation of MetS Status
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Berenson, G.S.; Srinivasan, S.R.; Bao, W.; Newman, W.P., III; Tracy, R.E.; Wattigney, W.A. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 1998, 338, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, M.D. Assessing and managing the metabolic syndrome in children and adolescents. Nutrients 2019, 11, 1788. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.A.; Friedman, L.A.; Gray-McGuire, C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: The Princeton Lipid Research Clinics Follow-up Study. Pediatrics 2007, 120, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.A.; Friedman, L.A.; Wang, P.; Glueck, C.J. Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J. Pediatr. 2008, 152, 201–206. [Google Scholar] [CrossRef]
- Magnussen, C.G.; Koskinen, J.; Chen, W.; Thomson, R.; Schmidt, M.D.; Srinivasan, S.R.; Kivimaki, M.; Mattsson, N.; Kahonen, M.; Laitinen, T.; et al. Pediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone: The Bogalusa Heart Study and the Cardiovascular Risk in Young Finns Study. Circulation 2010, 122, 1604–1611. [Google Scholar] [CrossRef]
- Steinberger, J.; Daniels, S.R.; Eckel, R.H.; Hayman, L.; Lustig, R.H.; McCrindle, B.; Mietus-Snyder, M.L. Progress and challenges in metabolic syndrome in children and adolescents: A scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2009, 119, 628–647. [Google Scholar] [CrossRef]
- Martinez-Vizcaino, V.; Ortega, F.B.; Solera-Martinez, M.; Ruiz, J.R.; Labayen, I.; Eensoo, D.; Harro, J.; Loit, H.M.; Veidebaum, T.; Sjostrom, M. Stability of the factorial structure of metabolic syndrome from childhood to adolescence: A 6-year follow-up study. Cardiovasc. Diabetol. 2011, 10, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, E.; Daniels, S.R.; Meigs, J.B.; Dolan, L.M. Instability in the diagnosis of metabolic syndrome in adolescents. Circulation 2007, 115, 2316–2322. [Google Scholar] [CrossRef] [Green Version]
- Stanley, T.L.; Chen, M.L.; Goodman, E. The typology of metabolic syndrome in the transition to adulthood. J. Clin. Endocrinol. Metab. 2014, 99, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Drozdz, D.; Alvarez-Pitti, J.; Wojcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Cavrak, V.; Lopez-Valcarcel, B.G.; Brzezinski, M.; Lurbe, E.; et al. Obesity and cardiometabolic risk factors: From childhood to adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef]
- Chan, T.F.; Lin, W.T.; Huang, H.L.; Lee, C.Y.; Wu, P.W.; Chiu, Y.W.; Huang, C.C.; Tsai, S.; Lin, C.L.; Lee, C.H. Consumption of sugar-sweetened beverages is associated with components of the metabolic syndrome in adolescents. Nutrients 2014, 6, 2088–2103. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; So, W.Y. Prevalence of metabolic syndrome among Korean adolescents according to the National Cholesterol Education Program, Adult Treatment Panel III and International Diabetes Federation. Nutrients 2016, 8, 588. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Yu, J.; Chang, X.; Wang, M.; An, L. Prevalence and correlates of metabolic syndrome in Chinese children: The China Health and Nutrition Survey. Nutrients 2017, 9, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaston, S.A.; Tulve, N.S.; Ferguson, T.F. Abdominal obesity, metabolic dysfunction, and metabolic syndrome in U.S. adolescents: National Health and Nutrition Examination Survey 2011–2016. Ann. Epidemiol. 2019, 30, 30–36. [Google Scholar] [CrossRef]
- Lin, W.T.; Lee, C.Y.; Tsai, S.; Huang, H.L.; Wu, P.W.; Chin, Y.T.; Seal, D.W.; Chen, T.; Chao, Y.Y.; Lee, C.H. Clustering of metabolic risk components and associated lifestyle factors: A nationwide adolescent study in Taiwan. Nutrients 2019, 11, 584. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.Y.; Hung, Y.T.; Chuang, Y.L.; Chen, Y.J.; Weng, W.S.; Liu, J.S.; Laing, K.Y. Incorporating development stratification of Taiwan townships into sampling design of large scale health interview survey. J. Health Manag. 2006, 4, 1–22. [Google Scholar]
- The WHO STEP. Wise Approach to Noncommunicable Disease Risk Factor Surveillance. Section 4: Guide to Physical Measurements (Step 2). Available online: https://www.who.int/ncds/surveillance/steps/Section%204%20Step%202%20Physical%20Measurements.pdf (accessed on 17 August 2021).
