Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
The Solutions Preparation
2.2. Assessment of the Effect on Human Prostate Cancer Cells Proliferation and Iability/Apoptosis
2.2.1. Cell Culture
2.2.2. Proliferation Studies
2.2.3. Fluorescent Imaging
2.3. Anti-Genotoxicity Assessment
2.3.1. Umu-Test
2.3.2. Metabolic Activation
2.3.3. Determination of Anti-Genotoxicity by the Umu Test
2.4. Statistical Analysis
3. Results
3.1. Proliferation of LNCaP Cells
3.2. Viability/Apoptosis of LNCaP Cells
3.3. Anti-Genotoxicity Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2020, 77, 38–52. [Google Scholar] [CrossRef]
- Kimura, T.; Egawa, S. Epidemiology of prostate cancer in Asian countries. Int. J. Urol. 2018, 25, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.M.; Mucci, L.A. Diet and Lifestyle in Prostate Cancer. In Prostate Cancer: Cellular and Genetic Mechanisms of Disease Development and Progression; Dehm, S.M., Tindall, D.J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–27. [Google Scholar] [CrossRef]
- Kimura, T.; Sato, S.; Takahashi, H.; Egawa, S. Global Trends of Latent Prostate Cancer in Autopsy Studies. Cancers 2021, 13, 359. [Google Scholar] [CrossRef] [PubMed]
- Applegate, C.C.; Rowles, J.L.; Ranard, K.M.; Jeon, S.; Erdman, J.W. Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2018, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Yang, W.; Bosland, M.C. Soy isoflavones and prostate cancer: A review of molecular mechanisms. J. Steroid Biochem. Mol. Biol. 2014, 140, 116–132. [Google Scholar] [CrossRef]
- Lepri, S.R.; Luiz, R.C.; Zanelatto, L.C.; da Silva, P.B.; Sartori, D.; Ribeiro, L.R.; Mantovani, M.S. Chemoprotective activity of the isoflavones, genistein and daidzein on mutagenicity induced by direct and indirect mutagens in cultured HTC cells. Cytotechnology 2013, 65, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Costello, L.C.; Franklin, R.B. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch. Biochem. Biophys. 2016, 611, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Skinner, H.G.; Schwartz, G.G. A Prospective Study of Total and Ionized Serum Calcium and Fatal Prostate Cancer. Cancer Epidemiol. Biomark. Prev. 2009, 18, 575. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van Hemelrijck, M.; Hermans, R.; Michaelsson, K.; Melvin, J.; Garmo, H.; Hammar, N.; Jungner, I.; Walldius, G.; Holmberg, L. Serum calcium and incident and fatal prostate cancer in the Swedish AMORIS study. Cancer Causes Control 2012, 23, 1349–1358. [Google Scholar] [CrossRef]
- Salem, S.; Hosseini, M.; Allameh, F.; Babakoohi, S.; Mehrsai, A.; Pourmand, G. Serum Calcium Concentration and Prostate Cancer Risk: A Multicenter Study. Nutr. Cancer 2013, 65, 961–968. [Google Scholar] [CrossRef]
- Saleh, S.A.K.; Adly, H.M.; Abdelkhaliq, A.A.; Nassir, A.M. Serum Levels of Selenium, Zinc, Copper, Manganese, and Iron in Prostate Cancer Patients. Curr. Urol. 2020, 14, 44–49. [Google Scholar] [CrossRef]
- Sapota, A.; Daragó, A.; Taczalski, J.; Kilanowicz, A. Disturbed homeostasis of zinc and other essential elements in the prostate gland dependent on the character of pathological lesions. BioMetals 2009, 22, 1041. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Dwivedi, S.; Dhakad, U.; Murthy, R.C.; Choubey, V.K.; Goel, A.; Sankhwar, S.N. Status and Interrelationship of Zinc, Copper, Iron, Calcium and Selenium in Prostate Cancer. Indian J. Clin. Biochem. 2016, 31, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Liang, J.Y.; Li, T.L.; Guan, Z.X.; Zou, J.; Franklin, R.; Costello, L.C. Zinc induces mitochondria apoptogenesis in prostate cells. Mol. Urol. 2000, 4, 31–36. [Google Scholar] [PubMed]
