Factors Associated with Overweight and Obesity in Adults from Rio Branco, Acre in the Western Brazilian Amazon
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Prevalence of Overweight and Obesity according to Sociodemographic and Economic Characteristics
3.2. Prevalence of Overweight and Obesity according to Lifestyle and Health
3.3. Factors Associated with Overweight
3.4. Factors Associated with Obesity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, H.; Alsalhe, T.A.; Chalghaf, N.; Riccò, M.; Bragazzi, N.L.; Wu, J. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: An analysis of the Global Burden of Disease Study. PLoS Med. 2020, 17, e1003198. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, R.; Sawers, C.; Thompson, F.; Manyika, J.; Woetzel, J.; Child, P.; McKenna, S.; Spatharou, A. Overcoming Obesity: An Initial Economic Analysis; McKinsey Global Institute: Washington, DC, USA, 2014; pp. 1–120. [Google Scholar]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity and Overweight. Available online: https://web.archive.org/web/20220112232355/https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 12 January 2022).
- Ministério Da Saúde. Vigitel 2019. Saúde Suplementar: Vigilância de Fatores de Risco e Proteção Para Doenças Crônicas Por Inquérito Telefônico, 1st ed.; Ministério da Saúde, Agência Nacional de Saúde Suplementar: Brasília, Brazil, 2020; pp. 36–42.
- Ferreira, A.P.D.S.; Szwarcwald, C.L.; Damacena, G.N.; Souza Júnior, P.R.B.D. Aumento nas prevalências de obesidade entre 2013 e 2019 e fatores associados no Brasil. Rev. Bras. Epidemiol. 2021, 24, 1–15. [Google Scholar] [CrossRef]
- Dias, F.S.B.; Lima, Y.M.M.; Martins, F.A.; Nunes, M.S.; Andrade, A.M.; Ramalho, A.A. Time trend of overweight and obesity in adults from Rio Branco, Acre, Western Brazilian Amazon (2006–2020). Nutrients 2022, 14, 742. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Cidades e Estados: Rio Branco. 2020. Available online: https://web.archive.org/web/20220123160113/https://cidades.ibge.gov.br/brasil/ac/rio-branco/panorama (accessed on 1 February 2022).
- Instituto Brasileiro de Geografia e Estatística. Pesquisa Nacional de Saúde 2019. In Percepção do Estado de Saúde, Estilos de Vida, Doenças Crônicas e Saúde Bucal: Brasil e Grandes Regiões, 2nd ed.; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2020; pp. 1–89. [Google Scholar]
- Piza, E.; Rosemberg, F. Cor nos censos brasileiros. Rev. USP 1999, 40, 122–137. [Google Scholar] [CrossRef] [Green Version]
- Lima, Y.M.M.; Martins, F.A.; Ramalho, A.A. Prevalence of the consumption of ultra-processed foods, alcohol, tobacco and chronic non-communicable diseases in Rio Branco, Acre, Brazil, 2019: Comparative analysis of two epidemiological surveys. Epidemiol. Serv. Saúde 2022. accepted. [Google Scholar]
