Magnesium Nutritional Status, Risk Factors, and the Associations with Glucose Parameters of Childbearing Women in the China Adult Chronic Disease and Nutrition Surveillance (2015)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Basic Information and Sample Collection
2.3. Plasma Mg and Laboratory Index Detection and Evaluation Standards
2.4. SNP Selection and Detection
2.5. Data Analyses
3. Results
3.1. Plasma Magnesium Concentrations of 1895 Childbearing Women
3.2. Comparison of Mg Status among Different Groups in 1895 Subjects
3.3. Multivariate Logistic Regression Model for Risk Factors Associated with Mg Deficiency
3.4. Associations of Plasma Magnesium Concentration with Glucose Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Schwalfenberg, G.K.; Genuis, S.J. The Importance of Magnesium in Clinical Healthcare. Scientifica 2017, 2017, 4179326. [Google Scholar] [CrossRef] [PubMed]
- Caspi, R.; Altman, T.; Dreher, K.; Fulcher, C.A.; Subhraveti, P.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Mueller, L.A.; et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2011, 40, D742–D753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leenders, N.H.J.; Vervloet, M.G. Magnesium: A Magic Bullet for Cardiovascular Disease in Chronic Kidney Disease? Nutrients 2019, 11, 455. [Google Scholar] [CrossRef] [Green Version]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiger, H.; Wanner, C. Magnesium in disease. Clin. Kidney J. 2012, 5, i25–i38. [Google Scholar] [CrossRef]
- Cotruvo, J.E.; Bartram, J. Calcium and Magnesium in Drinking-Water; World Health Organization: Geneva, Switzerland, 2009; pp. 1–194. Available online: http://apps.who.int/iris/bitstream/handle/10665/43836/9789241563550_eng.pdf;jsessionid=D351ABBE791C3A84AAF8C2BD7DD12C2D?sequence=1 (accessed on 10 January 2022).
- Dalton, L.M.; Fhloinn, D.M.N.; Gaydadzhieva, G.T.; Mazurkiewicz, O.M.; Leeson, H.; Wright, C.P. Magnesium in pregnancy. Nutr. Rev. 2016, 74, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Pham, P.C.; Pham, P.M.; Pham, P.A.; Pham, S.V.; Pham, H.V.; Miller, J.M.; Yanagawa, N.; Pham, P.T. Lower serum magnesium levels are associated with more rapid decline of renal function in patients with diabetes mellitus type 2. Clin. Nephrol. 2005, 63, 429–436. [Google Scholar] [CrossRef]
- Ramadass, S.; Basu, S.; Srinivasan, A.R. SERUM magnesium levels as an indicator of status of Diabetes Mellitus type 2. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 42–45. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; Ding, G. China Nutrition and Health Surveys (1982–2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef]
- Classification of Diabetes Mellitus; World Health Organization: Geneva, Switzerland, 2019; Volume 21, pp. 1–13.
- Costello, R.B.; Elin, R.J.; Rosanoff, A.; Wallace, T.C.; Guerrero-Romero, F.; Hruby, A.; Lutsey, P.L.; Nielsen, F.H.; Rodriguez-Moran, M.; Song, Y.; et al. Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Adv. Nutr. 2016, 7, 977–993. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jin, X.; Liu, J.; Sun, T.; Xie, M.; Bao, W.; Yu, X.; Yang, X.; Zhang, Y.; Zhang, H.; et al. Association of Plasma Magnesium with Prediabetes and Type 2 Diabetes Mellitus in Adults. Sci. Rep. 2017, 7, 12763. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Ridker, P.M.; Manson, J.E.; Cook, N.R.; Buring, J.E.; Liu, S. Magnesium intake, C-reactive protein, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care 2005, 28, 1438–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, Y.; Ismail, A.A.; Ismail, A.A. The underestimated problem of using serum magnesium measurements to exclude magnesium deficiency in adults; a health warning is needed for “normal” results. Clin. Chem. Lab. Med. 2010, 48, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Liebscher, D.-E.; Liebscher, D.H. About the Misdiagnosis of Magnesium Deficiency. J. Am. Coll. Nutr. 2004, 23, 730S–731S. [Google Scholar] [CrossRef] [PubMed]