- Liang, J.Y.; Liu, Y.Y.; Zou, J.; Franklin, R.B.; Costello, L.C.; Feng, P. Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate 1999, 40, 200–207. [Google Scholar] [CrossRef]
- To, P.K.; Do, M.-H.; Cho, Y.-S.; Kwon, S.-Y.; Kim, M.S.; Jung, C. Zinc Inhibits Expression of Androgen Receptor to Suppress Growth of Prostate Cancer Cells. Int. J. Mol. Sci. 2018, 19, 3062. [Google Scholar] [CrossRef] [PubMed]
- Rebsch, C.M.; Penna, F.J., 3rd; Copeland, P.R. Selenoprotein expression is regulated at multiple levels in prostate cells. Cell Res. 2006, 16, 940–948. [Google Scholar] [CrossRef]
- Zhong, W.; Oberley, T.D. Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCaP human prostate cancer cell line. Cancer Res. 2001, 61, 7071–7078. [Google Scholar]
- Xiang, N.; Zhao, R.; Zhong, W. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother. Pharmacol. 2009, 63, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.N.; Yin, J.J.; Shen, S.R. Growth inhibition of prostate cancer cells by epigallocatechin gallate in the presence of Cu2+. J. Agric. Food Chem. 2004, 52, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.Z.; Ni, X.F.; Yu, H.N.; Wang, S.S.; Shen, S.R. Effects of astaxanthin on oxidative stress induced by Cu(2+) in prostate cells. J. Zhejiang Univ. Sci. B 2017, 18, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Bordini, J.; Morisi, F.; Elia, A.R.; Santambrogio, P.; Pagani, A.; Cucchiara, V.; Ghia, P.; Bellone, M.; Briganti, A.; Camaschella, C.; et al. Iron Induces Cell Death and Strengthens the Efficacy of Antiandrogen Therapy in Prostate Cancer Models. Clin. Cancer Res. 2020, 26, 6387–6398. [Google Scholar] [CrossRef] [PubMed]
- Bernichtein, S.; Pigat, N.; Barry Delongchamps, N.; Boutillon, F.; Verkarre, V.; Camparo, P.; Reyes-Gomez, E.; Mejean, A.; Oudard, S.M.; Lepicard, E.M.; et al. Vitamin D3 Prevents Calcium-Induced Progression of Early-Stage Prostate Tumors by Counteracting TRPC6 and Calcium Sensing Receptor Upregulation. Cancer Res. 2017, 77, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Schneider, A.; Datta, N.S.; McCauley, L.K. Extracellular Calcium as a Candidate Mediator of Prostate Cancer Skeletal Metastasis. Cancer Res. 2006, 66, 9065–9073. [Google Scholar] [CrossRef]
- Guo, W.; Schlicht, M.; Kucynda, T.; Zhou, P.; Valyi-Nagy, K.; Kajdacsy-Balla, A. Abstract 4322: Iron increases the invasiveness of prostate cancer cells in vitro: Mechanisms and inhibition by the antioxidant ebselen. Cancer Res. 2012, 72, 4322. [Google Scholar] [CrossRef]
- Fujii, N.; Yano, S.; Takeshita, K. Selective enhancing effect of metal ions on mutagenicity. Gene Environ. 2016, 38, 21. [Google Scholar] [CrossRef]
- Kumi-Diaka, J.; Merchant, K.; Haces, A.; Hormann, V.; Johnson, M. Genistein-selenium combination induces growth arrest in prostate cancer cells. J. Med. Food 2010, 13, 842–850. [Google Scholar] [CrossRef]
- Zhao, R.; Xiang, N.; Domann, F.E.; Zhong, W. Effects of selenite and genistein on G2/M cell cycle arrest and apoptosis in human prostate cancer cells. Nutr. Cancer 2009, 61, 397–407. [Google Scholar] [CrossRef]
- Legg, R.L.; Tolman, J.R.; Lovinger, C.T.; Lephart, E.D.; Setchell, K.D.; Christensen, M.J. Diets high in selenium and isoflavones decrease androgen-regulated gene expression in healthy rat dorsolateral prostate. Reprod. Biol. Endocrinol. 2008, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Tolman, J.R.; Lephart, E.D.; Setchell, K.D.; Eggett, D.L.; Christensen, M.J. Timing of supplementation of selenium and isoflavones determines prostate cancer risk factor reduction in rats. Nutr. Metab. 2008, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Magee, P.J.; Raschke, M.; Steiner, C.; Duffin, J.G.; Pool-Zobel, B.L.; Jokela, T.; Wahala, K.; Rowland, I.R. Equol: A comparison of the effects of the racemic compound with that of the purified S-enantiomer on the growth, invasion, and DNA integrity of breast and prostate cells in vitro. Nutr. Cancer 2006, 54, 232–242. [Google Scholar] [CrossRef]
