Lutein and Zeaxanthin Intake during Pregnancy and Visual Function in Offspring at 11–12 Years of Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Variables—Lutein and Zeaxanthin Estimation
2.3. Outcome Variables—Visual Acuity and Contrast Sensitivity
2.4. Covariates
2.5. Statistical Analysis and Model Selection
2.6. Ethical Clearance
3. Results
3.1. Cohort Profile
3.2. Lutein and Zeaxanthin Intake during Pregnancy and Visual Function
3.3. Effect Modification
4. Discussion
4.1. Summary
4.2. Context
4.3. Strengths and Limitations
4.3.1. Study Design
4.3.2. Exposure Estimation
4.3.3. Visual Function Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stephenson, J.; Heslehurst, N.; Hall, J.; Schoenaker, D.A.J.M.; Hutchinson, J.; Cade, J.E.; Poston, L.; Barrett, G.; Crozier, S.R.; Barker, M.; et al. Before the beginning: Nutrition and lifestyle in the preconception period and its importance for future health. Lancet 2018, 391, 1830–1841. [Google Scholar] [CrossRef]
- Hossin, M.Z.; Björk, J.; Koupil, I. Early-life social and health determinants of adult socioeconomic position: Associations and trends across generations. J. Epidemiol. Community Health 2020, 74, 412–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gluckman, P.D.; Hanson, M.; Cooper, C.; Thornburg, K. Effect of In Utero and Early-Life Conditions on Adult Health and Disease. N. Engl. J. Med. 2008, 359, 61–73. Available online: https://pubmed.ncbi.nlm.nih.gov/18596274/ (accessed on 6 May 2021). [CrossRef] [PubMed] [Green Version]
- Marmot, M. Social determinants of health inequalities. Lancet 2005, 365, 1099–1104. [Google Scholar] [CrossRef]
- Thomson, K.; Hillier-Brown, F.; Todd, A.; McNamara, C.; Huijts, T.; Bambra, C. The effects of public health policies on health inequalities in high-income countries: An umbrella review. BMC Public Health 2018, 18, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Lee, J.C.-Y.; Leung, H.H.; Lam, W.C.; Fu, Z.; Lo, A.C.Y. Lutein Supplementation for Eye Diseases. Nutrients 2020, 12, 1721. [Google Scholar] [CrossRef]
- Thoene, M.; Anderson-Berry, A.; Van Ormer, M.; Furtado, J.; Soliman, G.A.; Goldner, W.; Hanson, C. Quantification of Lutein + Zeaxanthin Presence in Human Placenta and Correlations with Blood Levels and Maternal Dietary Intake. Nutrients 2019, 11, 134. [Google Scholar] [CrossRef] [Green Version]
- Zielinska, M.A.; Hamulka, J.; Grabowicz-Chądrzyńska, I.; Bryś, J.; Wesolowska, A. Association between Breastmilk LC PUFA, Carotenoids and Psychomotor Development of Exclusively Breastfed Infants. Int. J. Environ. Res. Public Health 2019, 16, 1144. [Google Scholar] [CrossRef] [Green Version]
- Curran-Celentano, J.; Hammond, B.R.; Ciulla, T.A.; Cooper, D.A.; Pratt, L.M.; Danis, R.B. Relation between dietary intake, serum concentrations, and retinal concentrations of lutein and zeaxanthin in adults in a Midwest population. Am. J. Clin. Nutr. 2001, 74, 796–802. [Google Scholar] [CrossRef]
