Effect of the Consumption of Alcohol-Free Beers with Different Carbohydrate Composition on Postprandial Metabolic Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.2.1. Study 1
2.2.2. Study 2
2.3. Diet and Physical Activity
2.4. Anthropometric and Clinical Parameters
2.5. Laboratory Measurements
2.6. White Bread Analysis
2.7. Statistical Analysis
3. Results
3.1. Participants
3.2. White Bread Composition
3.3. Glucose Metabolism Parameters
3.3.1. Study 1
3.3.2. Study 2
3.4. Hormones Related to Appetite and Satiety
3.5. Hormones Related to Appetite and Satiety
3.5.1. Study 1
3.5.2. Study 2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barazzoni, R.; Deutz, N.E.P.; Biolo, G.; Bischoff, S.; Boirie, Y.; Cederholm, T.; Cuerda, C.; Delzenne, N.; Leon Sanz, M.; Ljungqvist, O.; et al. Carbohydrates and Insulin Resistance in Clinical Nutrition: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2017, 36, 355–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, D.S.; Hu, F.B.; Tappy, L.; Brand-Miller, J. Dietary Carbohydrates: Role of Quality and Quantity in Chronic Disease. BMJ 2018, 361, k2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, R.K.; Watling, C.Z.; Tong, T.Y.N.; Piernas, C.; Carter, J.L.; Papier, K.; Key, T.J.; Perez-Cornago, A. Associations between Macronutrients from Different Dietary Sources and Serum Lipids in 24 639 UK Biobank Study Participants. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2190–2200. [Google Scholar] [CrossRef]
- Hruby, A.; Guasch-Ferré, M.; Bhupathiraju, S.N.; Manson, J.E.; Willett, W.C.; McKeown, N.M.; Hu, F.B. Magnesium Intake, Quality of Carbohydrates, and Risk of Type 2 Diabetes: Results from Three U.S. Cohorts. Diabetes Care 2017, 40, 1695–1702. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, D.S. The Glycemic Index: Physiological Mechanisms Relating to Obesity, Diabetes, and Cardiovascular Disease. JAMA 2002, 287, 2414–2423. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Fu, J.; Qiao, Y.; Cao, J.; Deehan, E.C.; Li, Z.; Jin, M.; Wang, X.; Wang, Y. Higher Intake of Microbiota-Accessible Carbohydrates and Improved Cardiometabolic Risk Factors: A Meta-Analysis and Umbrella Review of Dietary Management in Patients with Type 2 Diabetes. Am. J. Clin. Nutr. 2021, 113, 1515–1530. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Dehghan, M.; Mente, A.; Bangdiwala, S.I.; Rangarajan, S.; Srichaikul, K.; Mohan, V.; Avezum, A.; Díaz, R.; Rosengren, A.; et al. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N. Engl. J. Med. 2021, 384, 1312–1322. [Google Scholar] [CrossRef]
- Zafar, M.I.; Mills, K.E.; Zheng, J.; Regmi, A.; Hu, S.Q.; Gou, L.; Chen, L.-L. Low-Glycemic Index Diets as an Intervention for Diabetes: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2019, 110, 891–902. [Google Scholar] [CrossRef]
- De Gaetano, G.; Costanzo, S.; Di Castelnuovo, A.; Badimon, L.; Bejko, D.; Alkerwi, A.; Chiva-Blanch, G.; Estruch, R.; La Vecchia, C.; Panico, S.; et al. Effects of Moderate Beer Consumption on Health and Disease: A Consensus Document. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 443–467. [Google Scholar] [CrossRef] [Green Version]
- Mateo-Gallego, R.; Pérez-Calahorra, S.; Lamiquiz-Moneo, I.; Marco-Benedí, V.; Bea, A.M.; Fumanal, A.J.; Prieto-Martín, A.; Laclaustra, M.; Cenarro, A.; Civeira, F. Effect of an Alcohol-Free Beer Enriched with Isomaltulose and a Resistant Dextrin on Insulin Resistance in Diabetic Patients with Overweight or Obesity. Clin. Nutr. 2020, 39, 475–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maresch, C.C.; Petry, S.F.; Theis, S.; Bosy-Westphal, A.; Linn, T. Low Glycemic Index Prototype Isomaltulose-Update of Clinical Trials. Nutrients 2017, 9, 381. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Guerin-Deremaux, L.; Pochat, M.; Wils, D.; Reifer, C.; Miller, L.E. NUTRIOSE Dietary Fiber Supplementation Improves Insulin Resistance and Determinants of Metabolic Syndrome in Overweight Men: A Double-Blind, Randomized, Placebo-Controlled Study. Appl. Physiol. Nutr. Metab. 2010, 35, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Aliasgharzadeh, A.; Dehghan, P.; Gargari, B.P.; Asghari-Jafarabadi, M. Resistant Dextrin, as a Prebiotic, Improves Insulin Resistance and Inflammation in Women with Type 2 Diabetes: A Randomised Controlled Clinical Trial. Br. J. Nutr. 2015, 113, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Meng, H.; Matthan, N.R.; Ausman, L.M.; Lichtenstein, A.H. Effect of Macronutrients and Fiber on Postprandial Glycemic Responses and Meal Glycemic Index and Glycemic Load Value Determinations. Am. J. Clin. Nutr. 2017, 105, 842–853. [Google Scholar] [CrossRef] [Green Version]
- Inside My Food|Porque Somos Lo Que Comemos. Available online: http://www.insidemyfood.com/ (accessed on 9 December 2020).
- Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A Study of Concurrent and Construct Validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef]
- Brouns, F.; Bjorck, I.; Frayn, K.N.; Gibbs, A.L.; Lang, V.; Slama, G.; Wolever, T.M.S. Glycaemic Index Methodology. Nutr. Res. Rev. 2005, 18, 145–171. [Google Scholar] [CrossRef] [Green Version]
- König, D.; Theis, S.; Kozianowski, G.; Berg, A. Postprandial Substrate Use in Overweight Subjects with the Metabolic Syndrome after Isomaltulose (PalatinoseTM) Ingestion. Nutrition 2012, 28, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Takeda, E.; Yamanaka-Okumura, H.; Taketani, Y.; Inagaki, N.; Hosokawa, M.; Shide, K.; Maegawa, H.; Kondo, K.; Kawasaki, E.; Shinozaki, S.; et al. Effect of Nutritional Counseling and Long Term Isomaltulose Based Liquid Formula (MHN-01) Intake on Metabolic Syndrome. J. Clin. Biochem. Nutr. 2015, 57, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Khera, A.V.; Won, H.-H.; Peloso, G.M.; Lawson, K.S.; Bartz, T.M.; Deng, X.; van Leeuwen, E.M.; Natarajan, P.; Emdin, C.A.; Bick, A.G.; et al. Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. J. Am. Coll. Cardiol. 2016, 67, 2578–2589. [Google Scholar] [CrossRef] [PubMed]
- Van Can, J.G.P.; Ijzerman, T.H.; van Loon, L.J.C.; Brouns, F.; Blaak, E.E. Reduced Glycaemic and Insulinaemic Responses Following Isomaltulose Ingestion: Implications for Postprandial Substrate Use. Br. J. Nutr. 2009, 102, 1408–1413. [Google Scholar] [CrossRef] [Green Version]
- Henry, C.J.; Kaur, B.; Quek, R.Y.C.; Camps, S.G. A Low Glycaemic Index Diet Incorporating Isomaltulose Is Associated with Lower Glycaemic Response and Variability, and Promotes Fat Oxidation in Asians. Nutrients 2017, 9, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuno, M.; Kim, M.-K.; Mizu, M.; Mori, M.; Mori, H.; Yamori, Y. Palatinose-Blended Sugar Compared with Sucrose: Different Effects on Insulin Sensitivity after 12 Weeks Supplementation in Sedentary Adults. Int. J. Food Sci. Nutr. 2010, 61, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.; Holub, I.; Theis, S.; Gostner, A.; Melcher, R.; Wolf, P.; Amann-Gassner, U.; Scheppach, W.; Hauner, H. Metabolic Effects of Replacing Sucrose by Isomaltulose in Subjects with Type 2 Diabetes: A Randomized Double-Blind Trial. Diabetes Care 2012, 35, 1249–1251. [Google Scholar] [CrossRef] [Green Version]
- Ang, M.; Linn, T. Comparison of the Effects of Slowly and Rapidly Absorbed Carbohydrates on Postprandial Glucose Metabolism in Type 2 Diabetes Mellitus Patients: A Randomized Trial. Am. J. Clin. Nutr. 2014, 100, 1059–1068. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, T.; Nakano, D.; Oriishi, T.; Torimura, T. Effects of Isomaltulose on Insulin Resistance and Metabolites in Patients with Non-Alcoholic Fatty Liver Disease: A Metabolomic Analysis. Mol. Med. Rep. 2018, 18, 2033–2042. [Google Scholar] [CrossRef]