- Suzuki, K.; Koike, H.; Matsui, H.; Ono, Y.; Hasumi, M.; Nakazato, H.; Okugi, H.; Sekine, Y.; Oki, K.; Ito, K.; et al. Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. Int. J. Cancer 2002, 99, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.C.; Klein, R.D.; Wei, Q.; Guan, Y.; Contois, J.H.; Wang, T.T.; Chang, S.; Hursting, S.D. Low-dose genistein induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Mol. Carcinog. 2000, 29, 92–102. [Google Scholar] [CrossRef]
- Fan, Y.-J.; Huang, N.-S.; Xia, L. Genistein synergizes with RNA interference inhibiting survivin for inducing DU-145 of prostate cancer cells to apoptosis. Cancer Lett. 2009, 284, 189–197. [Google Scholar] [CrossRef]
- Chiyomaru, T.; Yamamura, S.; Fukuhara, S.; Yoshino, H.; Kinoshita, T.; Majid, S.; Saini, S.; Chang, I.; Tanaka, Y.; Enokida, H.; et al. Genistein Inhibits Prostate Cancer Cell Growth by Targeting miR-34a and Oncogenic HOTAIR. PLoS ONE 2013, 8, e70372. [Google Scholar] [CrossRef]
- Kiss, A.; Kowalski, J.; Melzig, M.F. Induction of neutral endopeptidase activity in PC-3 cells by an aqueous extract of Epilobium angustifolium L. and oenothein B. Phytomedicine 2006, 13, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Oda, Y.; Nakamura, S.; Oki, I.; Kato, T.; Shinagawa, H. Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat. Res. 1985, 147, 219–229. [Google Scholar] [CrossRef]
- Reifferscheid, G.; Heil, J.; Oda, Y.; Zahn, R.K. A microplate version of the SOS/umu-test for rapid detection of genotoxins and genotoxic potentials of environmental samples. Mutat. Res. 1991, 253, 215–222. [Google Scholar] [CrossRef]
- ISO 13829:2000; Water Quality—Determination of the Genotoxicity of Water and Waste Water Using the umu-Test. ISO: Geneva, Switzerland, 2000.
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Gardner, C.D.; Oelrich, B.; Liu, J.P.; Feldman, D.; Franke, A.A.; Brooks, J.D. Prostatic soy isoflavone concentrations exceed serum levels after dietary supplementation. Prostate 2009, 69, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Raschke, M.; Wähälä, K.; Pool-Zobel, B.L. Reduced isoflavone metabolites formed by the human gut microflora suppress growth but do not affect DNA integrity of human prostate cancer cells. Br. J. Nutr. 2006, 96, 426–434. [Google Scholar] [CrossRef]
- Hedlund, T.E.; van Bokhoven, A.; Johannes, W.U.; Nordeen, S.K.; Ogden, L.G. Prostatic fluid concentrations of isoflavonoids in soy consumers are sufficient to inhibit growth of benign and malignant prostatic epithelial cells in vitro. Prostate 2006, 66, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, T.E.; Johannes, W.U.; Miller, G.J. Soy isoflavonoid equol modulates the growth of benign and malignant prostatic epithelial cells in vitro. Prostate 2003, 54, 68–78. [Google Scholar] [CrossRef]
- Ishii, K.; Otsuka, T.; Iguchi, K.; Usui, S.; Yamamoto, H.; Sugimura, Y.; Yoshikawa, K.; Hayward, S.W.; Hirano, K. Evidence that the prostate-specific antigen (PSA)/Zn2+ axis may play a role in human prostate cancer cell invasion. Cancer Lett. 2004, 207, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Costello, L.C.; Fenselau, C.C.; Franklin, R.B. Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. J. Inorg. Biochem. 2011, 105, 589–599. [Google Scholar] [CrossRef]