- Zimmer, J.P.; Hammond, B.R. Possible influences of lutein and zeaxanthin on the developing retina. Clin. Ophthalmol. 2007, 1, 25–35. [Google Scholar]
- Hendrickson, A. Development of Retinal Layers in Prenatal Human Retina. Am. J. Ophthalmol. 2015, 161, 29–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, E.; Quadro, L. Lutein, zeaxanthin and mammalian development: Metabolism, functions and implications for health. Arch. Biochem. Biophys. 2018, 647, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, A.; Possin, D.; Vajzovic, L.; Toth, C.A. Histologic Development of the Human Fovea From Midgestation to Maturity. Am. J. Ophthalmol. 2012, 154, 767–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, P.S.; Arunkumar, R. The emerging roles of the macular pigment carotenoids throughout the lifespan and in prenatal supplementation. J. Lipid Res. 2021, 62, 100038. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.M.; Power, R.; Stringham, J.; Dennison, J.; Stack, J.; Kelly, D.; Moran, R.; Akuffo, K.; Corcoran, L.; Beatty, S. Enrichment of Macular Pigment Enhances Contrast Sensitivity in Subjects Free of Retinal Disease: Central Retinal Enrichment Supplementation Trials—Report 1. Investig. Opthalmol. Vis. Sci. 2016, 57, 3429–3439. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Akhtar, H.; Zaheer, K.; Ali, R. Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health. Nutrients 2013, 5, 1169–1185. [Google Scholar] [CrossRef] [Green Version]
- Ebneter, A.; Wolf, S.; Zinkernagel, M.; Munk, M.R.; Wolf-Schnurrbusch, U. Oral Lutein Supplementation Enhances Macular Pigment Density and Contrast Sensitivity but Not in Combination With Polyunsaturated Fatty Acids. Investig. Ophthalmol. Vis. Sci. 2015, 56, 8069–8074. [Google Scholar] [CrossRef]
- Connor, W.E.; Bezzerides, E.; Wang, Y.; Connor, S.L. The depletion of maternal stores of lutein and zeaxanthin during pregnancy and lactation. FASEB J. 2008, 22, 313–318. [Google Scholar] [CrossRef]
- Lai, J.S.; Veetil, V.O.; Lanca, C.; Lee, B.L.; Godfrey, K.M.; Gluckman, P.D.; Shek, L.P.; Yap, F.; Tan, K.H.; Chong, Y.S.; et al. Maternal Lutein and Zeaxanthin Concentrations in Relation to Offspring Visual Acuity at 3 Years of Age: The GUSTO Study. Nutrients 2020, 12, 274. [Google Scholar] [CrossRef] [Green Version]
- Gunvant Davey, P.; Henderson, T.; Lem, D.W.; Weis, R.; Amonoo-Monney, S.; Evans, D.W. Visual function and macular carotenoid changes in eyes with retinal drusen—an open label randomized controlled trial to compare a micronized lipid-based carotenoid liquid supplementation and areds-2 formula. Nutrients 2020, 12, 3271. [Google Scholar] [CrossRef]
