Short-Term Ingestion of Medium-Chain Triglycerides Could Enhance Postprandial Consumption of Ingested Fat in Individuals with a Body Mass Index from 25 to Less than 30: A Randomized, Placebo-Controlled, Double-Blind Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. The Number of Participants
2.3. Target Participants
2.4. Test Diets
2.5. Management during the Intervention Period
2.6. Dietary Survey
2.7. Measurements
2.8. Calculation of the Consumption Rate of Diet-Derived LCTs
2.9. Calculation of Postprandial Energy Expenditure Rate, Respiratory Quotient, and Fat and Carbohydrate Oxidation Rates
2.10. Primary and Secondary Outcomes
2.11. Statistical Analysis
3. Results
3.1. Participants
3.2. Dietary Intake
3.3. Measurement Result of Primary Outcome
3.4. Measurement Results of Secondary Outcomes
3.5. Carryover Effect of Measurement Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drozdz, D.; Alvarez-Pitti, J.; Wójcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Čavrak, V.; Lopez-Valcarcel, B.G.; Brzeziński, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef] [PubMed]
- Samuel, K.; David, B.A.; Steven, B.H.; David, E.K.; Rudolph, L.L.; Cathy, N.; Richard, K. Waist Circumference and Cardiometabolic Risk. Diabetes Care 2007, 30, 1647–1652. [Google Scholar] [CrossRef] [Green Version]
- Julia, S.; Stephen, R.D. Obesity, Insulin Resistance, Diabetes, and Cardiovascular Risk in Children. Circulation 2003, 107, 1448–1453. [Google Scholar] [CrossRef] [Green Version]
- George, A.B.; William, E.H.; Ashkan, A.; Michael, D.J.; William, H.D.; Michael, L.; Robert, F.K.; Stephen, R.D.; Thomas, A.W.; Adam, G.T.; et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef] [Green Version]
- James, O.H.; Holly, R.W.; John, C.P. Energy Balance and Obesity. Circulation 2012, 126, 126–132. [Google Scholar] [CrossRef]
- Isabelle, R.; Laure, D.; Simón, B.; Hervé, M.B.; Paul, W.F.; Marc, G.; Nahla, H.; Stephen, D.H.; Michael, L.; Barrie, M.; et al. On behalf of the IARC working group on Energy Balance and Obesity. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Tsujino, S.; Nosaka, N.; Sadamitsu, S.; Kato, K. Effect of Continuous Ingestion of 2 g of Medium-Chain Triglycerides on Substrate Metabolism during Low-Intensity Physical Activity. Nutrients 2022, 14, 536. [Google Scholar] [CrossRef]
- Damiano, F.; De Benedetto, G.E.; Longo, S.; Giannotti, L.; Fico, D.; Siculella, L.; Giudetti, A.M. Decanoic Acid and Not Octanoic Acid Stimulates Fatty Acid Synthesis in U87MG Glioblastoma Cells: A Metabolomics Study. Front. Neurosci. 2020, 14, 783. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.C.; Babayan, V.K. Medium-chain triglycerides: An update. Am. J. Clin. Nutr. 1982, 36, 950–962. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Harada, N.; Kishino, S.; Iwasaki, K.; Ikeguchi-Ogura, E.; Yamane, S.; Kato, T.; Kanemaru, Y.; Sankoda, A.; Hatoko, T.; et al. Medium-chain triglycerides inhibit long-chain triglyceride-induced GIP secretion through GPR120-dependent inhibition of CCK. iScience 2021, 24, 102963. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.C.; Ingenbleek, Y.; Frey, A. The usefulness of dietary medium-chain triglycerides in body weight control: Fact or fancy? J. Lipid Res. 1996, 37, 708–726. [Google Scholar] [CrossRef]
- Mumme, K.; Stonehouse, W. Effects of medium-chain triglycerides on weight loss and body composition: A meta-analysis of randomized controlled trials. J. Acad. Nutr. Diet. 2015, 115, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H.; Kasai, M.; Takeuchi, H.; Nakamura, M.; Okazaki, M.; Kondo, K. Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J. Nutr. 2001, 131, 2853–2859. [Google Scholar] [CrossRef] [PubMed]
- Kasai, M.; Nosaka, N.; Maki, H.; Negishi, S.; Aoyama, T.; Nakamura, M.; Suzuki, Y.; Tsuji, H.; Uto, H.; Okazaki, M.; et al. Effect of dietary medium- and long-chain triacylglycerols (MLCT) on accumulation of body fat in healthy humans. Asia Pac. J. Clin. Nutr. 2003, 12, 151–160. [Google Scholar] [PubMed]