- Bektic, J.; Berger, A.P.; Pfeil, K.; Dobler, G.; Bartsch, G.; Klocker, H. Androgen receptor regulation by physiological concentrations of the isoflavonoid genistein in androgen-dependent LNCaP cells is mediated by estrogen receptor beta. Eur. Urol. 2004, 45, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Hursting, S.D.; Perkins, S.N.; Wang, T.C.; Wang, T.T. Genistein affects androgen-responsive genes through both androgen- and estrogen-induced signaling pathways. Mol. Carcinog. 2006, 45, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Itsumi, M.; Shiota, M.; Takeuchi, A.; Kashiwagi, E.; Inokuchi, J.; Tatsugami, K.; Kajioka, S.; Uchiumi, T.; Naito, S.; Eto, M.; et al. Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase kinase-associated protein 2. Cancer Sci. 2016, 107, 1022–1028. [Google Scholar] [CrossRef]
- Davis, J.N.; Kucuk, O.; Sarkar, F.H. Genistein inhibits NF-kappa B activation in prostate cancer cells. Nutr. Cancer 1999, 35, 167–174. [Google Scholar] [CrossRef]
- Uzzo, R.G.; Leavis, P.; Hatch, W.; Gabai, V.L.; Dulin, N.; Zvartau, N.; Kolenko, V.M. Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents. Clin. Cancer Res. 2002, 8, 3579–3583. [Google Scholar]
- Singh, C.K.; Chhabra, G.; Patel, A.; Chang, H.; Ahmad, N. Dietary Phytochemicals in Zinc Homeostasis: A Strategy for Prostate Cancer Management. Nutrients 2021, 13, 1867. [Google Scholar] [CrossRef]
- Yang, J.G.; Yu, H.N.; Sun, S.L.; Zhang, L.C.; He, G.Q.; Das, U.N.; Ruan, H.; Shen, S.R. Epigallocatechin-3-gallate affects the growth of LNCaP cells via membrane fluidity and distribution of cellular zinc. J. Zhejiang Univ. Sci. B 2009, 10, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, J.; Masrudin, S.S.; Alias, Z.; Muhamad, N.A. The effects of Pueraria mirifica extract, diadzein and genistein in testosterone-induced prostate hyperplasia in male Sprague Dawley rats. Mol. Biol. Rep. 2019, 46, 1855–1871. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, V.; Erkekoglu, P.; Forestier, A.; Favier, A.; Hincal, F.; Diamond, A.M.; Douki, T.; Rachidi, W. Low doses of selenium specifically stimulate the repair of oxidative DNA damage in LNCaP prostate cancer cells. Free Radic. Res. 2012, 46, 105–116. [Google Scholar] [CrossRef]
- Kandas, N.O.; Randolph, C.; Bosland, M.C. Differential effects of selenium on benign and malignant prostate epithelial cells: Stimulation of LNCaP cell growth by noncytotoxic, low selenite concentrations. Nutr. Cancer 2009, 61, 251–264. [Google Scholar] [CrossRef]
- Safi, R.; Nelson, E.R.; Chitneni, S.K.; Franz, K.J.; George, D.J.; Zalutsky, M.R.; McDonnell, D.P. Copper signaling axis as a target for prostate cancer therapeutics. Cancer Res. 2014, 74, 5819–5831. [Google Scholar] [CrossRef]
- Yu, H.N.; Shen, S.R.; Xiong, Y.K. Cytotoxicity of epigallocatechin-3-gallate to LNCaP cells in the presence of Cu2+. J. Zhejiang Univ. Sci. B 2005, 6, 125–131. [Google Scholar] [CrossRef]
- Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Florencio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002, 36, 1199–1208. [Google Scholar] [CrossRef]
- Chen, X.; Tang, L.-J.; Sun, Y.-N.; Qiu, P.-H.; Liang, G. Syntheses, characterization and antitumor activities of transition metal complexes with isoflavone. J. Inorg. Biochem. 2010, 104, 379–384. [Google Scholar] [CrossRef]
- Karlíčková, J.; Macáková, K.; Říha, M.; Pinheiro, L.M.; Filipský, T.; Horňasová, V.; Hrdina, R.; Mladěnka, P. Isoflavones Reduce Copper with Minimal Impact on Iron In Vitro. Oxidative Med. Cell. Longev. 2015, 2015, 437381. [Google Scholar] [CrossRef]
- Ardura, J.A.; Alvarez-Carrion, L.; Gutierrez-Rojas, I.; Alonso, V. Role of Calcium Signaling in Prostate Cancer Progression: Effects on Cancer Hallmarks and Bone Metastatic Mechanisms. Cancers 2020, 12, 1071. [Google Scholar] [CrossRef]
- Goldstein, D.A. Serum Calcium. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; pp. 677–679. Available online: https://www.ncbi.nlm.nih.gov/books/NBK250/ (accessed on 1 January 2022).