- Guxens, M.; Ballester, F.; Espada, M.; Fernández, M.F.; Grimalt, J.O.; Ibarluzea, J.; Olea, N.; Rebagliato, M.; Tardon, A.; Torrent, M.; et al. Cohort Profile: The INMA—INfancia y Medio Ambiente—(Environment and Childhood) Project. Int. J. Epidemiol. 2012, 41, 930–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and Validity of A Semiquantitative Food Frequency Questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Vioque, J.; Navarrete-Muñoz, E.-M.; Gimenez-Monzó, D.; García-De-La-Hera, M.; Granado, F.; Young, I.S.; Ramón, R.; Ballester, F.; Murcia, M.; Rebagliato, M.; et al. Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr. J. 2013, 12, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Department of Agriculture. Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference. In USDA National Nutrient Database for Standard Reference; United States Department of Agriculture: Washington, DC, USA, 2014. [Google Scholar]
- Imma Palma, D.; Farran, A.; Pilar Cervera, S. Tablas de composición de alimentos por medidas caseras de consumo habitual en España. Act Dietética 2008, 12, 85. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65 (Suppl. S4), 1220S–1228S. [Google Scholar] [CrossRef]
- Bach, M. The Freiburg Visual Acuity Test—Automatic Measurement of Visual Acuity. Optom. Vis. Sci. 1996, 73, 49–53. [Google Scholar] [CrossRef]
- Bartholomew, A.J.; Lad, E.M.; Cao, D.; Bach, M.; Cirulli, E.T. Individual Differences in Scotopic Visual Acuity and Contrast Sensitivity: Genetic and Non-Genetic Influences. PLoS ONE 2016, 11, e0148192. [Google Scholar] [CrossRef]
- Solebo, A.; Rahi, J. Epidemiology, aetiology and management of visual impairment in children. Arch. Dis. Child. 2013, 99, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Mao, G.Y.; Vasudevan, B.; Jin, Z.B.; Ciuffreda, K.J.; Jhanji, V.; Zhou, H.J.; Wang, N.L.; Liang, Y.B. The Association between Maternal Reproductive Age and Progression of Refractive Error in Urban Students in Beijing. PLoS ONE 2015, 10, e0139383. [Google Scholar] [CrossRef] [Green Version]
- Mocanu, V.; Horhat, R. Prevalence and Risk Factors of Amblyopia among Refractive Errors in an Eastern European Population. Medicina 2018, 54, 6. [Google Scholar] [CrossRef] [Green Version]
- Nickels, S.; Hopf, S.; Pfeiffer, N.; Schuster, A.K. Myopia is associated with education: Results from NHANES 1999–2008. PLoS ONE 2019, 14, e0211196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, P. Occupational classification (ISCO-88): Concepts, methods, reliability, validity and cross-national comparability. In OECD Labour Market and Social Policy Occasional Papers; OECD: Paris, France, 1997; pp. 1–22. Available online: http://www.oecd-ilibrary.org/docserver/download/5lgsjhvj7td8.pdf?expires=1435778178&id=id&accname=guest&checksum=148FE36035112A2E7BF73D08530324F0%5Cnhttp://ideas.repec.org/p/oec/elsaaa/20-en.html%5Cn/content/workingpaper/304441717388%5Cn (accessed on 4 May 2021).
- Shirzadeh, E.; Kooshki, A.; Mohammadi, M. The Relationship Between Breastfeeding and Measurements of Refraction and Visual Acuity in Primary School Children. Breastfeed. Med. 2016, 11, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Owen, C.G.; Oken, E.; Rudnicka, A.; Patel, R.; Thompson, J.; Rifas-Shiman, S.L.; Vilchuck, K.; Bogdanovich, N.; Hameza, M.; Kramer, M.S.; et al. The Effect of Longer-Term and Exclusive Breastfeeding Promotion on Visual Outcome in Adolescence. Investig. Opthalmol. Vis. Sci. 2018, 59, 2670–2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julvez, J.; Guxens, M.; Carsin, A.