- Lin, W.T.; Huang, H.L.; Huang, M.C.; Chan, T.F.; Ciou, S.Y.; Lee, C.Y.; Chiu, Y.W.; Duh, T.H.; Lin, P.L.; Wang, T.N.; et al. Effects on uric acid, body mass index and blood pressure in adolescents of consuming beverages sweetened with high-fructose corn syrup. Int J. Obes. 2013, 37, 532–539. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.T.; Chan, T.F.; Huang, H.L.; Lee, C.Y.; Tsai, S.; Wu, P.W.; Yang, Y.C.; Wang, T.N.; Lee, C.H. Fructose-rich beverage intake and central adiposity, uric acid, and pediatric insulin resistance. J. Pediatr. 2016, 171, 90–96.e91. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.F.; Lin, W.T.; Chen, Y.L.; Huang, H.L.; Yang, W.Z.; Lee, C.Y.; Chen, M.H.; Wang, T.N.; Huang, M.C.; Chiu, Y.W.; et al. Elevated serum triglyceride and retinol-binding protein 4 levels associated with fructose-sweetened beverages in adolescents. PLoS ONE 2014, 9, e82004. [Google Scholar] [CrossRef] [Green Version]
- Chin, Y.T.; Lin, W.T.; Wu, P.W.; Tsai, S.; Lee, C.Y.; Seal, D.W.; Chen, T.; Huang, H.L.; Lee, C.H. Characteristic-grouped adiposity indicators for identifying metabolic syndrome in adolescents: Develop and valid risk screening tools using dual population. Nutrients 2020, 12, 3165. [Google Scholar] [CrossRef]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef] [PubMed]
- The Statement of Taiwan Pediatric Association for Child and Adolescent Metabolic Syndrome. Taiwan Pediatric Association, June 2016. Available online: https://www.pediatr.org.tw/people/edu_info.asp?id=33 (accessed on 17 August 2021).
- Lin, W.T.; Lin, P.C.; Lee, C.Y.; Chen, Y.L.; Chan, T.F.; Tsai, S.; Huang, H.L.; Wu, P.W.; Chin, Y.T.; Lin, H.Y.; et al. Effects of insulin resistance on the association between the circulating retinol-binding protein 4 level and clustering of pediatric cardiometabolic risk factors. Pediatr. Diabetes 2018, 19, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.W.; Tsai, S.; Lee, C.Y.; Lin, W.T.; Chin, Y.T.; Huang, H.L.; Seal, D.W.; Chen, T.; Lee, C.H. Contribution of insulin resistance to the relationship between sugar-sweetened beverage intake and a constellation of cardiometabolic abnormalities in adolescents. Int J. Obes. 2021, 45, 828–839. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G. Practical Statistics for Medical Research; Chapman and Hall: London, UK, 1991. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Rabe-Hesketh, S.; Skrondal, A. Multilevel and Longitudinal Modeling Using Stata-Volume I: Continuous Responses, 3rd ed.; Stata Press: College Station, TX, USA, 2012. [Google Scholar]
- Rothman, K.; Greenland, S. Modern Epidemiology, 2nd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1998. [Google Scholar]