- Halthur, C.; Johansson, A.L.V.; Almquist, M.; Malm, J.; Grönberg, H.; Manjer, J.; Dickman, P.W. Serum calcium and the risk of prostate cancer. Cancer Causes Control 2009, 20, 1205–1214. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Melo, F.H.M.D.; Oliveira, J.S.; Sartorelli, V.O.B.; Montor, W.R. Cancer Chemoprevention: Classic and Epigenetic Mechanisms Inhibiting Tumorigenesis. What Have We Learned So Far? Front. Oncol. 2018, 8, 644. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.B.; King, A.A. Genistein genotoxicity: Critical considerations of in vitro exposure dose. Toxicol. Appl. Pharmacol. 2007, 224, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, A.L.; Iwami, K.; Wätjen, W.; Kahl, R.; Degen, G.H. Genotoxicity of the isoflavones genistein, daidzein and equol in V79 cells. Toxicol. Lett. 2004, 151, 151–162. [Google Scholar] [CrossRef]
- Schwen, R.; Jackson, R.; Proudlock, R. Genotoxicity assessment of S-equol in bacterial mutation, chromosomal aberration, and rodent bone marrow micronucleus tests. Food Chem. Toxicol. 2010, 48, 3481–3485. [Google Scholar] [CrossRef]
- Kopečná-Zapletalová, M.; Krasulová, K.; Anzenbacher, P.; Hodek, P.; Anzenbacherová, E. Interaction of isoflavonoids with human liver microsomal cytochromes P450: Inhibition of CYP enzyme activities. Xenobiotica 2017, 47, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Dowling, S.; Regan, F.; Hughes, H. The characterisation of structural and antioxidant properties of isoflavone metal chelates. J. Inorg. Biochem. 2010, 104, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Jazieh, A.R.; Kopp, M.; Foraida, M.; Ghouse, M.; Khalil, M.; Savidge, M.; Sethuraman, G. The use of dietary supplements by veterans with cancer. J. Altern. Complement. Med. 2004, 10, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L. Multivitamin-multimineral supplements: Who uses them? Am. J. Clin. Nutr. 2007, 85, 277–279. [Google Scholar] [CrossRef]
- Velicer, C.M.; Ulrich, C.M. Vitamin and mineral supplement use among US adults after cancer diagnosis: A systematic review. J. Clin. Oncol. 2008, 26, 665–673. [Google Scholar] [CrossRef]
Tested Mixture | +S9 | −S9 | ||
---|---|---|---|---|
G (Mean ± SD) | IR (Mean ± SD) | G (Mean ± SD) | IR (Mean ± SD) | |
Negative Control | 1.00 ± 0.07 | 1.00 ± 0.13 | 1.00 ± 0.06 | 1.00 ± 0.13 |