- Victora, C.G.; Huttly, S.R.; Fuchs, S.C.; Olinto, M.T. The role of conceptual frameworks in epidemiological analysis: A hierarchical approach. Int. J. Epidemiol. 1997, 26, 224–227. [Google Scholar] [CrossRef] [Green Version]
- Sousa, A.P.M.; Pereira, I.C.; Araújo, L.L.; Rocha, M.R.; Bandeira, H.M.M.; Lima, L.H.O. Prevalence and factors associated with overweight in adults in Brazilian capitals and the Federal District, 2019. Epidemiol. Serv. Saúde 2021, 30, e2020838. [Google Scholar] [CrossRef]
- Ferreira, A.P.S.; Szwarcwald, C.L.; Damacena, G.N. Prevalence of obesity and associated factors in the Brazilian population: A study of data from the 2013 National Health Survey. Rev. Bras. Epidemiol. 2019, 22, e190024. [Google Scholar] [CrossRef]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. NCHS Data Brief. 2020, 360, 1–8. [Google Scholar]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Omar, S.M.; Taha, Z.; Hassan, A.A.; Al-Wutayd, O.; Adam, I. Prevalence and factors associated with overweight and central obesity among adults in the Eastern Sudan. PLoS ONE 2020, 15, e0232624. [Google Scholar] [CrossRef] [PubMed]
- Samouda, H.; Ruiz-Castell, M.; Bocquet, V.; Kuemmerle, A.; Chioti, A.; Dadoun, F.; Kandala, N.-B.; Stranges, S. Geographical variation of overweight, obesity and related risk factors: Findings from the European Health Examination Survey in Luxembourg, 2013–2015. PLoS ONE 2018, 13, e0197021. [Google Scholar] [CrossRef]
- Cleven, L.; Krell-Roesch, J.; Nigg, C.R.; Woll, A. The association between physical activity with incident obesity, coronary heart disease, diabetes and hypertension in adults: A systematic review of longitudinal studies published after 2012. BMC Public Health 2020, 20, 726. [Google Scholar] [CrossRef]
- Cassidy, S.; Chau, J.Y.; Catt, M.; Bauman, A.; Trenell, M.I. Low physical activity, high television viewing and poor sleep duration cluster in overweight and obese adults; a cross-sectional study of 398,984 participants from the UK Biobank. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 57. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Henningfield, J.E. Reducing the nicotine content to make cigarettes less addictive. Tob. Control 2013, 22, i14–i17. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.M.; Rohsenow, D.J.; Johnson, K.C.; Wing, R.R. Smoking and weight loss among smokers with overweight and obesity in Look AHEAD. Health Psychol. 2018, 37, 399–406. [Google Scholar] [CrossRef]
- Chao, A.M.; Wadden, T.A.; Ashare, R.L.; Loughead, J.; Schmidt, H.D. Tobacco Smoking, Eating Behaviors, and Body Weight: A Review. Curr. Addict. Rep. 2019, 6, 191–199. [Google Scholar] [CrossRef]
- Lyall, D.M.; Celis-Morales, C.; Ward, J.; Iliodromiti, S.; Anderson, J.J.; Gill, J.M.R.; Smith, D.J.; Ntuk, U.E.; Mackay, D.F.; Holmes, M.V.; et al. Association of body mass index with cardiometabolic disease in the UK BIOBANK: A Mendelian randomization study. JAMA Cardiol. 2017, 2, 882–889. [Google Scholar] [CrossRef]