- Nosaka, N.; Maki, H.; Suzuki, Y.; Haruna, H.; Ohara, A.; Kasai, M.; Tsuji, H.; Aoyama, T.; Okazaki, M.; Igarashi, O.; et al. Effects of margarine containing medium-chain triacylglycerols on body fat reduction in humans. J. Atheroscler. Thromb. 2003, 10, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, H.; Kasai, M.; Taguchi, N.; Tsuji, H.; Suzuki, M. Effect of triacylglycerols containing medium- and long-chain fatty acids on serum triacylglycerol levels and body fat in college athletes. J. Nutr. Sci. Vitaminol. 2002, 48, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, N.; Tsujino, S.; Honda, K.; Suemitsu, H.; Kato, K. Enhancement of Fat Oxidation during Submaximal Exercise in Sedentary Persons: Variations by Medium-Chain Fatty Acid Composition and Age Group. Lipids 2020, 55, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, N.; Suzuki, Y.; Maki, H.; Haruna, H.; Ohara, A.; Kasai, M.; Tsuji, H.; Aoyama, T.; Okazaki, M.; Kondo, K. Effects of Ingestion of Margarine Containing Medium-Chain Triglycerides for 4 Weeks on Blood Parameters and Postprandial Thermogenesis. J. Oleo Sci. 2003, 52, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.O.; Peters, J.C.; Yang, D.; Sharp, T.; Kaler, M.; Abumrad, N.N.; Greene, H.L. Thermogenesis in humans during overfeeding with medium-chain triglycerides. Metabolism 1989, 38, 641–648. [Google Scholar] [CrossRef]
- St-Onge, M.P.; Bourque, C.; Jones, P.J.; Ross, R.; Parsons, W.E. Medium- versus long-chain triglycerides for 27 days increases fat oxidation and energy expenditure without resulting in changes in body composition in overweight women. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, M.D.; Papamandjaris, A.A.; Jones, P.J. Enhanced postprandial energy expenditure with medium-chain fatty acid feeding is attenuated after 14 d in premenopausal women. Am. J. Clin. Nutr. 1999, 69, 883–889. [Google Scholar] [CrossRef]
- Metges, C.C.; Wolfram, G. Medium- and long-chain triglycerides labeled with 13C: A comparison of oxidation after oral or parenteral administration in humans. J. Nutr. 1991, 121, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Binnert, C.; Pachiaudi, C.; Beylot, M.; Hans, D.; Vandermander, J.; Chantre, P.; Riou, J.P.; Laville, M. Influence of human obesity on the metabolic fate of dietary long- and medium-chain triacylglycerols. Am. J. Clin. Nutr. 1998, 67, 595–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health, Labour and Welfare, Japan. Ethical Guidelines for Medical and Biological Research Involving Human Subjects. 2013. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/hokabunya/kenkyujigyou/i-kenkyu/index.html (accessed on 24 January 2021). (In Japanese)
- Ministry of Justice, Japan. Act on the Protection of Personal Information. 2003. Available online: https://elaws.e-gov.go.jp/document?lawid=415AC0000000057 (accessed on 24 January 2021). (In Japanese)
- Ministry of Education, Culture, Sports, Science and Technology, Japan. Standard Tables of Food Composition in Japan—2015—(Seventh Revised Version). 2015. Available online: https://www.mext.go.jp/a_menu/syokuhinseibun/1365297.htm (accessed on 24 January 2021). (In Japanese)
- Henning, B.; Löfgren, R.; Sjöström, L. Chamber for indirect calorimetry with improved transient response. Med. Biol. Eng. Comput. 1996, 34, 207–212. [Google Scholar] [CrossRef]
- Ando, Y.; Saito, S.; Miura, H.; Osaki, N.; Katsuragi, Y. Consumption of alpha-linolenic acid-enriched diacylglycerol induces increase in dietary fat oxidation compared with alpha-linolenic acid-enriched triacylglycerol: A randomized, double-blind trial. Nutr. Res. 2017, 48, 85–92. [Google Scholar] [CrossRef] [PubMed]
- González-Haro, C. Concordance between 13 C:12 C ratio technique respect to indirect calorimetry to estimate carbohydrate and fat oxidation rates by means stoichiometric equations during exercise. A reliability and agreement study. Physiol. Rep. 2019, 7, e14053. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Labour and Welfare, Tokyo. Report of National Health and Nutrition Survey, 2003, 2008, 2013, 2018, 2019 (2004, 2009, 2014, 2019, 2020). Available online: https://www.mhlw.go.jp/bunya/kenkou/kenkou_eiyou_chousa.html (accessed on 24 January 2022).