gen | 1.16 ± 0.17 | 0.78 ± 0.16 | 1.28 ± 0.35 | 0.75 ± 0.15 |
Zn | 1.04 ± 0.05 | 0.99 ± 0.16 | 1.09 ± 0.13 | 1.02 ± 0.24 |
Cu | 1.07 ± 0.11 | 0.93 ± 0.11 | 1.09 ± 0.12 | 0.87 ± 0.17 |
Ca | 1.09 ± 0.15 | 0.99 ± 0.12 | 1.11 ± 0.09 | 0.93 ± 0.19 |
Se | 1.09 ± 0.13 | 0.98 ± 0.15 | 1.14 ± 0.11 | 0.92 ± 0.19 |
Fe | 0.98 ± 0.10 | 0.97 ± 0.10 | 1.10 ± 0.10 | 0.90 ± 0.19 |
gen + Zn | 1.03 ± 0.15 | 1.03 ± 0.21 | 1.18 ± 0.42 | 0.80 ± 0.23 |
gen + Cu | 0.99 ± 0.11 | 1.03 ± 0.19 | 0.88 ± 0.09 | 1.01 ± 0.21 |
gen + Ca | 1.03 ± 0.08 | 1.02 ± 0.19 | 1.13 ± 0.14 | 0.86 ± 0.13 |
gen + Se | 1.04 ± 0.11 | 1.05 ± 0.14 | 1.00 ± 0.10 | 1.03 ± 0.24 |
gen + Fe | 1.06 ± 0.07 | 1.03 ± 0.13 | 1.03 ± 0.09 | 1.04 ± 0.16 |
dai | 0.94 ± 0.12 | 0.98 ± 0.13 | 1.25 ± 0.28 | 0.86 ± 0.14 |
dai + Zn | 0.92 ± 0.10 | 1.06 ± 0.18 | 1.05 ± 0.08 | 1.03 ± 0.17 |
dai + Cu | 1.00 ± 0.13 | 1.10 ± 0.13 | 1.11 ± 0.15 | 1.02 ± 0.17 |
dai + Ca | 1.02 ± 0.12 | 0.95 ± 0.11 | 1.12 ± 0.15 | 0.97 ± 0.10 |
dai + Se | 1.06 ± 0.07 | 1.02 ± 0.07 | 1.14 ± 0.11 | 1.03 ± 0.12 |
dai + Fe | 1.03 ± 0.08 | 0.99 ± 0.08 | 1.07 ± 0.11 | 0.87 ± 0.16 |
eq | 1.06 ± 0.09 | 0.84 ± 0.10 | 1.18 ± 0.33 | 0.83 ± 0.16 |
eq + Zn | 1.04 ± 0.10 | 0.91 ± 0.11 | 0.89 ± 0.14 | 1.24 ± 0.33 |
eq + Cu | 1.10 ± 0.07 | 0.90 ± 0.12 | 0.99 ± 0.14 | 1.31 ± 0.52 |
eq + Ca | 1.10 ± 0.10 | 0.92 ± 0.13 | 0.98 ± 0.07 | 1.04 ± 0.18 |
eq + Se | 1.14 ± 0.10 | 0.98 ± 0.14 | 1.07 ± 0.07 | 1.23 ± 0.30 |
eq + Fe | 1.05 ± 0.07 | 0.93 ± 0.13 | 1.02 ± 0.08 | 1.15 ± 0.50 |
Tested Mixture | G (Mean ± SD) | IR (Mean ± SD) | %Anti-Genotox. |
---|---|---|---|
Negative Control | 1.00 ± 0.06 | 1.00 ± 0.13 | |
NQO 0.25 mg/L | 0.95 ± 0.11 | 6.06 ± 1.48 | |
gen | 1.12 ± 0.24 | 4.84 ± 1.47 | 20% |
Zn | 1.01 ± 0.11 | 5.20 ± 1.44 | |
Cu | 1.00 ± 0.12 | 5.14 ± 1.41 | |
Ca | 1.11 ± 0.05 | 4.94 ± 1.28 | 18% |
Se | 1.11 ± 0.05 | 5.19 ± 1.63 | |
Fe | 1.08 ± 0.10 | 4.86 ± 1.27 | 20% |
gen + Zn | 0.98 ± 0.18 | 5.95 ± 1.24 a | |
gen + Cu | 0.85 ± 0.09 | 6.26 ± 0.84 a | |
gen + Ca | 1.01 ± 0.09 | 5.52 ± 0.58 a | |
gen + Se | 0.95 ± 0.09 | 5.98 ± 0.89 a | |
gen + Fe | 0.99 ± 0.07 | 5.50 ± 0.51 a | |
NQO 0.05 mg/L | 0.99 ± 0.10 | 2.64 ± 0.63 | |
gen | 1.01 ± 0.12 | 2.48 ± 0.58 | |
Zn | 1.01 ± 0.11 | 2.36 ± 0.46 | |
Cu | 0.98 ± 0.10 | 2.42 ± 0.61 | |
Ca | 1.13 ± 0.08 | 2.22 ± 0.54 | |
