Causal Associations of Circulating Lipids with Osteoarthritis: A Bidirectional Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Sources
2.2. Genetic Instrument Selection
2.3. Data Sources for OA
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; March, L.; Chew, M. Osteoarthritis in 2020 and beyond: A Lancet Commission. Lancet 2020, 396, 1711–1712. [Google Scholar] [CrossRef]
- Papathanasiou, I.; Anastasopoulou, L.; Tsezou, A. Cholesterol metabolism related genes in osteoarthritis. Bone 2021, 152, 116076. [Google Scholar] [CrossRef] [PubMed]
- Delanois, R.E.; Mistry, J.B.; Gwam, C.U.; Mohamed, N.S.; Choksi, U.S.; Mont, M.A. Current Epidemiology of Revision Total Knee Arthroplasty in the United States. J. Arthroplast. 2017, 32, 2663–2668. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Bijlsma, J.W.; Berenbaum, F.; Lafeber, F.P. Osteoarthritis: An update with relevance for clinical practice. Lancet 2011, 377, 2115–2126. [Google Scholar] [CrossRef]
- Tootsi, K.; Märtson, A.; Kals, J.; Paapstel, K.; Zilmer, M. Metabolic factors and oxidative stress in osteoarthritis: A case-control study. Scand. J. Clin. Lab. Investig. 2017, 77, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Gkretsi, V.; Simopoulou, T.; Tsezou, A. Lipid metabolism and osteoarthritis: Lessons from atherosclerosis. Prog. Lipid Res. 2011, 50, 133–140. [Google Scholar] [CrossRef]
- Kellgren, J.H. Osteoarthrosis in patients and populations. Br. Med. J. 1961, 2, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, D.J.; Doyle, D.V.; Spector, T.D. Association between metabolic factors and knee osteoarthritis in women: The Chingford Study. J. Rheumatol. 1995, 22, 1118–1123. [Google Scholar] [PubMed]
- Bagge, E.; Bjelle, A.; Edén, S.; Svanborg, A. Factors associated with radiographic osteoarthritis: Results from the population study 70-year-old people in Göteborg. J. Rheumatol. 1991, 18, 1218–1222. [Google Scholar]
- Schwager, J.L.; Nevitt, M.C.; Torner, J.; Lewis, C.E.; Matthan, N.R.; Wang, N.; Sun, X.; Lichtenstein, A.H.; Felson, D.; Multicenter Osteoarthritis Study Group. Association of Serum Low-Density Lipoprotein, High-Density Lipoprotein, and Total Cholesterol With Development of Knee Osteoarthritis. Arthritis Care Res. 2022, 74, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Zhu, W.T.; Chen, B.W.; Chen, Y.H.; Ni, G.X. Bidirectional association between metabolic syndrome and osteoarthritis: A meta-analysis of observational studies. Diabetol. Metab. Syndr. 2020, 12, 38. [Google Scholar] [CrossRef]
- Xiong, J.; Long, J.; Chen, X.; Li, Y.; Song, H. Dyslipidemia Might Be Associated with an Increased Risk of Osteoarthritis. Biomed Res. Int. 2020, 2020, 3105248. [Google Scholar] [CrossRef]
- Funck-Brentano, T.; Nethander, M.; Movérare-Skrtic, S.; Richette, P.; Ohlsson, C. Causal Factors for Knee, Hip, and Hand Osteoarthritis: A Mendelian Randomization Study in the UK Biobank. Arthritis Rheumatol. 2019, 71, 1634–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, D.; Karhunen, V.; Malik, R.; Dichgans, M.; Sofat, N. Cardiometabolic traits mediating the effect of education on osteoarthritis risk: A Mendelian randomization study. Osteoarthr. Cartil. 2021, 29, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Hindy, G.; Åkesson, K.E.; Melander, O.; Aragam, K.G.; Haas, M.E.; Nilsson, P.M.; Kadam, U.T.; Orho-Melander, M. Cardiometabolic Polygenic Risk Scores and Osteoarthritis Outcomes: A Mendelian Randomization Study Using Data From the Malmö Diet and Cancer Study and the UK Biobank. Arthritis Rheumatol. 2019, 71, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Richardson, T.G.; Sanderson, E.; Palmer, T.M.; Ala-Korpela, M.; Ference, B.A.; Davey Smith, G.D.; Holmes, M.V. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med. 2020, 17, e1003062. [Google Scholar] [CrossRef] [Green Version]