- Moki, F.; Kusano, M.; Mizuide, M.; Shimoyama, Y.; Kawamura, O.; Takagi, H.; Imai, T.; MORI, M. Association between reflux oesophagitis and features of the metabolic syndrome in Japan. Aliment. Pharmacol. Ther. 2007, 26, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Education, Culture, Sports, Science and Technology (MEXT). Reference 2: “Japanese People’s Intake of Fat by Food” Food Composition Committee, 10th Meeting (27 January 2015). Available online: https://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu3/008/shiryo/__icsFiles/afieldfile/2015/02/24/1355447_7.pdf (accessed on 24 January 2021). (In Japanese)
- Papamandjaris, A.A.; White, M.D.; Raeini-Sarjaz, M.; Jones, P.J. Endogenous fat oxidation during medium chain versus long chain triglyceride feeding in healthy women. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1158–1166. [Google Scholar] [CrossRef] [Green Version]
- Bergouignan, A.; Schoeller, D.A.; Normand, S.; Gauquelin-Koch, G.; Laville, M.; Shriver, T.; Desage, M.; Le Maho, Y.; Ohshima, H.; Gharib, C.; et al. Effect of physical inactivity on the oxidation of saturated and monounsaturated dietary Fatty acids: Results of a randomized trial. PLoS Clin. Trials 2006, 1, e27. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.E.; Parks, E.J. Postprandial metabolism of meal triglyceride in humans. Biochim. Biophys. Acta 2012, 1821, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Frayn, K.N.; Arner, P.; Yki-Järvinen, H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 2006, 42, 89–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinohara, H.; Shimada, H.; Noguchi, O.; Kubota, F.; Aoyama, T. Effect of Medium-Chain Fatty Acids-Containing Dietary Oil on Hepatic Fatty Acid Oxidation Enzyme Activity in Rats. J. Oleo Sci. 2002, 51, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Hirasaka, K.; Kohno, S.; Tomida, C.; Haruna, M.; Uchida, T.; Ohno, A.; Oarada, M.; Teshima-Kondo, S.; Okumura, Y.; et al. Capric Acid Up-Regulates UCP3 Expression without PDK4 Induction in Mouse C2C12 Myotubes. J. Nutr. Sci. Vitaminol. 2016, 62, 32–39. [Google Scholar] [CrossRef]
- Shinohara, H.; Wu, J.; Kasai, M.; Aoyama, T. Randomly interesterified triacylglycerol containing medium- and long-chain fatty acids stimulates fatty acid metabolism in white adipose tissue of rats. Biosci. Biotechnol. Biochem. 2006, 70, 2919–2926. [Google Scholar] [CrossRef]
- Javed, F.; He, Q.; Davidson, L.E.; Thornton, J.C.; Albu, J.; Boxt, L.; Krasnow, N.; Elia, M.; Kang, P.; Heshka, S.; et al. Brain and high metabolic rate organ mass: Contributions to resting energy expenditure beyond fat-free mass. Am. J. Clin. Nutr. 2010, 91, 907–912. [Google Scholar] [CrossRef]
- Seaton, T.B.; Welle, S.L.; Warenko, M.K.; Campbell, R.G. Thermic effect of medium-chain and long-chain triglycerides in man. Am. J. Clin. Nutr. 1986, 44, 630–634. [Google Scholar] [CrossRef]