- Farhangi, M.A.; Javid, A.Z.; Sarmadi, B.; Karimi, P.; Dehghan, P. A Randomized Controlled Trial on the Efficacy of Resistant Dextrin, as Functional Food, in Women with Type 2 Diabetes: Targeting the Hypothalamic-Pituitary-Adrenal Axis and Immune System. Clin. Nutr. 2018, 37, 1216–1223. [Google Scholar] [CrossRef]
- Mateo-Gallego, R.; Moreno-Indias, I.; Bea, A.M.; Sánchez-Alcoholado, L.; Fumanal, A.J.; Quesada-Molina, M.; Prieto-Martín, A.; Gutiérrez-Repiso, C.; Civeira, F.; Tinahones, F.J. An Alcohol-Free Beer Enriched with Isomaltulose and a Resistant Dextrin Modulates Gut Microbiome in Subjects with Type 2 Diabetes Mellitus and Overweight or Obesity: A Pilot Study. Food Funct. 2021, 12, 3635–3646. [Google Scholar] [CrossRef]
- Haro, C.; Garcia-Carpintero, S.; Alcala-Diaz, J.F.; Gomez-Delgado, F.; Delgado-Lista, J.; Perez-Martinez, P.; Rangel Zuñiga, O.A.; Quintana-Navarro, G.M.; Landa, B.B.; Clemente, J.C.; et al. The Gut Microbial Community in Metabolic Syndrome Patients Is Modified by Diet. J. Nutr. Biochem. 2016, 27, 27–31. [Google Scholar] [CrossRef]
- Cani, P.D.; Lecourt, E.; Dewulf, E.M.; Sohet, F.M.; Pachikian, B.D.; Naslain, D.; De Backer, F.; Neyrinck, A.M.; Delzenne, N.M. Gut Microbiota Fermentation of Prebiotics Increases Satietogenic and Incretin Gut Peptide Production with Consequences for Appetite Sensation and Glucose Response after a Meal. Am. J. Clin. Nutr. 2009, 90, 1236–1243. [Google Scholar] [CrossRef]
- Keyhani-Nejad, F.; Barbosa Yanez, R.L.; Kemper, M.; Schueler, R.; Pivovarova-Ramich, O.; Rudovich, N.; Pfeiffer, A.F.H. Endogenously Released GIP Reduces and GLP-1 Increases Hepatic Insulin Extraction. Peptides 2020, 125, 170231. [Google Scholar] [CrossRef] [PubMed]
- Angarita Dávila, L.; Bermúdez, V.; Aparicio, D.; Céspedes, V.; Escobar, M.C.; Durán-Agüero, S.; Cisternas, S.; de Assis Costa, J.; Rojas-Gómez, D.; Reyna, N.; et al. Effect of Oral Nutritional Supplements with Sucromalt and Isomaltulose versus Standard Formula on Glycaemic Index, Entero-Insular Axis Peptides and Subjective Appetite in Patients with Type 2 Diabetes: A Randomised Cross-Over Study. Nutrients 2019, 11, 1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Fuentes, C.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. The Microbiota-Gut-Brain Axis in Obesity. Lancet Gastroenterol. Hepatol. 2017, 2, 747–756. [Google Scholar] [CrossRef]
- Vega-López, S.; Ausman, L.M.; Matthan, N.R.; Lichtenstein, A.H. Postprandial Lipid Responses to Standard Carbohydrates Used to Determine Glycaemic Index Values. Br. J. Nutr. 2013, 110, 1782–1788. [Google Scholar] [CrossRef] [Green Version]
- Turner, K.M.; Keogh, J.B.; Clifton, P.M. Acute Effect of Red Meat and Dairy on Glucose and Insulin: A Randomized Crossover Study. Am. J. Clin. Nutr. 2016, 103, 71–76. [Google Scholar] [CrossRef] [Green Version]
Subjects Included in Study 1 (N = 10) | Subjects Included in Study 2 (N = 20) | |
---|---|---|
Age, years | 31.5 (30.3–34.5) | 30.5 (24.8–33.0) |
Men, n (%) | 7 (70%) | 14 (70%) |
Body weight, kg | 86.0 (80.8–87.8) | 76.7 (61.4–84.7) |
BMI, kg/m2 | 23.4 (22.4–25.7) | 24.4 (20.6–26.0) |