- Lee, C.H.; Lee, K.W.; Fang, F.M.; Wu, D.C.; Tsai, S.M.; Chen, P.H.; Shieh, T.Y.; Chen, C.H.; Wu, I.C.; Huang, H.L.; et al. The neoplastic impact of tobacco-free betel-quid on the histological type and the anatomical site of aerodigestive tract cancers. Int. J. Cancer 2012, 131, E733–E743. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R Statist. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Shulman, G.I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 2014, 371, 2237–2238. [Google Scholar] [CrossRef]
- DeBoer, M.D.; Gurka, M.J.; Woo, J.G.; Morrison, J.A. Severity of the metabolic syndrome as a predictor of type 2 diabetes between childhood and adulthood: The Princeton Lipid Research Cohort Study. Diabetologia 2015, 58, 2745–2752. [Google Scholar] [CrossRef] [Green Version]
- Gurka, M.J.; Golden, S.H.; Musani, S.K.; Sims, M.; Vishnu, A.; Guo, Y.; Cardel, M.; Pearson, T.A.; DeBoer, M.D. Independent associations between a metabolic syndrome severity score and future diabetes by sex and race: The Atherosclerosis Risk In Communities Study and Jackson Heart Study. Diabetologia 2017, 60, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, M.D.; Filipp, S.L.; Sims, M.; Musani, S.K.; Gurka, M.J. Risk of ischemic stroke increases over the spectrum of metabolic syndrome severity. Stroke 2020, 51, 2548–2552. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, C.G.; Koskinen, J.; Juonala, M.; Chen, W.; Srinivasan, S.R.; Sabin, M.A.; Thomson, R.; Schmidt, M.D.; Nguyen, Q.M.; Xu, J.H.; et al. A diagnosis of the metabolic syndrome in youth that resolves by adult life is associated with a normalization of high carotid intima-media thickness and type 2 diabetes mellitus risk: The Bogalusa heart and cardiovascular risk in young Finns studies. J. Am. Coll. Cardiol. 2012, 60, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.H.; Ahn, S.G.; Kim, Y.I.; Go, T.; Sung, K.C.; Choi, J.H.; Koh, K.K.; Kim, J.Y. Impact of longitudinal changes in metabolic syndrome status over 2 years on 10-year incident diabetes mellitus. Diabetes Metab. J. 2019, 43, 530–538. [Google Scholar] [CrossRef]
- Itoh, H.; Kurihara, I.; Miyashita, K.; Tanaka, M. Clinical significance of ‘cardiometabolic memory’: A systematic review of randomized controlled trials. Hypertens Res. 2017, 40, 526–534. [Google Scholar] [CrossRef]
- Colip, L.; Burge, M.R.; Sandy, P.; Ghahate, D.; Bobelu, J.; Faber, T.; Shah, V. Exercise intervention improves the metabolic profile and body composition of southwestern American indian adolescents. J. Diabetes Obes. 2016, 3, 10. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Caroli, D.; Grugni, G.; Cella, S.G.; Sartorio, A. Frequent medical supervision increases the effectiveness of a longitudinal multidisciplinary body weight reduction program: A real-world experience in a population of children and adolescents with obesity. Nutrients 2021, 13, 3362. [Google Scholar] [CrossRef]