- Kasai, M.; Nosaka, N.; Maki, H.; Suzuki, Y.; Takeuchi, H.; Aoyama, T.; Ohra, A.; Harada, Y.; Okazaki, M.; Kondo, K. Comparison of diet-induced thermogenesis of foods containing medium- versus long-chain triacylglycerols. J. Nutr. Sci. Vitaminol. 2002, 48, 536–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, Y.; Nosaka, N.; Maki, H.; Kasai, M.; Aoyama, T.; Haruna, H.; Toda, T.; Okazaki, M.; Igarashi, O.; Kondo, K. Effects of margarine containing medium-chain triglycerides on diet-induced thermogenesis. J. Oleo Sci. 2005, 54, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T.; Matsuo, M.; Taguchi, N.; Takeuchi, H. The thermic effect is greater for structured medium- and long-chain triacylglycerols versus long-chain triacylglycerols in healthy young women. Metabolism 2001, 50, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, A.; Nosaka, N.; Kasai, M.; Aoyama, T.; Okazaki, M.; Igarashi, O.; Kondo, K. Dietary medium- and long-chain triacylglycerols accelerate diet-induced thermogenesis in humans. J. Oleo Sci. 2007, 56, 283–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalfi, L.; Coltorti, A.; Contaldo, F. Postprandial thermogenesis in lean and obese subjects after meals supplemented with medium-chain and long-chain triglycerides. Am. J. Clin. Nutr. 1991, 53, 1130–1133. [Google Scholar] [CrossRef] [PubMed]
- Rust, B.M.; Raatz, S.K.; Casperson, S.L.; Duke, S.E.; Picklo, M.J. Dietary Fat Chain Length, Saturation, and PUFA Source Acutely Affect Diet-Induced Thermogenesis but Not Satiety in Adults in a Randomized, Crossover Trial. Nutrients 2021, 13, 2615. [Google Scholar] [CrossRef]
- Geelen, M.J. Medium-chain fatty acids as short-term regulators of hepatic lipogenesis. Biochem. J. 1994, 302, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, N.; Hariharan, K.; TidAng, J.; Frangioudakis, G.; Beale, S.M.; Wright, L.E.; Zeng, X.Y.; Leslie, S.J.; Li, J.Y.; Kraegen, E.W.; et al. Enhancement of muscle mitochondrial oxidative capacity and alterations in insulin action are lipid species dependent: Potent tissue-specific effects of medium-chain fatty acids. Diabetes 2009, 58, 2547–2754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, R.; Bickerton, A.S.; Fielding, B.A.; Blaak, E.E.; Wagenmakers, A.J.; Chong, M.F.; Gilbert, M.; Karpe, F.; Frayn, K.N. Reduced oxidation of dietary fat after a short term high-carbohydrate diet. Am. J. Clin. Nutr. 2008, 87, 824–831. [Google Scholar] [CrossRef]
- Tentolouris, N.; Alexiadou, K.; Kokkinos, A.; Koukou, E.; Perrea, D.; Kyriaki, D.; Katsilambros, N. Meal-induced thermogenesis and macronutrient oxidation in lean and obese women after consumption of carbohydrate-rich and fat-rich meals. Nutrition 2011, 27, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, N.; Suzuki, Y.; Suemitsu, H.; Kasai, M.; Kato, K.; Taguchi, M. Medium-chain Triglycerides with Maltodextrin Increase Fat Oxidation during Moderate-intensity Exercise and Extend the Duration of Subsequent High-intensity Exercise. J. Oleo Sci. 2018, 67, 1455–1462. [Google Scholar] [CrossRef] [Green Version]
