The Impact of Kidney Transplantation on the Serum Fatty Acid Profile in Patients with End-Stage Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bargiota, A.; Diamanti-Kandarakis, E. The effects of old, new and emerging medicines on metabolic aberrations in PCOS. Ther. Adv. Endocrinol. Metab. 2012, 3, 27–47. [Google Scholar] [CrossRef]
- Valdivielso, P.; Mostaza, J.M.; Jarauta, E.; Lahoz, C.; Aranda, J.L.; de Aranzubía, P.S.; Argimón-Pallás, J.; Carrasco-Miras, F.; Civeira, F.; Ascaso, J.F. Cardiovascular disease and hypertriglyceridemia: A report from the hypertriglyceridemia registry of the Spanish Atherosclerosis Society. Clin. Lipidol. 2013, 8, 525–532. [Google Scholar] [CrossRef]
- Rangaswami, J.; Mathew, R.O.; Parasuraman, R.; Tantisattamo, E.; Lubetzky, M.; Rao, S.; Yaqub, M.S.; Birdwell, K.A.; Bennett, W.; Dalal, P.; et al. Cardiovascular disease in the kidney transplant recipient: Epidemiology, diagnosis and management strategies. Nephrol. Dial. Transplant. 2019, 34, 760–773. [Google Scholar] [CrossRef]
- Mika, A.; Gołębiowski, M.; Skorkowski, E.; Stepnowski, P. Lipids of adult brown shrimp, Crangon crangon: Seasonal variations in fatty acids class composition. J. Mar. Biol. Assoc. UK 2014, 94, 993–1000. [Google Scholar] [CrossRef]
- Donovan, E.L.; Pettine, S.M.; Hickey, M.S.; Hamilton, K.L.; Miller, B.F. Lipidomic analysis of human plasma reveals ether-linked lipids that are elevated in morbidly obese humans compared to lean. Diabetol. Metab. Syndr. 2013, 5, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chmielewski, M.; Korczyńska, J.; Śledziński, M.; Czaplińska, M.; Dębska-Ślizień, A.; Mika, A. Contribution of increased expression of stearoyl-CoA desaturase-1 in adipose tissue to serum content of monounsaturated fatty acids in patients with chronic kidney disease. Pol. Arch. Intern. Med. 2019, 129, 641–644. [Google Scholar] [CrossRef]
- Madsen, T.; Christensen, J.H.; Svensson, M.; Witt, P.M.; Toft, E.; Schmidt, E.B. Marine n-3 polyunsaturated fatty acids in patients with end-stage renal failure and in subjects without kidney disease: A comparative study. J. Ren. Nutr. Off. J. Counc. Ren. Nutr. Natl. Kidney Found. 2011, 21, 169–175. [Google Scholar] [CrossRef]
- Sikorska-Wiśniewska, M.; Mika, A.; Śledziński, T.; Małgorzewicz, S.; Stepnowski, P.; Rutkowski, B.; Chmielewski, M. Disorders of serum omega-3 fatty acid composition in dialyzed patients, and their associations with fat mass. Ren. Fail. 2017, 39, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Mika, A.; Stepnowski, P.; Chmielewski, M.; Malgorzewicz, S.; Kaska, L.; Proczko, M.; Ratnicki-Sklucki, K.; Sledzinski, M.; Sledzinski, T. Increased Serum Level of Cyclopropaneoctanoic Acid 2-Hexyl in Patients with Hypertriglyceridemia-Related Disorders. Lipids 2016, 51, 867–873. [Google Scholar] [CrossRef] [Green Version]
- Mika, A.; Sikorska-Wiśniewska, M.; Małgorzewicz, S.; Stepnowski, P.; Dębska-Ślizień, A.; Śledziński, T.; Chmielewski, M. Potential contribution of monounsaturated fatty acids to cardiovascular risk in chronic kidney disease. Pol. Arch. Intern. Med. 2018, 128, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Czumaj, A.; Śledziński, T.; Carrero, J.-J.; Stepnowski, P.; Sikorska-Wisniewska, M.; Chmielewski, M.; Mika, A. Alterations of Fatty Acid Profile May Contribute to Dyslipidemia in Chronic Kidney Disease by Influencing Hepatocyte Metabolism. Int. J. Mol. Sci. 2019, 20, 2470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virtanen, J.K. Dietary polyunsaturated fat intake in coronary heart disease risk. Clin. Lipidol. 2015, 10, 115–117. [Google Scholar] [CrossRef]
- Halcox, J.P. Cardiovascular risk and lipid management beyond statin therapy: The potential role of omega–3 polyunsaturated fatty acid ethyl esters. Clin. Lipidol. 2013, 8, 329–344. [Google Scholar] [CrossRef]