- Genoni, G.; Menegon, V.; Monzani, A.; Archero, F.; Tagliaferri, F.; Mancioppi, V.; Peri, C.; Bellone, S.; Prodam, F. Healthy lifestyle intervention and weight loss improve cardiovascular dysfunction in children with obesity. Nutrients 2021, 13, 1301. [Google Scholar] [CrossRef] [PubMed]
Baseline | Follow-Up | ||
---|---|---|---|
Factors | (n = 1246) | (n = 1155) | p Value a |
Age, Mean ± SD | 12.6 ± 0.7 | 14.6 ± 0.7 | <0.001 |
Sex, % | |||
Boy | 49.0 | 49.1 | 0.979 |
Girl | 51.0 | 50.9 | |
Urbanization level b, % | |||
Level 1–2 | 49.9 | 49.3 | 0.946 |
Level 3–4 | 28.3 | 28.7 | |
Level 5–7 | 21.8 | 22.0 | |
Cardiometabolic risk factors, Mean ± SD | |||
Anthropometric parameters | |||
Waist circumference, cm | 71.6 ± 11.4 | 74.9 ± 11.9 | <0.001 |
Hip circumference, cm | 87.6 ± 9.8 | 93.5 ± 9.4 | <0.001 |
Body mass index, Kg/m2 | 20.7 ± 4.5 | 21.9 ± 4.8 | <0.001 |
Clinical parameters c | |||
Systolic blood pressure, mmHg | 111.8 ± 13.1 | 114.1 ± 14.0 | <0.001 |
Diastolic blood pressure, mmHg | 64.0 ± 9.2 | 65.3 ± 9.0 | 0.001 |
HDL-cholesterol, mg/dL | 54.1 ± 11.2 | 50.3 ± 10.9 | <0.001 |
Triglyceride, mg/dL | 78.1 ± 39.2 | 76.7 ± 36.1 | 0.408 |
Fasting plasma glucose, mg/dL | 89.8 ± 11.0 | 88.2 ± 16.2 | 0.006 |
Glycated hemoglobin, % | 5.3 ± 0.4 | 5.3 ± 0.6 | 0.650 |
Cardiometabolic Risk Factors | Baseline | Follow-Up | ||||
---|---|---|---|---|---|---|
Factor Loadings (n = 1246) | Factor Loadings (n = 896) | |||||
Fat | BP | Glucose | Fat | BP | Glucose | |
[Log] Body mass index, kg/m2 | 0.901 a | 0.220 | 0.066 | 0.907 a | 0.206 | 0.064 |
[Log] Waist circumference, cm | 0.899 a | 0.191 | 0.118 | 0.927 a | 0.161 | 0.051 |
Hip circumference, cm | 0.875 a | 0.235 | 0.079 | 0.902 a | 0.181 | 0.083 |
[Log] Serum HDL-C level, mg/dL | −0.655 a | 0.175 | 0.058 | −0.590 a | 0.072 | −0.056 |
[Log] Serum triglyceride level, mg/dL | 0.538 a | −0.240 | −0.055 | 0.508 a | 0.069 | 0.018 |
Systolic blood pressure, mmHg | 0.324 | 0.804 a | 0.037 | 0.386 | 0.762 a | 0.091 |
[Log] Diastolic blood pressure, mmHg | 0.142 | 0.835 a | −0.018 | 0.121 | 0.905 a | 0.018 |
[Log] Fasting plasma glucose level, mg/dL | 0.059 | −0.057 | 0.822 a | 0.080 | 0.097 | 0.846 a |
[Log] Glycated hemoglobin, % | 0.117 | 0.077 | 0.812 a | 0.067 | −0.008 | 0.858 a |
Eigenvalue | 3.563 | 1.324 | 1.306 | 3.736 | 1.399 | 1.137 |
Proportion of variance explained | 36.1% | 17.6% | 15.2% | 36.4% | 16.9% | 16.4% |
Cumulative proportion | 36.1% | 53.6% | 68.8% | 36.4% | 53.3% | 69.7% |
Bartlett’s sphericity test, χ² (p value) | 5687.9 | (<0.001) | 4458.0 | (<0.001) | ||
Kaiser−Meyer−Olkin (KMO) measure b | 0.782 | 0.794 |
Prevalence at Baseline (n = 896) a | Incident MetS (n = 871)a | Remitted MetS (n = 25) a | Persistent MetS (n = 25) a | Prevalence at Follow-Up (n = 896) a | MetS Kappa (p Value) b | |
---|---|---|---|---|---|---|
% (95% CI) | % (95% CI) | % (95% CI) | % (95% CI) | % (95% CI) | ||
IDF | 2.8 | 3.2 | 52.0 | 48.0 | 4.5 | 0.347 |
(1.9–4.1) | (2.2–4.6) | (32.2–71.2) | (28.8–67.8) | (3.3–6.0) | (<0.001) | |