- Schimatschek, H.F.; Rempis, R. Prevalence of hypomagnesemia in an unselected German population of 16,000 individuals. Magnes. Res. 2001, 14, 283–290. Available online: https://pubmed.ncbi.nlm.nih.gov/11794636/ (accessed on 15 January 2022). [PubMed]
- Čabarkapa, V.; Đerić, M.; Todorović, M.; Sudji, J.; Ilinčić, B.; Trifu, A.; Davidović, S. Hypomagnesemia in adults of northern Serbia: Prevalence, nutritional risk factors, and associated comorbidities. Magnes. Res. 2019, 32, 25–36. [Google Scholar] [CrossRef]
- Mikhail, N.; Ehsanipoor, K. Ionized Serum Magnesium in Type 2 Diabetes Mellitus: Its correlation with total serum magnesium and hemoglobin A1c levels. South. Med. J. 1999, 92, 1162–1166. [Google Scholar] [CrossRef]
- Cottrell, J.N.; Thomas, D.S.; Mitchell, B.L.; Childress, J.E.; Dawley, D.M.; Harbrecht, L.E.; Jude, D.A.; Valentovic, M.A. Rural and urban differences in prenatal exposure to essential and toxic elements. J. Toxicol. Environ. Health-Part A Curr. Issues 2018, 81, 1214–1223. [Google Scholar] [CrossRef]
- Djurhuus, M.; Skøtt, P.; Hother-Nielsen, O.; Klitgaard, N.; Beck-Nielsen, H. Insulin Increases Renal Magnesium Excretion: A Possible Cause of Magnesium Depletion in Hyperinsulinaemic States. Diabet. Med. 1995, 12, 664–669. [Google Scholar] [CrossRef]
- Agus, Z.S. Mechanisms and causes of hypomagnesemia. Curr. Opin. Nephrol. Hypertens. 2016, 25, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Djurhuus, M.; Klitgaard, N.; Pedersen, K.; Blaabjerg, O.; Altura, B.; Henriksen, J. Magnesium reduces insulin-stimulated glucose uptake and serum lipid concentrations in type 1 diabetes. Metabolism 2001, 50, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Hruby, A.; Ngwa, J.S.; Renström, F.; Wojczynski, M.K.; Ganna, A.; Hallmans, G.; Houston, D.K.; Jacques, P.F.; Kanoni, S.; Lehtimäki, T.; et al. Higher Magnesium Intake Is Associated with Lower Fasting Glucose and Insulin, with No Evidence of Interaction with Select Genetic Loci, in a Meta-Analysis of 15 CHARGE Consortium Studies. J. Nutr. 2013, 143, 345–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckett, A.G.; Lewis, J.G. Serum magnesium in diabetes mellitus. Clin. Sci. 1959, 18, 597–604. Available online: https://pubmed.ncbi.nlm.nih.gov/13798140/ (accessed on 13 January 2022).
- Song, C.H.; Song, I.K.; Ju, S.Y.; Ock, S.M. Serum Magnesium Level is Negatively Associated with Fasting Serum Glucose Level in Korean Adults. Biol. Trace Element Res. 2011, 143, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Rascón-Pacheco, R.A.; Rodríguez-Morán, M.; de la Peña, J.E.; Wacher, N. Hypomagnesaemia and risk for metabolic glucose disorders: A 10-year follow-up study. Eur. J. Clin. Investig. 2008, 38, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Simental-Mendía, L.; Hernández-Ronquillo, G.; Rodriguez-Morán, M. Oral magnesium supplementation improves glycaemic status in subjects with prediabetes and hypomagnesaemia: A double-blind placebo-controlled randomized trial. Diabetes Metab. 2015, 41, 202–207. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Sahebkar, A.; Rodríguez-Morán, M.; Guerrero-Romero, F. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol. Res. 2016, 111, 272–282. [Google Scholar] [CrossRef]