- Larsson, S.C.; Bäck, M.; Rees, J.M.B.; Mason, A.M.; Burgess, S. Body mass index and body composition in relation to 14 cardiovascular conditions in UK Biobank: A Mendelian randomization study. Eur. Heart J. 2020, 41, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Chobot, A.; Górowska-Kowolik, K.; Sokołowska, M.; Jarosz-Chobot, P. Obesity and diabetes-Not only a simple link between two epidemics. Diabetes Metab. Res. Rev. 2018, 34, e3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, A.; Juszczyk, D.; Van Jaarsveld, C.H.M.; Gulliford, M.C. Body Mass Index and Incident Type 1 and Type 2 Diabetes in Children and Young Adults: A Retrospective Cohort Study. J. Endocr. Soc. 2017, 1, 524–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilson, E.A.F.; Andrade, R.C.S.; Brito, D.A.; Oliveira, M.L. Custos atribuíveis a obesidade, hipertensão e diabetes no Sistema Único de Saúde, Brasil, 2018. Rev. Panam. Salud Publica 2020, 44, e32. [Google Scholar] [CrossRef] [PubMed]
Variable | Total | Overweight | Obesity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
n | N (%) | N (%) | Crude PR | 95%CI | p | N (%) | Crude PR | 95%CI | p | |
Age group | ||||||||||
18–24 | 158 | 52,896 (17.9) | 18,960 (35.8) | 1.00 | 5986 (11.3) | 1.00 | ||||
25–39 | 385 | 91,920 (31.1) | 51,983 (56.6) | 1.58 | 1.21–2.05 | <0.001 | 17,612 (19.2) | 1.69 | 0.95–3.02 | 0.07 |
40–59 | 423 | 104,396 (35.3) | 72,195 (69.2) | 1.93 | 1.54–2.41 | <0.001 | 28,717 (27.5) | 2.43 | 1.41–4.19 | <0.001 |
60+ | 251 | 46,324 (15.7) | 28,866 (62.3) | 1.74 | 1.34–2.26 | <0.001 | 7029 (15.2) | 1.34 | 0.78–2.30 | 0.28 |
Sex | ||||||||||
Male | 538 | 139,014 (47.0) | 82,726 (59.5) | 1.00 | 23,330 (16.8) | 1.00 | ||||
Female | 679 | 156,523 (53.0) | 89,279 (57.0) | 0.96 | 0.83–1.10 | 0.54 | 36,013 (23.0) | 1.37 | 1.04–1.81 | 0.03 |
Ethnicity | ||||||||||
Other | 951 | 235,242 (79.6) | 139,826 (53.4) | 1.00 | 48,759 (20.7) | 1.00 | ||||
White | 266 | 60,295 (20.4) | 32,178 (53.4) | 0.9 | 0.77–1.05 | 0.17 | 10,585 (17.6) | 0.84 | 0.64–1.12 | 0.24 |
Per capita income | ||||||||||
Up to ½ MW | 306 | 81,868 (27.7) | 46,696 (57.0) | 1.00 | 14,765 (18.0) | 1.00 | ||||
½–1 MW | 318 | 78,830 (26.7) | 43,679 (55.4) | 0.97 | 0.79–1.20 | 0.78 | 17,109 (21.7) | 1.20 | 0.85–1.71 | 0.30 |
1–2 MW | 313 | 74,580 (25.2) | 43,767 (58.7) | 1.03 | 0.86–1.23 | 0.76 | 15,960 (21.4) | 1.19 | 0.80–1.76 | 0.39 |
>2 MW | 280 | 60,258 (20.4) | 37,862 (62.8) | 1.10 | 0.93–1.30 | 0.25 | 11,510 (19.1) | 1.06 | 0.75–1.50 | 0.74 |
Health insurance | ||||||||||
No | 988 | 243,533 (82.4) | 139,770 (57.4) | 1.00 | 49,411 (20.3) | 1.00 | ||||
Yes | 229 | 52,003 (17.6) | 32,235 (62.0) | 1.09 | 0.96–1.22 | 0.20 | 9933 (19.1) | 0.94 | 0.70–1.26 | 0.69 |
Variable | Total | Overweight | Obesity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