TPA | 5.8 | 3.7 | 59.6 | 40.4 | 5.8 | 0.367 |
(4.4–7.5) | (2.6–5.2) | (45.6–72.2) | (27.8–54.4) | (4.4–7.5) | (<0.001) | |
JIS-Adult | 4.7 | 4.0 | 61.9 | 38.1 | 5.6 | 0.313 |
(3.5–6.3) | (2.9–5.5) | (46.1–75.5) | (24.5–53.9) | (4.3–7.3) | (<0.001) | |
IDF–TPA | 6.0 | 4.4 | 61.1 | 38.9 | 6.5 | 0.333 |
(4.6–7.8) | (3.2–6.0) | (47.3–73.3) | (26.7–52.7) | (5.0–8.3) | (<0.001) |
Never (n = 805) | Incident (n = 37) | Remitted (n = 33) | Persistent (n = 21) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Factors | Baseline Mean | Follow- Up Mean | WP Change b | pc | Baseline Mean | Follow- Up Mean | WP Change b | pc | Baseline Mean | Follow- Up Mean | WP Change b | pc | Baseline Mean | Follow- Up Mean | WP Change b | pc |
BMI | 19.93 | 21.09 | 1.16 * | <0.001 | 26.76 | 28.59 | 1.83 * | <0.001 | 27.21 | 28.12 | 0.91 | 0.187 | 30.80 | 31.91 | 1.12 | 0.151 |
WC | 69.90 | 72.96 | 3.06 * | <0.001 | 85.51 | 91.06 | 5.55 * | <0.001 | 87.43 | 90.06 | 2.63 | 0.187 | 95.30 | 98.46 | 3.16 | 0.151 |
SBP | 111.04 | 111.97 | 0.94 | 0.065 | 119.38 | 132.57 | 13.19 * | <0.001 | 121.85 | 122.06 | 0.21 | 0.932 | 126.90 | 137.76 | 10.86 * | 0.039 |
DBP | 63.68 | 64.43 | 0.75 | 0.065 | 67.24 | 72.62 | 5.38 * | <0.001 | 70.97 | 69.06 | −1.91 | 0.532 | 71.47 | 76.19 | 4.72 | 0.159 |
HDL-C | 55.00 | 51.33 | −3.67 * | <0.001 | 47.03 | 41.08 | −5.95 * | <0.001 | 42.43 | 43.04 | 0.61 | 0.774 | 39.88 | 37.71 | −2.16 | 0.151 |
TG | 73.38 | 73.03 | −0.35 | 0.763 | 99.78 | 109.22 | 9.43 | 0.315 | 123.39 | 95.27 | −28.12 * | <0.001 | 128.71 | 131.43 | 2.71 | 0.807 |
FPG | 89.48 | 87.20 | −2.29 * | <0.001 | 89.68 | 89.43 | −0.24 | 0.872 | 95.97 | 87.03 | −8.94 * | <0.001 | 104.48 | 126.52 | 22.05 | 0.151 |
HbA1c | 5.29 | 5.28 | −0.004 | 0.763 | 5.31 | 5.28 | −0.03 | 0.689 | 5.30 | 5.31 | 0.02 | 0.887 | 5.75 | 6.42 | 0.67 | 0.151 |
Within Person Change b | Never (n = 805) | Incident (n = 37) | Remitted (n = 33) | Persistent (n = 21) | Remitted vs. Persistent | ||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) | aOR (Ref.) | Mean (SD) | aOR c (p Value d) | Mean (SD) | OR c (p Value d) | Mean (SD) | OR c (p Value d) | aOR ratio c (p Value d) | |
ΔBMI, Kg/m2 | 1.16 (1.71) | 1.0 | 1.83 (1.90) | 0.98 (0.949) | 0.91 (2.98) | 1.08 (0.949) | 1.12 (3.31) | 1.09 (0.949) | 0.99 (0.949) |
ΔWC, cm | 3.06 (6.11) | 1.0 | 5.55 (6.67) | 1.05 (0.784) | 2.63 (9.15) | 0.99 (0.784) | 3.16 (9.03) | 1.02 (0.784) | 0.97 (0.784) |
ΔSBP, mmHg | 0.94 (13.47) | 1.0 | 13.19 (13.65) | 1.07 * (<0.001) | 0.21 (14.54) | 1.01 (0.680) | 10.86 (18.09) | 1.07 * (0.004) | 0.95 * (0.039) |
ΔDBP, mmHg | 0.75 (10.80) | 1.0 | 5.38 (9.16) | 0.99 (0.751) | −1.91 (11.50) | 0.97 (0.751) | 4.72 (14.98) | 0.99 (0.751) | 0.98 (0.751) |
ΔHDL-C, mg/dL | −3.67 (7.86) | 1.0 | −5.95 (6.45) | 0.97 (0.310) | 0.61 (6.43) | 1.08 * (0.013) | −2.16 (6.41) | 1.03 (0.365) | 1.05 (0.310) |