-E.; Forns, J.; Mendez, M.; Turner, M.C.; Sunyer, J. A cohort study on full breastfeeding and child neuropsychological development: The role of maternal social, psychological, and nutritional factors. Dev. Med. Child Neurol. 2013, 56, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Jacques, C.; Levy, E.; Muckle, G.; Jacobson, S.W.; Bastien, C.; Dewailly, E.; Ayotte, P.; Jacobson, J.L.; Saint-Amour, D. Long-Term Effects of Prenatal Omega-3 Fatty Acid Intake on Visual Function in School-Age Children. J. Pediatr. 2011, 158, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Textor, J.; van der Zander, B.; Gilthorpe, M.S.; Liśkiewicz, M.; Ellison, G.T. Robust causal inference using directed acyclic graphs: The R package “dagitty”. Int. J. Epidemiol. 2016, 45, 1887–1894. Available online: https://pubmed.ncbi.nlm.nih.gov/28089956/ (accessed on 8 May 2021). [CrossRef] [Green Version]
- Perrone, S.; Tei, M.; Longini, M.; Santacroce, A.; Turrisi, G.; Proietti, F.; Felici, C.; Picardi, A.; Bazzini, F.; Vasarri, P.; et al. Lipid and Protein Oxidation in Newborn Infants after Lutein Administration. Oxid. Med. Cell. Longev. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gazzolo, D.; Picone, S.; Gaiero, A.; Bellettato, M.; Montrone, G.; Riccobene, F.; Lista, G.; Pellegrini, G. Early Pediatric Benefit of Lutein for Maturing Eyes and Brain—An Overview. Nutrients 2021, 13, 3239. [Google Scholar] [CrossRef]
- Rubin, L.P.; Chan, G.M.; Barrett-Reis, B.M.; Fulton, A.B.; Hansen, R.M.; Ashmeade, T.L.; Oliver, J.S.; Mackey, A.D.; Dimmit, R.A.; Hartmann, E.E.; et al. Effect of carotenoid supplementation on plasma carotenoids, inflammation and visual development in preterm infants. J. Perinatol. 2012, 32, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Keegan, G.; Pardhan, S.; Chichger, H. Lutein and zeaxanthin attenuates VEGF-induced neovascularisation in human retinal microvascular endothelial cells through a Nox4-dependent pathway. Exp. Eye Res. 2020, 197, 108104. [Google Scholar] [CrossRef]
- Cota, F.; Costa, S.; Giannantonio, C.; Purcaro, V.; Catenazzi, P.; Vento, G. Lutein supplementation and retinopathy of prematurity: A meta-analysis. J. Matern. Neonatal Med. 2022, 35, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Obana, A.; Gohto, Y.; Nakazawa, R.; Moriyama, T.; Gellermann, W.; Bernstein, P.S. Effect of an antioxidant supplement containing high dose lutein and zeaxanthin on macular pigment and skin carotenoid levels. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Bovier, E.R.; Renzi, L.M.; Hammond, B.R. A Double-Blind, Placebo-Controlled Study on the Effects of Lutein and Zeaxanthin on Neural Processing Speed and Efficiency. PLoS ONE 2014, 9, e108178. [Google Scholar] [CrossRef] [PubMed]