- Calder, P.C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83, 1505S–1519S. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, B.; West, J.A.; Koulman, A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic Acid (c15:0) and heptadecanoic Acid (c17:0) in health and disease. Molecules 2015, 20, 2425–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mika, A.; Stepnowski, P.; Kaska, L.; Proczko, M.; Wisniewski, P.; Sledzinski, M.; Sledzinski, T. A comprehensive study of serum odd- and branched-chain fatty acids in patients with excess weight. Obesity 2016, 24, 1669–1676. [Google Scholar] [CrossRef] [Green Version]
- Eide, I.A.; Reinholt, F.P.; Jenssen, T.; Hartmann, A.; Schmidt, E.B.; Åsberg, A.; Bergan, S.; Brabrand, K.; Svensson, M. Effects of marine n-3 fatty acid supplementation in renal transplantation: A randomized controlled trial. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2019, 19, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Tayebi Khosroshahi, H.; Mousavi Toomatari, S.E.; Akhavan Salamat, S.; Davar Moin, G.; Najafi Khosroshahi, S. Effectiveness of omega-3 supplement on lipid profile and lipid peroxidation in kidney allograft recipients. Nephro-Urol. Mon. 2013, 5, 822–826. [Google Scholar] [CrossRef] [Green Version]
- Sikorska-Wisniewska, M.; Mika, A.; Sledzinski, T.; Czaplinska, M.; Malgorzewicz, S.; Debska-Slizien, A.; Chmielewski, M. Disorders of Serum Polyunsaturated Fatty Acids in Renal Transplant Patients. Transplant. Proc. 2020, 52, 2324–2330. [Google Scholar] [CrossRef]
- Mika, A.; Halinski, L.P.; Sledzinski, T.; Malgorzewicz, S.; Woloszyk, P.; Dardzinska, J.; Debska-Slizien, A.; Chmielewski, M. Analysis of Serum Fatty Acids Profile in Kidney Transplant Recipients. Nutrients 2021, 13, 805. [Google Scholar] [CrossRef]
- Małgorzewicz, S.; Ciechanowski, K.; Kozłowska, L.; Krzanowska, K.; Krzanowski, M.; Kaczkan, M.; Borek, P.; Jankowska, M.; Rutkowski, B.; Dębska-Ślizień, A. Nutrition recommendations in chronic kidney disease—The position of the working group of the Polish Nephrological Society. Ren. Dis. Transplant. Forum 2019, 12, 240–278. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Gai, Z.; Wang, T.; Visentin, M.; Kullak-Ublick, G.A.; Fu, X.; Wang, Z. Lipid Accumulation and Chronic Kidney Disease. Nutrients 2019, 11, 722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mika, A.; Sledzinski, T. Alterations of specific lipid groups in serum of obese humans: A review. Obes. Rev. 2017, 18, 247–272. [Google Scholar] [CrossRef] [PubMed]
- de Bus, I.; Witkamp, R.; Zuilhof, H.; Albada, B.; Balvers, M. The role of n-3 PUFA-derived fatty acid derivatives and their oxygenated metabolites in the modulation of inflammation. Prostaglandins Other Lipid Mediat. 2019, 144, 106351. [Google Scholar] [CrossRef]
- Czumaj, A.; Śledziński, T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020, 12, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oni-Orisan, A.; Alsaleh, N.; Lee, C.R.; Seubert, J.M. Epoxyeicosatrienoic acids and cardioprotection: The road to translation. J. Mol. Cell. Cardiol. 2014, 74, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Brouwers, H.; Jónasdóttir, H.S.; Kuipers, M.E.; Kwekkeboom, J.C.; Auger, J.L.; Gonzalez-Torres, M.; López-Vicario, C.; Clària, J.; Freysdottir, J.; Hardardottir, I.; et al. Anti-Inflammatory and Proresolving Effects of the Omega-6 Polyunsaturated Fatty Acid Adrenic Acid. J. Immunol. Baltim. Md 1950 2020, 205, 2840–2849. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease: Effects on Risk Factors, Molecular Pathways, and Clinical Events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update—American Journal of Kidney Diseases. Available online: https://www.ajkd.org/article/S0272-6386 (accessed on 23 September 2021).