Alcohol consumption (g/d) | 2.35 (0.47–5.81) | 6.25 (1.22–15.2) |
TSH, μUI/L | 2.11 ± 0.99 | 2.36 ± 1.28 |
Triglycerides, mg/dL | 56.0 (51.0–63.3) | 76.0 (47.5–89.0) |
Total cholesterol, mg/dL | 192 (183–198) | 188 (168–199) |
LDL cholesterol, mg/dL | 113 (103–122) | 112 (98.0–128) |
HDL cholesterol, mg/dL | 61.0 (53.5–69.3) | 56.0 (50.5–60.8) |
GGT, UI/L | 13.0 (13.0–16.3) | 18.5 (15.5–23.0) |
GOT, UI/L | 22.0 (21.0–25.5) | 25.0 (21.0–28.3) |
GPT, UI/L | 18.0 (14.0–22.3) | 17.5 (14.0–29.3) |
Glucose, mg/dL | 86.0 (80.8–87.8) | 86.0 (82.3–95.0) |
Study 1 (N = 10) | Study 2 (N = 20) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Regular Alcohol-Free Beer (RB) (25 g of CH) | Alcohol-Free Beer with Isomaltulose and Resistant Maltodextrin (IMB) (25 g of CH) | Alcohol-Free Beer with Resistant Maltodextrin (MB) (25 g of CH) | Glucose Solution (25 g of CH) | p | RB + 50 g of CH from White Bread (64.3 g of CH) | IMB + 50 g of CH from White Bread (64.3 g of CH) | MB + 50 g of CH from White Bread (64.3 g of CH) | Water+ 50 g of CH from White Bread (50 g of CH) | Water + 64.3 g of CH from White Bread (64.3 g of CH) | p | |
Glucose variation, mg/dL | 60.4 ± 24.1 | 33.7 ± 14.2 * | 34.7 ± 19.1 * | 58.0 ± 20.0 | 0.005 | 58.3 ± 14.9 | 44.7 ± 9.83 * | 41.1 ± 10.8 * | 41.2 ± 13.2 | 48.1 ± 14.8 | 0.002 |
Insulin variation, mg/dL | 22.2 ± 12.2 | 12.1 ± 4.31 * | 14.8 ± 8.6 + | 18.8 ± 7.48 | 0.012 | 40.1 ± 17.8 | 31.1 ± 11.7 + | 35.9 ± 19.4 | 27.7 ± 14.9 | 30.5 ± 11.4 | 0.124 |
GIP variation, pg/mL | 128 ± 62.3 | 18.9 ± 23.8 * | 34.6 ± 22.1 * | 168 ± 112 | <0.001 | 229 ± 134 | 240 ± 189 | 229 ± 194 | 126 ± 41.4 | 216 ± 185 | 0.011 |
GLP-1 variation, pg/mL | 17.9 ± 23.7 | 3.27 ± 33.0 | 1.67 ± 33.7 | 13.9 ± 35.0 | 0.529 | 27.0 ± 47.3 | 13.3 ± 33.7 | 28.8 ± 29.0 | 21.3 ± 30.9 | 46.6 ± 45.1 | 0.058 |
GHRELIN | Baseline | 60 min | 120 min | p 1 |
RB + white bread (64.3 g of CH) | 49.3 (16.2–64.3) | 11.8 (10.4–18.4) | 11.6 (10.6–13.0) | 0.942 |
IMB + white bread (64.3 g of CH) | 48.8 (31.3–84.3) | 13.0 (12.1–17.3) | 13.0 (10.6–13.8) | |
MB + white bread (64.3 g of CH) | 36.6 (23.9–65.3) | 13.7 (11.8–27.3) | 13.0 (11.5–16.4) | |
Water + white bread (64.3 g of CH) | 57.8 (19.2–90.3) | 12.6 (10.6–17.9) | 13.0 (10.6–17.2) | |
Water+ white bread (50 g of CH) | 51.4 (20.6–74.7) | 17.9 (12.9–34.0) | 13.0 (11.0–33.3) | |
GLUCAGON | Baseline | 60 min | 120 min | p 1 |
RB + white bread (64.3 g of CH) | 53.0 (44.1–60.0) | 37.5 (24.4–53.2) | 33.4 (19.6–47.2) | 0.988 |
IMB + white bread (64.3 g of CH) | 43.9 (36.1–57.8) | 23.0 (16.8–35.7) | 24.9 (15.0–37.4) | |
MB + white bread (64.3 g of CH) | 47.6 (38.2–62.5) | 34.0 (27.1–47.5) | 33.6 (18.1–40.3) | |
Water + white bread (64.3 g of CH) | 46.9 (36.9–61.5) | 31.5 (23.4–53.4) | 30.3 (20.6–39.2) | |
Water+ white bread (50 g of CH) | 45.9 (36.4–54.5) | 28.4 (19.1–42.9) | 29.7 (15.0–39.5) | |
LEPTIN | Baseline | 60 min | 120 min | p 1 |
RB + white bread (64.3 g of CH) | 3684 (1386–6801) | 2714 (1243–6057) | 3079 (1145–5408) | 0.723 |