- Bovier, E.R.; Hammond, B.R. A randomized placebo-controlled study on the effects of lutein and zeaxanthin on visual processing speed in young healthy subjects. Arch. Biochem. Biophys. 2015, 572, 54–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Lin, X.-M.; Zou, Z.; Xu, X.-R.; Li, Y.; Xu, R. A 12-week lutein supplementation improves visual function in Chinese people with long-term computer display light exposure. Br. J. Nutr. 2009, 102, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Molloy, C.S.; Stokes, S.; Makrides, M.; Collins, C.T.; Anderson, P.J.; Doyle, L.W. Long-term effect of high-dose supplementation with DHA on visual function at school age in children born at <33 wk gestational age: Results from a follow-up of a randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 268–275. [Google Scholar] [CrossRef]
- Hooks, B.M.; Chen, C. Critical Periods in the Visual System: Changing Views for a Model of Experience-Dependent Plasticity. Neuron 2007, 56, 312–326. [Google Scholar] [CrossRef] [Green Version]
- Chmielewska, A.; Dziechciarz, P.; Gieruszczak-Białek, D.; Horvath, A.; Pieścik-Lech, M.; Ruszczyński, M.; Skórka, A.; Szajewska, H. Effects of prenatal and/or postnatal supplementation with iron, PUFA or folic acid on neurodevelopment: Update. Br. J. Nutr. 2019, 122, S10–S15. [Google Scholar] [CrossRef]
- Yuan, C.; Fondell, E.; Ascherio, A.; Okereke, O.I.; Grodstein, F.; Hofman, A.; Willett, W.C. Long-Term Intake of Dietary Carotenoids Is Positively Associated with Late-Life Subjective Cognitive Function in a Prospective Study in US Women. J. Nutr. 2020, 150, 1871–1879. [Google Scholar] [CrossRef]
- Maiani, G.; Periago Castón, M.J.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53, 194–218. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Roberts, J.E.; Dennison, J. The Photobiology of Lutein and Zeaxanthin in the Eye. J. Ophthalmol. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielińska, M.A.; Wesołowska, A.; Pawlus, B.; Hamułka, J. Health Effects of Carotenoids during Pregnancy and Lactation. Nutrients 2017, 9, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmassani, H.A.; Switkowski, K.M.; Scott, T.M.; Johnson, E.J.; Rifas-Shiman, S.L.; Oken, E.; Jacques, P.F. Maternal Intake of Lutein and Zeaxanthin during Pregnancy Is Positively Associated with Offspring Verbal Intelligence and Behavior Regulation in Mid-Childhood in the Project Viva Cohort. J. Nutr. 2021, 151, 615–627. [Google Scholar] [CrossRef] [PubMed]
KERRYPNX | n | Total | 1st Tertile (Low) | 2nd Tertile (Medium) | 3rd Tertile (High) | p Value |
---|---|---|---|---|---|---|
Maternal Covariates | ||||||
Lutein and Zeaxanthin Intake (mg/day) | 429 | 143 | 143 | 143 | ||
Mean (SD) | 3.5 (2.0) | 1.7 (0.5) | 3.1 (0.3) | 5.7 (1.8) | ||
Rank | 0.6–11.5 | 0.6–2.5 | 2.5–3.7 | 3.7–11.5 | ||
Total Energy Intake (kcal/day) | 429 | |||||
Mean (SD) | 2050.3 (482.0) | 1997.9 (510.0) | 2146.9 (493.6) | 2006.0 (427.1) | 0.0129 a | |
Age (years) | 429 | |||||
Mean (SD) | 31.9 (4.1) | 31.1 (4.3) | 32.3 (4.0) | 32.4 (3.9) | 0.0097 a | |
Parity, n (%) | 427 | |||||