- Tachmazidou, I.; Hatzikotoulas, K.; Southam, L.; Esparza-Gordillo, J.; Haberland, V.; Zheng, J.; Johnson, T.; Koprulu, M.; Zengini, E.; Steinberg, J.; et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat. Genet. 2019, 51, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef]
- Brion, M.J.; Shakhbazov, K.; Visscher, P.M. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 2013, 42, 1497–1501. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, F.P.; Davies, N.M.; Hemani, G.; Davey Smith, G. Two-sample Mendelian randomization: Avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int. J. Epidemiol. 2016, 45, 1717–1726. [Google Scholar] [CrossRef] [Green Version]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 2018, 7, e34408. [Google Scholar] [CrossRef]
- Yavorska, O.O.; Burgess, S. MendelianRandomization: An R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 2017, 46, 1734–1739. [Google Scholar] [CrossRef]
- Zhang, K.; Ji, Y.; Dai, H.; Khan, A.A.; Zhou, Y.; Chen, R.; Jiang, Y.; Gui, J. High-Density Lipoprotein Cholesterol and Apolipoprotein A1 in Synovial Fluid: Potential Predictors of Disease Severity of Primary Knee Osteoarthritis. Cartilage 2021, 13, 1465S–1473S. [Google Scholar] [CrossRef]
- Miyanishi, K.; Yamamoto, T.; Irisa, T.; Noguchi, Y.; Sugioka, Y.; Iwamoto, Y. Increased level of apolipoprotein B/apolipoprotein A1 ratio as a potential risk for osteonecrosis. Ann. Rheum. Dis. 1999, 58, 514–516. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, L.; Liang, D.; Li, J.; Liu, F.; Ma, H. Lipid Transporter Activity-Related Genetic Polymorphisms Are Associated with Steroid-Induced Osteonecrosis of the Femoral Head: An Updated Meta-Analysis Based on the GRADE Guidelines. Front. Physiol. 2018, 9, 1684. [Google Scholar] [CrossRef] [PubMed]
- Serteyn, D.; Piquemal, D.; Vanderheyden, L.; Lejeune, J.P.; Verwilghen, D.; Sandersen, C. Gene expression profiling from leukocytes of horses affected by osteochondrosis. J. Orthop. Res. 2010, 28, 965–970. [Google Scholar] [CrossRef]
- Mishra, R.; Singh, A.; Chandra, V.; Negi, M.P.; Tripathy, B.C.; Prakash, J.; Gupta, V. A comparative analysis of serological parameters and oxidative stress in osteoarthritis and rheumatoid arthritis. Rheumatol. Int. 2012, 32, 2377–2382. [Google Scholar] [CrossRef] [PubMed]
- De Munter, W.; Bosch, M.H.V.D.; Slöetjes, A.W.; Croce, K.J.; Vogl, T.; Roth, J.; Koenders, M.I.; van de Loo, F.A.; Berg, W.B.V.D.; van der Kraan, P.M.; et al. High LDL levels lead to increased synovial inflammation and accelerated ectopic bone formation during experimental osteoarthritis. Osteoarthr. Cartil. 2016, 24, 844–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akagi, M.; Ueda, A.; Teramura, T.; Kanata, S.; Sawamura, T.; Hamanishi, C. Oxidized LDL binding to LOX-1 enhances MCP-1 expression in cultured human articular chondrocytes. Osteoarthr. Cartil. 2009, 17, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Ertürk, C.; Altay, M.A.; Bilge, A.; Çelik, H. Is there a relationship between serum ox-LDL, oxidative stress, and PON1 in knee osteoarthritis? Clin. Rheumatol. 2017, 36, 2775–2780. [Google Scholar] [CrossRef]