- Fushiki, T.; Matsumoto, K.; Inoue, K.; Kawada, T.; Sugimoto, E. Swimming endurance capacity of mice is increased by chronic consumption of medium-chain triglycerides. J. Nutr. 1995, 125, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Ishizawa, R.; Masuda, K.; Sakata, S.; Nakatani, A. Effects of different fatty acid chain lengths on fatty acid oxidation-related protein expression levels in rat skeletal muscles. J. Oleo Sci. 2015, 64, 415–421. [Google Scholar] [CrossRef] [Green Version]
CO Group | TO Group | Intervention Effect Value (TO–CO) | |
---|---|---|---|
Rate of diet-derived LCTs, % | 3.8 ± 0.5 | 4.5 ± 0.5 | 0.7 ± 0.4 # |
Energy expenditure, kcal | 18.6 ± 2.1 | 26.1 ± 2.6 * | 7.5 ± 3.3 |
Fat oxidation, g | 0.6 ± 0.3 | 0.7 ± 0.3 | 0.1 ± 0.2 |
Carbohydrate oxidation, g | 19.1 ± 1.9 | 18.5 ± 1.8 | −0.7 ± 2.3 |
CO Group | TO Group | Intervention Effect Value (TO–CO) | |
---|---|---|---|
Energy expenditure rate, kcal/min | |||
Baseline | 1.12 ± 0.03 | 1.10 ± 0.03 | −0.021 ± 0.014 |
1 h after | 1.25 ± 0.04 | 1.26 ± 0.04 | 0.016 ± 0.015 |
2 h after | 1.23 ± 0.03 | 1.25 ± 0.03 | 0.021 ± 0.017 |
3 h after | 1.14 ± 0.03 | 1.15 ± 0.03 | 0.014 ± 0.012 |
4 h after | 1.09 ± 0.03 | 1.10 ± 0.03 | 0.005 ± 0.013 |
Respiratory quotient | |||
Baseline | 0.81 ± 0.01 | 0.82 ± 0.01 | 0.013 ± 0.011 |
1 h after | 0.87 ± 0.01 | 0.88 ± 0.01 | 0.008 ± 0.007 |
2 h after | 0.89 ± 0.01 | 0.89 ± 0.01 | −0.001 ± 0.012 |
3 h after | 0.90 ± 0.01 | 0.89 ± 0.01 | −0.010 ± 0.011 |
4 h after | 0.85 ± 0.01 | 0.86 ± 0.01 | 0.014 ± 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosaka, N.; Tsujino, S.; Kato, K. Short-Term Ingestion of Medium-Chain Triglycerides Could Enhance Postprandial Consumption of Ingested Fat in Individuals with a Body Mass Index from 25 to Less than 30: A Randomized, Placebo-Controlled, Double-Blind Crossover Study. Nutrients 2022, 14, 1119. https://doi.org/10.3390/nu14051119
Nosaka N, Tsujino S, Kato K. Short-Term Ingestion of Medium-Chain Triglycerides Could Enhance Postprandial Consumption of Ingested Fat in Individuals with a Body Mass Index from 25 to Less than 30: A Randomized, Placebo-Controlled, Double-Blind Crossover Study. Nutrients. 2022; 14(5):1119. https://doi.org/10.3390/nu14051119
Chicago/Turabian StyleNosaka, Naohisa, Shougo Tsujino, and Kazuhiko Kato. 2022. "Short-Term Ingestion of Medium-Chain Triglycerides Could Enhance Postprandial Consumption of Ingested Fat in Individuals with a Body Mass Index from 25 to Less than 30: A Randomized, Placebo-Controlled, Double-Blind Crossover Study" Nutrients 14, no. 5: 1119. https://doi.org/10.3390/nu14051119
APA StyleNosaka, N., Tsujino, S., & Kato, K. (2022). Short-Term Ingestion of Medium-Chain Triglycerides Could Enhance Postprandial Consumption of Ingested Fat in Individuals with a Body Mass Index from 25 to Less than 30: A Randomized, Placebo-Controlled, Double-Blind Crossover Study. Nutrients, 14(5), 1119. https://doi.org/10.3390/nu14051119