n | N (%) | N (%) | Crude PR | 95%CI | p | N (%) | Crude PR | 95%CI | p | |
Regular fruit and vegetable consumption | ||||||||||
No | 1071 | 263,731 (89.2) | 152,860 (58.0) | 1.00 | 50,718 (19.2) | 1.00 | ||||
Yes | 146 | 31,806 (10.8) | 19,144 (60.2) | 1.04 | 0.88–1.22 | 0.64 | 8625 (27.1) | 1.41 | 1.04–1.92 | 0.03 |
Regular soft drink and/or refreshment consumption | ||||||||||
No | 1190 | 287,112 (97.1) | 167,754 (58.4) | 1.00 | 58,475 (20.4) | 1.00 | ||||
Yes | 27 | 8424 (2.9) | 4251 (50.5) | 0.86 | 0.55–1.36 | 0.52 | 869 (10.3) | 0.51 | 0.13–1.95 | 0.32 |
Regular ultra-processed food consumption | ||||||||||
No | 1076 | 257,754 (87.2) | 152,391 (59.1) | 1.00 | 53,549 (20.8) | 1.00 | ||||
Yes | 141 | 37,782 (12.8) | 19,614 (51.9) | 0.88 | 0.74–1.04 | 0.14 | 5794 (15.3) | 0.74 | 0.51–1.07 | 0.11 |
Smoking | ||||||||||
No | 1089 | 264,069 (89.4) | 158,946 (60.2) | 1.00 | 56,110 (21.2) | 1.00 | ||||
Yes | 128 | 31,468 (10.6) | 13,059 (41.5) | 0.69 | 0.49–0.97 | 0.03 | 3234 (10.3) | 0.48 | 0.25–0.94 | 0.03 |
Alcohol abuse | ||||||||||
No | 1034 | 249,601 (84.5) | 146,858 (58.8) | 1.00 | 49,472 (19.8) | 1.00 | ||||
Yes | 183 | 45,935 (15.5) | 25147 (54.7) | 0.93 | 0.78–1.10 | 0.40 | 9872 (21.5) | 1.09 | 0.76–1.56 | 0.66 |
Self-reported poor health | ||||||||||
No | 1137 | 279,637 (94.6) | 163,459 (58.5) | 1.00 | 56,000 (20.0) | 1.00 | ||||
Yes | 80 | 15,899 (5.4) | 8545 (53.7) | 0.92 | 0.67–1.25 | 0.59 | 3343 (21.0) | 1.05 | 0.61–1.81 | 0.86 |
Physical inactivity | ||||||||||
No | 838 | 204,845 (86.1) | 113,265 (55.3) | 1.00 | 40,127 (19.6) | 1.00 | ||||
Yes | 143 | 33,125 (13.9) | 23098 (69.7) | 1.26 | 1.08–1.47 | <0.001 | 7533 (22.7) | 1.16 | 0.80–1.68 | 0.42 |
Diabetes mellitus | ||||||||||
No | 1015 | 242,751 (93.8) | 144,168 (59.4) | 1.00 | 48,954 (20.2) | 1.00 | ||||
Yes | 80 | 16,013 (6.2) | 12,695 (79.3) | 1.33 | 1.16–1.54 | <0.001 | 6296 (39.3) | 1.96 | 1.38–2.77 | <0.001 |
Arterial hypertension | ||||||||||
No | 906 | 228,793 (79.3) | 120,326 (52.6) | 1.00 | 38,537 (16.8) | 1.00 | ||||
Yes | 286 | 59,693 (20.7) | 49,369 (82.7) | 1.59 | 1.43–1.72 | <0.001 | 20,475 (34.3) | 2.04 | 1.61–2.56 | <0.001 |
Dyslipidemia | ||||||||||
No | 917 | 223,188 (88.3) | 135,576 (60.7) | 1.00 | 48,187 (21.6) | 1.00 | ||||
Yes | 154 | 29,463 (11.7) | 21,251 (72.1) | 1.19 | 1.03–1.37 | 0.01 | 7258 (24.6) | 1.14 | 0.78–1.66 | 0.49 |
Variable | Distal Model 1 | Intermediate Model 2 | Proximal Model 2 | Final Model | ||||
---|---|---|---|---|---|---|---|---|
AdjPR | 95%CI | AdjPR | 95%CI | AdjPR | 95%CI | AdjPR | 95%CI | |
Health insurance | ||||||||
Yes | 1.00 | |||||||
No | 1.06 | 0.94–1.19 | ||||||
Ethnicity | ||||||||
Other | 1.00 | |||||||
White | 0.88 | 0.76–1.02 | ||||||
Smoking | ||||||||
No | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Yes | 0.69 | 0.49–0.97 | 0.71 | 0.55–0.92 | 0.62 | 0.41–0.93 | 0.62 | 0.41–0.93 |