Se | 1.10 ± 0.09 | 2.39 ± 0.48 | |
Fe | 1.10 ± 0.10 | 2.24 ± 0.52 | |
gen + Zn | 0.89 ± 0.11 | 2.77 ± 0.78 | |
gen + Cu | 0.78 ± 0.06 | 3.04 ± 0.79 | |
gen + Ca | 1.00 ± 0.11 | 2.55 ± 0.45 | |
gen + Se | 0.97 ± 0.07 | 2.74 ± 0.53 | |
gen + Fe | 1.04 ± 0.09 | 2.56 ± 0.34 |
Tested Mixture | G (Mean ± SD) | IR (Mean ± SD) | %Anti-Genotox. |
---|---|---|---|
Negative Control | 1.00 ± 0.09 | 1.00 ± 0.16 | |
NQO 0.25 mg/L | 0.78 ± 0.12 | 9.92 ± 3.06 | |
Dai | 1.03 ± 0.25 | 7.92 ± 2.64 | |
dai + Zn | 0.93 ± 0.10 | 8.57 ± 2.50 | |
dai + Cu | 0.99 ± 0.14 | 9.23 ± 2.76 | |
dai + Ca | 1.06 ± 0.21 | 8.60 ± 2.87 | |
dai + Se | 1.09 ± 0.20 | 8.67 ± 2.57 | |
dai + Fe | 1.04 ± 0.20 | 8.06 ± 2.47 | - |
Eq | 0.97 ± 0.26 | 9.25 ± 4.77 | |
eq + Zn | 0.80 ± 0.16 | 10.49 ± 3.87 | |
eq + Cu | 0.84 ± 0.11 | 9.67 ± 2.86 | |
eq + Ca | 0.90 ± 0.19 | 9.64 ± 3.62 | |
eq + Se | 0.96 ± 0.15 | 9.36 ± 2.56 | |
eq + Fe | 0.90 ± 0.14 | 8.37 ± 2.58 | |
NQO 0.05 mg/L | 0.97 ± 0.15 | 2.80 ± 1.56 | |
Dai | 0.94 ± 0.16 | 2.48 ± 1.65 | |
dai + Zn | 0.86 ± 0.10 | 2.78 ± 1.87 | |
dai + Cu | 0.92 ± 0.14 | 2.70 ± 1.53 | |
dai + Ca | 1.06 ± 0.18 | 2.54 ± 1.37 | |
dai + Se | 1.12 ± 0.15 | 2.54 ± 1.36 | |
dai + Fe | 1.09 ± 0.16 | 2.36 ± 1.11 | - |
Eq | 1.06 ± 0.27 | 2.75 ± 1.63 | |
eq + Zn | 0.89 ± 0.13 | 3.25 ± 2.03 | |
eq + Cu | 0.96 ± 0.11 | 3.07 ± 1.49 | |
eq + Ca | 1.04 ± 0.08 | 2.82 ± 1.39 | |
eq + Se | 1.03 ± 0.11 | 3.17 ± 1.73 | |
eq + Fe | 0.95 ± 0.10 | 2.80 ± 1.37 |
Tested Mixture | G (Mean ± SD) | IR (Mean ± SD) | %Anti-Genotox. |
---|---|---|---|
Negative Control | 1.00 ± 0.07 | 1.00 ± 0.13 | |
2AA 5 mg/L | 1.02 ± 0.08 | 2.17 ± 0.39 | |
Gen | 1.21 ± 0.17 | 1.79 ± 0.25 | 17% |
Zn | 1.08 ± 0.05 | 2.20 ± 0.31 | |
Cu | 1.16 ± 0.14 | 1.60 ± 0.25 | 26% |
Ca | 1.19 ± 0.13 | 2.36 ± 0.36 | |
Se | 1.17 ± 0.12 | 2.11 ± 0.40 | |
Fe | 1.07 ± 0.07 | 1.87 ± 0.27 | 14% |
gen + Zn | 0.98 ± 0.09 | 2.06 ± 0.42 | |
gen + Cu | 0.98 ± 0.13 | 1.48 ± 0.34 a | 32% |
gen + Ca | 1.07 ± 0.13 | 2.02 ± 0.58 | |
gen + Se | 1.09 ± 0.16 | 1.96 ± 0.55 | |
gen + Fe | 1.09 ± 0.11 | 1.69 ± 0.28 | 22% |
2AA 1 mg/L | 1.00 ± 0.07 | 2.00 ± 0.53 | |
Gen | 1.16 ± 0.17 | 1.35 ± 0.23 | 32% |
Zn | 1.03 ± 0.08 | 1.77 ± 0.42 | |
Cu | 1.11 ± 0.12 | 1.34 ± 0.30 | 33% |
Ca | 1.16 ± 0.10 | 1.86 ± 0.44 | |
Se | 1.18 ± 0.10 | 1.79 ± 0.40 | |
Fe | 1.10 ± 0.06 | 1.59 ± 0.27 | 21% |