- Mika, A.; Kaska, L.; Korczynska, J.; Mirowska, A.; Stepnowski, P.; Proczko, M.; Ratnicki-Sklucki, K.; Goyke, E.; Sledzinski, T. Visceral and subcutaneous adipose tissue stearoyl-CoA desaturase-1 mRNA levels and fatty acid desaturation index positively correlate with BMI in morbidly obese women. Eur. J. Lipid Sci. Technol. 2015, 117, 926–932. [Google Scholar] [CrossRef]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef] [PubMed]
- Dobrzyn, A.; Ntambi, J.M. The role of stearoyl-CoA desaturase in the control of metabolism. Prostaglandins Leukot. Essent. Fatty Acids 2005, 73, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Stradomska, T.J.; Bachański, M.; Pawłowska, J.; Syczewska, M.; Stolarczyk, A.; Tylki-Szymańska, A. The Impact of a Ketogenic Diet and Liver Dysfunction on Serum Very Long-Chain Fatty Acids Levels. Lipids 2013, 48, 405–409. [Google Scholar] [CrossRef]
- Miyazaki, T.; Shimada, K.; Hiki, M.; Kume, A.; Kitamura, Y.; Oshida, K.; Yanagisawa, N.; Kiyanagi, T.; Matsumori, R.; Daida, H. High hexacosanoic acid levels are associated with coronary artery disease. Atherosclerosis 2014, 233, 429–433. [Google Scholar] [CrossRef]
- Antoku, Y.; Tsukamoto, K.; Miyoshi, Y.; Nagino, H.; Anezaki, M.; Suwa, K.; Narabe, Y. Correlations of elevated levels of hexacosanoate in erythrocyte membranes with risk factors for atherosclerosis. Atherosclerosis 2000, 153, 169–173. [Google Scholar] [CrossRef]
- Borda, B.; Nemes, A.; Lengyel, C.; Várkonyi, T.; Rárosi, F.; Keresztes, C.; Ottlakán, A.; Lázár, G. Risk factors for deterioration of liver functions after successful kidney transplantation. Orv. Hetil. 2019, 160, 186–190. [Google Scholar] [CrossRef]
- Dizdar, O.S.; Ersoy, A.; Aksoy, S.; Ozel Coskun, B.D.; Yildiz, A. Analysis of liver function test abnormalities in kidney transplant recipients: 7 year experience. Pak. J. Med. Sci. 2016, 32, 1330–1335. [Google Scholar] [CrossRef]
- Ammirati, A.L. Chronic Kidney Disease. Rev. Assoc. Médica Bras. 2020, 66, s03–s09. [Google Scholar] [CrossRef]
- Slee, A.D. Exploring metabolic dysfunction in chronic kidney disease. Nutr. Metab. 2012, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Wiebe, N.; Knoll, G.; Bello, A.; Browne, S.; Jadhav, D.; Klarenbach, S.; Gill, J. Systematic Review: Kidney Transplantation Compared With Dialysis in Clinically Relevant Outcomes. Am. J. Transplant. 2011, 11, 2093–2109. [Google Scholar] [CrossRef] [PubMed]
Pre KTx | 3 m Post KTx | p | Reference Value | |
---|---|---|---|---|
n = 35 | n = 35 | |||
Age | 49.9 ± 2.41 | |||
Sex | M: 19 F: 16 | |||
BMI (kg/m2) | 26.1 ± 0.56 | 26.0 ± 0.53 | NS | 18.5–24.9 |
laboratory tests | ||||
Hemoglobin (g/dL) | 11.0 ± 0.24 | 12.3 ± 0.32 | <0.05 | 13.0–17.0 |