ΔTG, mg/dL | −0.35 (33.12) | 1.0 | 9.43 (49.13) | 1.01 (0.253) | −28.12 (41.89) | 0.98 * (<0.001) | 2.71 (52.18) | 0.99 (0.427) | 0.98 (0.095) |
ΔFPG, mg/dL | −2.29 (10.39) | 1.0 | −0.24 (9.33) | 1.02 (0.209) | −8.94 (10.80) | 0.96 * (0.014) | 22.05 (65.38) | 1.02 (0.173) | 0.94 * (0.011) |
ΔHbA1c, % | −0.004 (0.29) | 1.0 | −0.03 (0.32) | 0.98 (0.968) | 0.02 (0.31) | 0.77 (0.935) | 0.67 (1.97) | 2.21 (0.474) | 0.35 (0.474) |
Abnormal Components of MetS a | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Factors | Abdominal Obesity | Elevated BP | Low HDL-C | Increased TG | High FPG | |||||
Baseline | ||||||||||
No. of positive | 310 | 132 | 263 | 69 | 142 | |||||
Prevalence | 24.9% | 10.6% | 21.1% | 5.5% | 11.4% | |||||
Follow-up | No | Yes | No | Yes | No | Yes | No | Yes | No | Yes |
Participants at follow-up, no. b | 862 | 293 | 1026 | 129 | 696 | 200 | 851 | 45 | 777 | 119 |
Person-year, year | 1886.7 | 634.8 | 2242.6 | 279.0 | 1484.8 | 430.2 | 1814.9 | 100.0 | 1657.3 | 257.7 |
Abnormal component | ||||||||||
No | 808 | 75 | 918 | 68 | 553 | 43 | 823 | 35 | 736 | 97 |
Yes | 54 | 218 | 108 | 61 | 143 | 157 | 28 | 10 | 41 | 22 |
Incident density, per year c | 2.9% | 34.3% | 4.8% | 21.9% | 9.6% | 36.5% | 1.5% | 10.0% | 2.5% | 8.5% |
aHR (95% CI) d | 1.0 | 15.0 | 1.0 | 4.0 | 1.0 | 3.4 | 1.0 | 5.7 | 1.0 | 3.8 |
(11.0–20.3) | (2.9–5.5) | (2.7–4.3) | (2.6–12.2) | (2.1–6.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.-W.; Lai, Y.-W.; Chin, Y.-T.; Tsai, S.; Yang, T.-M.; Lin, W.-T.; Lee, C.-Y.; Tsai, W.-C.; Huang, H.-L.; Seal, D.W.; et al. Stability and Transformation of Metabolic Syndrome in Adolescents: A Prospective Assessment in Relation to the Change of Cardiometabolic Risk Factors. Nutrients 2022, 14, 744. https://doi.org/10.3390/nu14040744
Wu P-W, Lai Y-W, Chin Y-T, Tsai S, Yang T-M, Lin W-T, Lee C-Y, Tsai W-C, Huang H-L, Seal DW, et al. Stability and Transformation of Metabolic Syndrome in Adolescents: A Prospective Assessment in Relation to the Change of Cardiometabolic Risk Factors. Nutrients. 2022; 14(4):744. https://doi.org/10.3390/nu14040744
Chicago/Turabian StyleWu, Pei-Wen, Yi-Wen Lai, Yu-Ting Chin, Sharon Tsai, Tun-Min Yang, Wei-Ting Lin, Chun-Ying Lee, Wei-Chung Tsai, Hsiao-Ling Huang, David W. Seal, and et al. 2022. "Stability and Transformation of Metabolic Syndrome in Adolescents: A Prospective Assessment in Relation to the Change of Cardiometabolic Risk Factors" Nutrients 14, no. 4: 744. https://doi.org/10.3390/nu14040744
APA StyleWu, P. -W., Lai, Y. -W., Chin, Y. -T., Tsai, S., Yang, T. -M., Lin, W. -T., Lee, C. -Y., Tsai, W. -C., Huang, H. -L., Seal, D. W., Duh, T. -H., & Lee, C. -H. (2022). Stability and Transformation of Metabolic Syndrome in Adolescents: A Prospective Assessment in Relation to the Change of Cardiometabolic Risk Factors. Nutrients, 14(4), 744. https://doi.org/10.3390/nu14040744