gen + Zn | 0.92 ± 0.08 | 1.89 ± 0.51 a | |
gen + Cu | 0.95 ± 0.13 | 1.26 ± 0.21 | 37% |
gen + Ca | 1.08 ± 0.14 | 1.58 ± 0.29 | 21% |
gen + Se | 1.04 ± 0.18 | 1.61 ± 0.34 a | 19% |
gen + Fe | 1.04 ± 0.13 | 1.44 ± 0.32 | 28% |
Tested Mixture | G (Mean ± SD) | IR (Mean ± SD) | %Anti-Genotox. |
Negative Control | 1.00 ± 0.08 | 1.00 ± 0.10 | |
2AA 5 mg/L | 0.86 ± 0.09 | 2.91 ± 0.54 | |
dai | 0.99 ± 0.13 | 2.36 ± 0.45 | 19% |
dai + Zn | 0.89 ± 0.14 | 2.56 ± 0.78 | |
dai + Cu | 0.94 ± 0.15 | 1.71 ± 0.28 a | 41% |
dai + Ca | 0.98 ± 0.17 | 2.81 ± 0.66 | |
dai + Se | 1.03 ± 0.15 | 2.49 ± 0.47 | |
dai + Fe | 1.00 ± 0.12 | 2.03 ± 0.36 | 30% |
eq | 1.03 ± 0.09 | 2.08 ± 0.30 | 29% |
eq + Zn | 0.96 ± 0.06 | 2.19 ± 0.38 | 25% |
eq + Cu | 1.01 ± 0.06 | 1.61 ± 0.32 b | 45% |
eq + Ca | 1.04 ± 0.12 | 2.55 ± 0.50 b | |
eq + Se | 1.08 ± 0.13 | 2.22 ± 0.40 | 24% |
eq + Fe | 0.96 ± 0.13 | 1.80 ± 0.24 b | 38% |
2AA 1 mg/L | 0.92 ± 0.10 | 2.37 ± 0.48 | |
dai | 0.92 ± 0.16 | 2.09 ± 0.45 | |
dai + Zn | 0.88 ± 0.09 | 1.93 ± 0.25 | 19% |
dai + Cu | 0.94 ± 0.14 | 1.54 ± 0.22 a | 35% |
dai + Ca | 0.99 ± 0.13 | 2.15 ± 0.32 | |
dai + Se | 1.00 ± 0.15 | 2.00 ± 0.31 | |
dai + Fe | 0.90 ± 0.15 | 1.75 ± 0.29 a | 26% |
eq | 0.99 ± 0.11 | 1.58 ± 0.18 | 34% |
eq + Zn | 0.94 ± 0.10 | 1.62 ± 0.17 | 32% |
eq + Cu | 1.03 ± 0.09 | 1.17 ± 0.14 b | 51% |
eq + Ca | 1.09 ± 0.10 | 1.76 ± 0.23 b | 26% |
eq + Se | 1.16 ± 0.10 | 1.80 ± 0.38 | 24% |
eq + Fe | 1.06 ± 0.06 | 1.51 ± 0.26 | 36% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanisławska, I.J.; Figat, R.; Kiss, A.K.; Bobrowska-Korczak, B. Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer. Nutrients 2022, 14, 1225. https://doi.org/10.3390/nu14061225
Stanisławska IJ, Figat R, Kiss AK, Bobrowska-Korczak B. Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer. Nutrients. 2022; 14(6):1225. https://doi.org/10.3390/nu14061225
Chicago/Turabian StyleStanisławska, Iwona J., Ramona Figat, Anna K. Kiss, and Barbara Bobrowska-Korczak. 2022. "Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer" Nutrients 14, no. 6: 1225. https://doi.org/10.3390/nu14061225
APA StyleStanisławska, I. J., Figat, R., Kiss, A. K., & Bobrowska-Korczak, B. (2022). Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer. Nutrients, 14(6), 1225. https://doi.org/10.3390/nu14061225