Diabetes mellitus | ||||||||
No | 1.00 | |||||||
Yes | 1.09 | 0.95–1.23 | ||||||
Dyslipidemia | ||||||||
No | 1.00 | |||||||
Yes | 1.04 | 0.91–1.19 | ||||||
Arterial hypertension | ||||||||
No | 1.00 | 1.00 | 1.00 | |||||
Yes | 1.46 | 1.34–1.58 | 1.45 | 1.31–1.62 | 1.45 | 1.31–1.61 | ||
Regular ultra-processed food consumption | ||||||||
No | 1.00 | |||||||
Yes | 0.93 | 0.75–1.15 | ||||||
Physical inactivity | ||||||||
No | 1.00 | 1.00 | ||||||
Yes | 1.19 | 1.04–1.36 | 1.19 | 1.04–1.36 | ||||
Age group | ||||||||
18–24 | 1.00 | 1.00 | ||||||
25–39 | 1.47 | 1.08–1.99 | 1.49 | 1.10–2.00 | ||||
40–59 | 1.66 | 1.25–2.21 | 1.69 | 1.28–2.23 | ||||
60+ | 1.34 | 0.97–1.86 | 1.37 | 1.01–1.87 |
Variable | Distal Model 1 | Intermediate Model 2 | Proximal Model 2 | Final Model | ||||
---|---|---|---|---|---|---|---|---|
AdjPR | 95%CI | AdjPR | 95%CI | AdjPR | 95%CI | AdjPR | 95%CI | |
Sex | ||||||||
Male | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Female | 1.34 | 1.02–1.76 | 1.20 | 0.91–1.57 | 1.19 | 0.88–1.60 | 1.19 | 0.90–1.57 |
Smoking | ||||||||
No | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Yes | 0.50 | 0.26–0.96 | 0.74 | 0.41–1.34 | 0.59 | 0.28–1.23 | 0.69 | 0.37–1.28 |
Dyslipidemia | ||||||||
No | 1.00 | |||||||
Yes | 0.81 | 0.55–1.20 | ||||||
Diabetes mellitus | ||||||||
No | 1.00 | 1.00 | 1.00 | |||||
Yes | 1.61 | 1.15–2.22 | 1.61 | 1.11–2.33 | 1.52 | 1.08–2.13 | ||
Arterial hypertension | ||||||||
No | 1.00 | 1.00 | 1.00 | |||||
Yes | 1.81 | 1.41–2.32 | 2.14 | 1.56–2.92 | 1.80 | 1.41–2.30 | ||
Regular ultra-processed food consumption | ||||||||
No | 1.00 | |||||||
Yes | 0.85 | 0.53–1.37 | ||||||
Physical inactivity | ||||||||
No | 1.00 | |||||||
Yes | 1.07 | 0.76–1.49 | ||||||
Age group | ||||||||
18–24 | 1.00 | |||||||
25–39 | 1.88 | 0.79–4.50 | ||||||
40–59 | 2.07 | 0.85–5.03 | ||||||
60+ | 0.88 | 0.32–2.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, Y.d.M.M.; Martins, F.A.; Ramalho, A.A. Factors Associated with Overweight and Obesity in Adults from Rio Branco, Acre in the Western Brazilian Amazon. Nutrients 2022, 14, 1079. https://doi.org/10.3390/nu14051079
Lima YdMM, Martins FA, Ramalho AA. Factors Associated with Overweight and Obesity in Adults from Rio Branco, Acre in the Western Brazilian Amazon. Nutrients. 2022; 14(5):1079. https://doi.org/10.3390/nu14051079
Chicago/Turabian StyleLima, Yara de Moura Magalhães, Fernanda Andrade Martins, and Alanderson Alves Ramalho. 2022. "Factors Associated with Overweight and Obesity in Adults from Rio Branco, Acre in the Western Brazilian Amazon" Nutrients 14, no. 5: 1079. https://doi.org/10.3390/nu14051079
APA StyleLima, Y. d. M. M., Martins, F. A., & Ramalho, A. A. (2022). Factors Associated with Overweight and Obesity in Adults from Rio Branco, Acre in the Western Brazilian Amazon. Nutrients, 14(5), 1079. https://doi.org/10.3390/nu14051079