Nulliparous | 250 (58.6) | 89 (62.7) | 82 (57.8) | 79 (55.2) | 0.432 b | |
Parity 1 or more | 177 (41.5) | 53 (37.3) | 60 (42.3) | 64 (44.8) | ||
Ethnicity, n (%) | 429 | |||||
White | 422 (98.4) | 140 (97.9) | 141 (98.6) | 141 (98.6) | 1.00 c | |
Other Ethnic Group | 7 (1.6) | 3 (2.1) | 2 (1.4) | 2 (1.4) | ||
Maternal Education, n (%) | 427 | |||||
Primary or less | 102 (23.9) | 37 (25.9) | 28 (19.7) | 37 (26.1) | 0.718 b | |
Secondary | 181 (42.4) | 58 (40.6) | 64 (45.1) | 59 (41.6) | ||
Tertiary | 144 (33.7) | 48 (33.6) | 50 (35.2) | 46 (32.4) | ||
Social Class, n (%) | 429 | |||||
High | 104 (24.2) | 37 (25.9) | 29 (20.3) | 38 (26.6) | 0.544 b | |
Medium | 143 (33.3) | 42 (29.4) | 52 (36.4) | 49 (34.3) | ||
Low | 182 (42.4) | 64 (44.8) | 62 (43.4) | 56 (39.2) | ||
Smoking during pregnancy, n (%) | 429 | |||||
No | 314 (73.2) | 104 (72.7) | 98 (68.5) | 112 (78.3) | 0.172 b | |
Yes | 115 (26.8) | 39 (27.3) | 45 (31.5) | 31 (21.7) | ||
Alcohol during pregnancy, n (%) | 429 | |||||
No | 331 (77.2) | 115 (80.4) | 103 (72.0) | 113 (79.0) | 0.194 b | |
Yes | 98 (22.8) | 28 (19.6) | 40 (28.0) | 30 (21.0) | ||
Maternal PUFA Intake (g/day) | 422 | |||||
Mean (SD) | 14.2 (3.1) | 14.4 (3.1) | 14.1 (2.9) | 14.1 (3.3) | 0.5520 a | |
Child Covariates | ||||||
Sex, n (%) | 429 | |||||
Female | 209 (48.7) | 69 (48.3) | 77 (53.9) | 63 (44.1) | 0.251 b | |
Male | 220 (51.3) | 74 (51.8) | 66 (46.2) | 80 (55.9) | ||
Prematurity (< 37 weeks gestation) | 429 | |||||
No | 419 (97.7) | 139 (97.2) | 142 (99.3) | 138 (96.5) | 0.362 c | |
Yes | 10 (2.3) | 4 (2.8) | 1 (0.7) | 5 (3.5) | ||
Gestation (weeks) at birth | 429 | |||||
Mean (SD) | 39.7 (1.4) | 39.8 (1.4) | 39.8 (1.3) | 39.6 (1.4) | 0.1994 a | |
Birthweight | 429 | |||||
Mean (SD) | 3269.6 (405.6) | 3287.8 (425.8) | 3266.0 (396.0) | 3254.9 (396.6) | 0.7851 a | |
Predominant Breastfeeding (weeks) | 428 | |||||
Mean (SD) | 12.8 (9.5) | 12.3 (9.9) | 13.4 (9.1) | 12.8 (9.5) | 0.6421 a | |
Lutein and Zeaxanthin Intake Age 4 (mg/day) | 375 | |||||
Mean (SD) | 0.9 (0.5) | 0.8 (0.4) | 1.0 (0.42) | 1.0 (0.5) | < 0.00001 a | |
Vision Covariates | ||||||
Parental History of Eye Disease, n (%) | 420 | |||||
None | 86 (20.5) | 26 (18.4) | 30 (21.3) | 30 (21.7) | 0.179 b | |
One Parent | 179 (42.6) | 53 (37.6) | 59 (41.8) | 67 (48.6) | ||
Both parents | 155 (36.9) | 62 (44.0) | 52 (36.9) | 41 (29.7) | ||
Childhood History of Eye Diseased, n (%) | 421 | |||||
No | 330 (78.4) | 115 (81.0) | 106 (75.2) | 109 (79.0) | 0.484 b | |
Yes | 91 (21.6) | 27 (19.0) | 35 (24.8) | 29 (21.0) | ||
Age at Eye Test (years) | 429 | |||||
Mean (SD) | 11.2 (0.5) | 11.1 (0.50) | 11.1 (0.54) | 11.3 (0.5) | 0.0288 a |
Contrast Sensitivity | |||
Model A a | Model B b | Model C c | |
Week 12 | OR (95%CI) | OR (95%CI) | OR (95%CI) |
1st Tertile L&Z | Ref | Ref | Ref |
2nd Tertile L&Z | 1.22 (0.69, 2.28) | 1.21 (0.66, 2.23) | 1.45 (0.74, 2.85) |
3rd Tertile L&Z | 1.31 (0.73, 2.32) | 1.38 (0.76, 2.52) | 1.63 (0.83, 3.22) |
p-Trend | 0.6432 | 0.5757 | 0.3450 |