IMB + white bread (64.3 g of CH) | 2732 (980–5038) | 2195 (824–4047) | 2066 (819–3804) | |
MB + white bread (64.3 g of CH) | 3101 (1150–6119) | 2450 (1178–4567) | 2414 (1056–4389) | |
Water + white bread (64.3 g of CH) | 2576 (1372–7047) | 2030 (1087–5380) | 2281 (1033–6204) | |
Water+ white bread (50 g of CH) | 2030 (1374–4289) | 1977 (1177–3609) | 1861 (1056–3533) | |
PP | Baseline | 60 min | 120 min | p 1 |
RB + white bread (64.3 g of CH) | 47.1 (31.4–65.7) | 79.9 (65.7–105) | 83.8 (57.4–132) | 0.982 |
IMB + white bread (64.3 g of CH) | 47.2 (23.5–56.7) | 82.0 (52.8–122) | 71.0 (39.2–120) | |
MB + white bread (64.3 g of CH) | 49.5 (37.1–88.6) | 76.8 (46.3–127) | 94.7 (47.4–114) | |
Water + white bread (64.3 g of CH) | 43.8 (35.5–58.7) | 70.2 (47.8–110) | 78.3 (63.4–112) | |
Water+ white bread (50 g of CH) | 36.0 (30.2–55.3) | 84.3 (41.7–117) | 65.6 (38.4–99.5) | |
PY | Baseline | 60 min | 120 min | p 1 |
RB + white bread (64.3 g of CH) | 13.0 (13.0–93.2) | 30.0 (13.0–85.5) | 13.0 (13.0–78.9) | 0.992 |
IMB + white bread (64.3 g of CH) | 13.0 (13.0–58.9) | 13.0 (13.0–51.1) | 13.0 (13.0–58.4) | |
MB + white bread (64.3 g of CH) | 13.0 (13.0–97.2) | 13.0 (13.0–106) | 13.0 (13.0–101) | |
Water + white bread (64.3 g of CH) | 13.0 (13.0–97.8) | 20.5 (13.0–69.8) | 13.0 (13.0–62.5) | |
Water+ white bread (50 g of CH) | 26.8 (13.0–99.3) | 13.0 (13.0–102) | 13.0 (13.0–88.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamiquiz-Moneo, I.; Pérez-Calahorra, S.; Gracia-Rubio, I.; Cebollada, A.; Bea, A.M.; Fumanal, A.; Ferrer-Mairal, A.; Prieto-Martín, A.; Sanz-Fernández, M.L.; Cenarro, A.; et al. Effect of the Consumption of Alcohol-Free Beers with Different Carbohydrate Composition on Postprandial Metabolic Response. Nutrients 2022, 14, 1046. https://doi.org/10.3390/nu14051046
Lamiquiz-Moneo I, Pérez-Calahorra S, Gracia-Rubio I, Cebollada A, Bea AM, Fumanal A, Ferrer-Mairal A, Prieto-Martín A, Sanz-Fernández ML, Cenarro A, et al. Effect of the Consumption of Alcohol-Free Beers with Different Carbohydrate Composition on Postprandial Metabolic Response. Nutrients. 2022; 14(5):1046. https://doi.org/10.3390/nu14051046
Chicago/Turabian StyleLamiquiz-Moneo, Itziar, Sofia Pérez-Calahorra, Irene Gracia-Rubio, Alberto Cebollada, Ana M. Bea, Antonio Fumanal, Ana Ferrer-Mairal, Ascensión Prieto-Martín, María Luisa Sanz-Fernández, Ana Cenarro, and et al. 2022. "Effect of the Consumption of Alcohol-Free Beers with Different Carbohydrate Composition on Postprandial Metabolic Response" Nutrients 14, no. 5: 1046. https://doi.org/10.3390/nu14051046
APA StyleLamiquiz-Moneo, I., Pérez-Calahorra, S., Gracia-Rubio, I., Cebollada, A., Bea, A. M., Fumanal, A., Ferrer-Mairal, A., Prieto-Martín, A., Sanz-Fernández, M. L., Cenarro, A., Civeira, F., & Mateo-Gallego, R. (2022). Effect of the Consumption of Alcohol-Free Beers with Different Carbohydrate Composition on Postprandial Metabolic Response. Nutrients, 14(5), 1046. https://doi.org/10.3390/nu14051046