Characteristics | N | Median | P25 | P75 | F (t) | p Value | |
---|---|---|---|---|---|---|---|
Total | 1895 | 0.87 | 0.82 | 0.92 | |||
Age group | 18–25 years | 656 | 0.87 | 0.82 | 0.92 | 2.367 | 0.094 |
26–35 years | 645 | 0.87 | 0.83 | 0.92 | |||
36–44 years | 594 | 0.88 | 0.83 | 0.93 | |||
District | Eastern | 627 | 0.88 | 0.82 | 0.93 | 4.022 | 0.018 |
Central | 677 | 0.87 | 0.82 | 0.91 | |||
Western | 591 | 0.88 | 0.83 | 0.92 | |||
City-type | City | 771 | 0.87 | 0.83 | 0.93 | 1.782 | 0.075 |
Rural | 1124 | 0.87 | 0.82 | 0.92 | |||
Nationality | Han | 1669 | 0.87 | 0.83 | 0.92 | 1.433 | 0.152 |
Ethnic minorities | 226 | 0.87 | 0.82 | 0.91 | |||
BMI | Thin | 145 | 0.88 | 0.84 | 0.93 | 1.925 | 0.123 |
Normal | 1062 | 0.88 | 0.83 | 0.92 | |||
Overweight | 477 | 0.87 | 0.83 | 0.92 | |||
Obesity | 211 | 0.86 | 0.81 | 0.92 | |||
Education | Primary | 479 | 0.88 | 0.83 | 0.92 | 2.774 | 0.063 |
Medium | 1092 | 0.87 | 0.82 | 0.92 | |||
Advanced | 324 | 0.88 | 0.84 | 0.93 | |||
Drink | Yes | 1495 | 0.88 | 0.82 | 0.92 | 0.943 | 0.346 |
No | 400 | 0.87 | 0.83 | 0.91 | |||
CNNM2 rs3740393 | GG | 984 | 0.87 | 0.82 | 0.91 | 5.883 | 0.003 |
GC | 777 | 0.88 | 0.83 | 0.92 | |||
CC | 134 | 0.88 | 0.84 | 0.94 |
Characteristics | Deficiency (Mg < 0.75 mmol/L) | Insufficiency (0.85 mmol/L > Mg ≥ 0.75 mmol/L) | Sufficiency (Mg ≥ 0.85 mmol/L) | p-Value | ||||
---|---|---|---|---|---|---|---|---|
% | 95% CI | % | 95% CI | % | 95% CI | |||
Total | 4.69 | 3.74–5.65 | 33.09 | 30.97–35.21 | 62.22 | 60.03–64.40 | <0.001 | |
Age group | 18–25 years | 5.95 | 4.13–7.76 | 34.30 | 30.66–37.93 | 59.76 | 56–63.51 | 0.306 |
26–35 years | 4.19 | 2.64–5.73 | 32.40 | 28.79–36.02 | 63.41 | 59.69–67.13 | ||
36–44 years | 3.87 | 2.32–5.43 | 32.49 | 28.72–36.26 | 63.64 | 59.76–67.51 | ||
District | Eastern | 3.99 | 2.45–5.52 | 32.22 | 28.56–35.88 | 63.80 | 60.03–67.56 | 0.118 |
Central | 5.76 | 4–7.52 | 35.75 | 32.13–39.36 | 58.49 | 54.78–62.21 | ||
Western | 4.23 | 2.61–5.85 | 30.96 | 27.23–34.7 | 64.81 | 60.95–68.66 | ||
City-type | City | 3.37 | 2.1–4.65 | 32.43 | 29.12–35.73 | 64.20 | 46.93–51.44 | 0.054 |
Rural | 5.61 | 4.26–6.95 | 33.54 | 30.78–36.3 | 60.85 | 11.52–14.55 | ||
Nationality | Han | 4.73 | 3.71–5.75 | 33.07 | 30.81–35.33 | 62.19 | 59.86–64.52 | 0.979 |
Ethnic minorities | 4.42 | 1.74–7.11 | 33.19 | 27.04–39.33 | 62.39 | 56.07–68.71 | ||
BMI | Thin | 4.83 | 1.34–8.32 | 25.52 | 18.41–32.62 | 69.66 | 62.17–77.15 | 0.197 |
Normal | 4.52 | 3.27–5.77 | 32.20 | 29.39–35.02 | 63.28 | 60.38–66.18 | ||
Overweight | 4.82 | 2.9–6.75 | 34.80 | 30.52–39.08 | 60.38 | 55.98–64.77 | ||
Obesity | 5.21 | 2.21–8.22 | 38.86 | 32.28–45.45 | 55.92 | 49.22–62.63 | ||
Education | Primary | 4.59 | 2.72–6.47 | 31.94 | 27.76–36.12 | 63.47 | 59.15–67.78 | 0.251 |
Medium | 5.04 | 3.74–6.33 | 34.71 | 31.88–37.53 | 60.26 | 57.35–63.16 | ||
Advanced | 3.70 | 1.65–5.76 | 29.32 | 24.36–34.28 | 66.98 | 61.85–72.1 | ||
Drink | Yes | 4.82 | 3.73–5.9 | 32.84 | 30.46–35.23 | 62.34 | 59.88–64.8 | 0.835 |
No | 4.25 | 2.27–6.23 | 34.00 | 29.35–38.65 | 61.75 | 56.98–66.52 | ||
CNNM2 rs3740393 | GG | 5.69 | 4.24–7.14 | 34.65 | 31.68–37.63 | 59.65 | 56.59–62.72 | 0.063 |
GC | 3.73 | 2.4–5.07 | 31.92 | 28.64–35.2 | 64.35 | 60.98–67.72 | ||
CC | 2.99 | 0.1–5.87 | 28.36 | 20.72–36 | 68.66 | 60.8–76.52 |