Week 32 | |||
1st Tertile L&Z | Ref | Ref | Ref |
2nd Tertile L&Z | 0.78 (0.43, 1.39) | 0.75 (0.40, 1.39) | 0.73 (0.38, 1.41) |
3rd Tertile L&Z | 1.17 (0.67, 2.05) | 1.25 (0.70, 2.23) | 1.38 (0.72, 2.62) |
p-Trend | 0.3742 | 0.2466 | 0.1700 |
Visual Acuity | |||
Model A a | Model B b | Model C c | |
Week 12 | OR (95%CI) | OR (95%CI) | OR (95%CI) |
1st Tercile L&Z | Ref | Ref | Ref |
2nd Tercile L&Z | 1.27 (0.71, 2.30) | 1.22 (0.66, 2.26) | 0.84 (0.38, 1.85) |
3rd Tercile L&Z | 1.51 (0.84, 2.73) | 1.38 (0.75, 2.53) | 1.02 (0.45, 2.23) |
p-Trend | 0.3827 | 0.5861 | 0.8731 |
Week 32 | |||
1st Tercile L&Z | Ref | Ref | Ref |
2nd Tercile L&Z | 1.26 (0.71, 2.25) | 1.11 (0.59, 2.10) | 0.67 (0.31, 1.48) |
3rd Tercile L&Z | 1.23 (0.68, 2.22) | 1.27 (0.68, 2.35) | 0.82 (0.36, 1.85) |
p-Trend | 0.6949 | 0.7500 | 0.6136 |
Contrast Sensitivity | Visual Acuity | |
---|---|---|
Model C a | Model C a | |
OR (95%CI) | OR (95%CI) | |
1st Tertile L&Z age 4 | Ref | Ref |
2nd Tertile L&Z age 4 | 0.60 (0.31, 1.14) | 1.43 (0.66, 3.10) |
3rd Tertile L&Z age 4 | 0.62 (0.32, 1.20) | 1.26 (0.56, 2.84) |
p-Trend | 0.2167 | 0.6640 |
Low Contrast Sensitivity | Low Visual Acuity | ||
---|---|---|---|
Model C a | Model C a | ||
Week 32 | Week 32 | ||
Parity 0 (n = 200) | Parity 0 (n = 201) | ||
1st Tercile L&Z | Ref | 1st Tercile L&Z | Ref |
2nd Tercile L&Z | 0.95 (0.34, 2.63) | 2nd Tercile L&Z | 1.21 (0.38, 3.90) |
3rd Tercile L&Z | 3.44 (1.39, 8.51) | 3rd Tercile L&Z | 1.95 (0.61, 6.19) |
p-Trend | 0.0079 | P-Trend | 0.5099 |
Parity 1+ (n = 140) | Parity 1+ (n = 141) | ||
1st Tercile L&Z | Ref | 1st Tercile L&Z | Ref |
2nd Tercile L&Z | 0.43 (0.16, 1.17) | 2nd Tercile L&Z | 0.20 (0.05, 0.74) |
3rd Tercile L&Z | 0.39 (0.14, 1.14) | 3rd Tercile L&Z | 0.21 (0.05, 0.85) |
p-Trend | 0.1526 | P-Trend | 0.0351 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, M.J.; Romaguera, D.; Saint-Amour, D.; Fossati, S.; Fochs, S.; Pey, N.; Vrijheid, M.; Julvez, J. Lutein and Zeaxanthin Intake during Pregnancy and Visual Function in Offspring at 11–12 Years of Age. Nutrients 2022, 14, 872. https://doi.org/10.3390/nu14040872
Anderson MJ, Romaguera D, Saint-Amour D, Fossati S, Fochs S, Pey N, Vrijheid M, Julvez J. Lutein and Zeaxanthin Intake during Pregnancy and Visual Function in Offspring at 11–12 Years of Age. Nutrients. 2022; 14(4):872. https://doi.org/10.3390/nu14040872
Chicago/Turabian StyleAnderson, Martin J., Dora Romaguera, Dave Saint-Amour, Serena Fossati, Silvia Fochs, Nuria Pey, Martine Vrijheid, and Jordi Julvez. 2022. "Lutein and Zeaxanthin Intake during Pregnancy and Visual Function in Offspring at 11–12 Years of Age" Nutrients 14, no. 4: 872. https://doi.org/10.3390/nu14040872
APA StyleAnderson, M. J., Romaguera, D., Saint-Amour, D., Fossati, S., Fochs, S., Pey, N., Vrijheid, M., & Julvez, J. (2022). Lutein and Zeaxanthin Intake during Pregnancy and Visual Function in Offspring at 11–12 Years of Age. Nutrients, 14(4), 872. https://doi.org/10.3390/nu14040872