eGFR-CKD (mL/min/1.73 m2) | 8.06 ± 0.53 | 49.0 ± 2.38 | <0.05 | >60 |
BUN (mg/dL) | 43.8 ± 1.98 | 28.0 ± 1.98 | <0.05 | 8.9–20.6 |
CRP (mg/L) | 8.99 ± 1.80 | 2.60 ± 0.96 | <0.05 | 0.0–5.0 |
Glucose (mg/dL) | 106 ± 7.13 | 112 ± 6.26 | NS | 70–99 |
Creatinine (mg/dL) | 7.59 ± 0.45 | 1.54 ± 0.07 | <0.05 | 0.7–1.3 |
Albumin (g/L) | 35.3 ± 0.97 | 37.7 ± 1.42 | NS | 35–50 |
Sodium (mmol/L) | 140 ± 0.47 | 140 ± 0.39 | NS | 136–145 |
Potassium (mmol/L) | 4.56 ± 0.11 | 4.36 ± 0.07 | NS | 3.5–5.1 |
ALT (U/L) | 17.7 ± 1.49 | 25.7 ± 2.87 | NS | <55 |
AST (U/L) | 18.4 ± 1.34 | 29.2 ± 8.92 | NS | 5–34 |
TG (mg/dL) | 251 ± 42.1 | 202 ± 22.2 | NS | <150 |
CHOL (mg/dL) | 205 ± 12.3 | 233 ± 8.71 | <0.05 | 115–190 |
immunosuppressive drugs | ||||
MP + Tc + MM | n = 15 | |||
MP + Cc + MM | n = 2 | |||
MP + Tc | n = 1 | |||
MP + Cc + MM + Ba | n = 1 | |||
MP + Tc + MM + Ba | n = 8 | |||
MP + Tc + MM + Th | n = 8 | |||
renal replacement therapy before KTx | ||||
PreEmptive | n = 3 | |||
Peritoneal Dialysis | n = 3 | |||
Hemodialysis | n = 29 | |||
Delayed Graft Function | n = 6 |
PreKTx | 3 m Post KTx | p | |
---|---|---|---|
16:2n-6 | 0.011 ± 0.004 | 0.012 ± 0.004 | 0.423 |
18:2n-6 (LA) | 24.1 ± 3.89 | 25.4 ± 3.46 | 0.020 |
20:2n-6 | 0.12 ± 0.04 | 0.14 ± 0.04 | 0.123 |
20:3n-6 (DGLA) | 1.20 ± 0.40 | 0.87 ± 0.32 | <0.001 |
20:4n-6 (ARA) | 6.33 ± 1.39 | 5.15 ± 1.07 | <0.001 |
22:4n-6 (AdA) | 0.16 ± 0.04 | 0.13 ± 0.04 | <0.001 |
18:3n-3 (ALA) | 0.29 ± 0.13 | 0.24 ± 0.16 | 0.094 |
20:4n-3 (ETA) | 0.078 ± 0.023 | 0.061 ± 0.030 | <0.001 |
20:5n-3 (EPA) | 0.74 ± 0.25 | 0.73 ± 0.43 | 0.916 |
22:5n-3 (DPA) | 0.44 ± 0.10 | 0.38 ± 0.08 | 0.007 |
22:6n-3 (DHA) | 1.51 ± 0.51 | 1.24 ± 0.45 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śledziński, M.; Hliwa, A.; Gołębiewska, J.; Mika, A. The Impact of Kidney Transplantation on the Serum Fatty Acid Profile in Patients with End-Stage Kidney Disease. Nutrients 2022, 14, 772. https://doi.org/10.3390/nu14040772
Śledziński M, Hliwa A, Gołębiewska J, Mika A. The Impact of Kidney Transplantation on the Serum Fatty Acid Profile in Patients with End-Stage Kidney Disease. Nutrients. 2022; 14(4):772. https://doi.org/10.3390/nu14040772
Chicago/Turabian StyleŚledziński, Maciej, Aleksandra Hliwa, Justyna Gołębiewska, and Adriana Mika. 2022. "The Impact of Kidney Transplantation on the Serum Fatty Acid Profile in Patients with End-Stage Kidney Disease" Nutrients 14, no. 4: 772. https://doi.org/10.3390/nu14040772
APA StyleŚledziński, M., Hliwa, A., Gołębiewska, J., & Mika, A. (2022). The Impact of Kidney Transplantation on the Serum Fatty Acid Profile in Patients with End-Stage Kidney Disease. Nutrients, 14(4), 772. https://doi.org/10.3390/nu14040772