Variables | β | OR | 95% CI | p-Value | |
---|---|---|---|---|---|
BMI (kg/m2) | 0.03 | 1.04 | (0.96–1.11) | 0.334 | |
CRP (mg/L) | −0.04 | 0.97 | (0.87–1.08) | 0.517 | |
Ca (mmol/L) | −5.13 | 0.01 | (0.00–0.02) | 0.001 | |
Blood Pressure (mmHg) | SBP | 0.01 | 1.00 | (0.98–1.03) | 0.753 |
DBP | 0.01 | 1.01 | (0.97–1.05) | 0.568 | |
Lipid (mmol/L) | TC | 0.67 | 1.94 | (0.78–4.83) | 0.152 |
Tg | 0.05 | 1.05 | (0.77–1.44) | 0.748 | |
HDL-C | −0.01 | 0.99 | (0.30–3.32) | 0.990 | |
LDL-C | −1.06 | 0.35 | (0.14–0.87) | 0.024 | |
Blood glucose | Glucose (mmol/L) | 0.47 | 1.61 | (1.31–1.97) | 0.001 |
HbA1c (%) | −0.20 | 0.82 | (0.57–1.19) | 0.295 | |
Age group | 18–25 years | 1 | 1 | ||
26–35 years | −0.70 | 0.50 | (0.28–0.88) | 0.016 | |
36–44 years | −0.88 | 0.41 | (0.22–0.78) | 0.006 | |
District | Eastern | 1 | 1 | ||
Central | 0.39 | 1.48 | (0.84–2.63) | 0.177 | |
Western | 0.29 | 1.34 | (0.70–2.54) | 0.374 | |
City-type | City | 1 | 1 | ||
Rural | 0.57 | 1.78 | (1.01–3.11) | 0.045 | |
Drink | Yes | −0.12 | 0.89 | (0.49–1.61) | 0.703 |
No | 1 | 1 | |||
Nationality | Han | 1 | 1 | ||
Ethnic minorities | −0.11 | 0.90 | (0.43–1.90) | 0.782 | |
Education | Primary | 1 | 1 | ||
Medium | 0.06 | 1.06 | (0.59–1.91) | 0.850 | |
Advanced | 0.12 | 1.13 | (0.47–2.70) | 0.787 | |
CNNM2 rs3740393 | GG | 1 | 1 | ||
GC | −0.57 | 0.56 | (0.34–0.94) | 0.027 | |
CC | −0.66 | 0.52 | (0.17–1.60) | 0.253 |
Variables | Plasma Mg Concentrations (mmol/L) | p Trend | Per 1 mg/L of Mg | p-Value | ||
---|---|---|---|---|---|---|
<0.75 | 0.75–0.85 | ≥0.85 | ||||
T2DM | ||||||
Model 1 | 6.75 (2.83–16.11) | 1.68 (0.83–3.38) | Reference | 0.001 | 0.74 (0.62–0.88) | 0.001 |
Model 2# | 6.53 (2.62–16.28) | 1.65 (0.80–3.39) | Reference | 0.001 | 0.76 (0.65–0.90) | 0.002 |
Glucose-hyperglycemia | ||||||
Model 1 | 4.02 (1.98–8.13) | 1.18 (0.71–1.97) | Reference | 0.002 | 0.86 (0.76–0.98) | 0.023 |
Model 2* | 5.31 (2.35–11.99) | 1.31 (0.75–2.28) | Reference | 0.001 | 0.88 (0.77–0.99) | 0.006 |
HbA1c-hyperglycemia | ||||||
Model 1 | 7.68 (2.77–21.27) | 1.37 (0.56–3.43) | Reference | 0.001 | 0.73 (0.58–0.91) | 0.004 |
Model 2& | 9.60 (2.96–31.09) | 1.29 (0.48–3.55) | Reference | 0.001 | 0.72 (0.57–0.91) | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Cao, Y.; Man, Q.; Li, Y.; Jia, S.; Wang, R.; Lu, J.; Yang, L. Magnesium Nutritional Status, Risk Factors, and the Associations with Glucose Parameters of Childbearing Women in the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients 2022, 14, 847. https://doi.org/10.3390/nu14040847
Zhang H, Cao Y, Man Q, Li Y, Jia S, Wang R, Lu J, Yang L. Magnesium Nutritional Status, Risk Factors, and the Associations with Glucose Parameters of Childbearing Women in the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients. 2022; 14(4):847. https://doi.org/10.3390/nu14040847
Chicago/Turabian StyleZhang, Huidi, Yang Cao, Qingqing Man, Yuqian Li, Shanshan Jia, Rui Wang, Jiaxi Lu, and Lichen Yang. 2022. "Magnesium Nutritional Status, Risk Factors, and the Associations with Glucose Parameters of Childbearing Women in the China Adult Chronic Disease and Nutrition Surveillance (2015)" Nutrients 14, no. 4: 847. https://doi.org/10.3390/nu14040847
APA StyleZhang, H., Cao, Y., Man, Q., Li, Y., Jia, S., Wang, R., Lu, J., & Yang, L. (2022). Magnesium Nutritional Status, Risk Factors, and the Associations with Glucose Parameters of Childbearing Women in the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients, 14(4), 847. https://doi.org/10.3390/nu14040847