- Kanata, S.; Akagi, M.; Nishimura, S.; Hayakawa, S.; Yoshida, K.; Sawamura, T.; Munakata, H.; Hamanishi, C. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-gamma. Biochem. Biophys. Res. Commun. 2006, 348, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- De Seny, D.; Cobraiville, G.; Charlier, E.; Neuville, S.; Lutteri, L.; Le Goff, C.; Malaise, D.; Malaise, O.; Chapelle, J.-P.; Relic, B.; et al. Apolipoprotein-A1 as a damage-associated molecular patterns protein in osteoarthritis: Ex vivo and in vitro pro-inflammatory properties. PLoS ONE 2015, 10, e0122904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliviero, F.; Sfriso, P.; Baldo, G.; Dayer, J.-M.; Giunco, S.; Scanu, A.; Bernardi, D.; Ramonda, R.; Plebani, M.; Punzi, L. Apolipoprotein A-I and cholesterol in synovial fluid of patients with rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Clin. Exp. Rheumatol. 2009, 27, 79–83. [Google Scholar]
- Riddle, D.L.; Moxley, G.; Dumenci, L. Associations between statin use and changes in pain, function and structural progression: A longitudinal study of persons with knee osteoarthritis. Ann. Rheum. Dis. 2013, 72, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Yasuda, T.; Hoshikawa, H.; Shimizu, M.; Kakinuma, T.; Chen, M.; Masaki, T.; Nakamura, T.; Sawamura, T. LOX-1 expressed in cultured rat chondrocytes mediates oxidized LDL-induced cell death-possible role of dephosphorylation of Akt. Biochem. Biophys. Res. Commun. 2002, 299, 91–97. [Google Scholar] [CrossRef]
- Nishimura, S.; Akagi, M.; Yoshida, K.; Hayakawa, S.; Sawamura, T.; Munakata, H.; Hamanishi, C. Oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular reactive oxygen species (ROS) resulting in the activation of NF-kappa B. Osteoarthr. Cartil. 2004, 12, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Akagi, M.; Nishimura, S.; Yoshida, K.; Kakinuma, T.; Sawamura, T.; Munakata, H.; Hamanishi, C. Cyclic tensile stretch load and oxidized low density lipoprotein synergistically induce lectin-like oxidized ldl receptor-1 in cultured bovine chondrocytes, resulting in decreased cell viability and proteoglycan synthesis. J. Orthop. Res. 2006, 24, 1782–1790. [Google Scholar] [CrossRef] [PubMed]
- Kruisbergen, N.N.L.; Di Ceglie, I.; van Gemert, Y.; Walgreen, B.; Helsen, M.M.A.; Slöetjes, A.W.; Koenders, M.I.; van de Loo, F.A.J.; Roth, J.; Vogl, T.; et al. Nox2 Deficiency Reduces Cartilage Damage and Ectopic Bone Formation in an Experimental Model for Osteoarthritis. Antioxidants 2021, 10, 1660. [Google Scholar] [CrossRef] [PubMed]
- Kruisbergen, N.N.L.; van Gemert, Y.; Walgreen, B.; Helsen, M.M.A.; Slöetjes, A.W.; Koenders, M.I.; van de Loo, F.A.J.; Roth, J.; Vogl, T.; van der Kraan, P.M.; et al. A single dose of anti-IL-1β antibodies prevents Western diet-induced immune activation during early stage collagenase-induced osteoarthritis, but does not ameliorate end-stage pathology. Osteoarthr. Cartil. 2021, 29, 1462–1473. [Google Scholar] [CrossRef] [PubMed]
- Villalvilla, A.; Larrañaga-Vera, A.; Lamuedra, A.; Pérez-Baos, S.; López-Reyes, A.G.; Herrero-Beaumont, G.; Largo, R. Modulation of the Inflammatory Process by Hypercholesterolemia in Osteoarthritis. Front. Med. 2020, 7, 566250. [Google Scholar] [CrossRef] [PubMed]
- Ascone, G.; Di Ceglie, I.; Bosch, M.H.J.V.D.; Kruisbergen, N.N.L.; Walgreen, B.; Sloetjes, A.W.; Lindhout, E.; Joosten, L.A.B.; Loo, F.A.J.V.D.; Koenders, I.M.; et al. High LDL-C levels attenuate onset of inflammation and cartilage destruction in antigen-induced arthritis. Clin. Exp. Rheumatol. 2019, 37, 983–993. [Google Scholar] [PubMed]
- Allen, K.D.; Golightly, Y.M. State of the evidence. Curr. Opin. Rheumatol. 2015, 27, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Vina, E.R.; Kwoh, C.K. Epidemiology of osteoarthritis: Literature update. Curr. Opin. Rheumatol. 2018, 30, 160–167. [Google Scholar] [CrossRef]
Exposures | Consortium | No. SNPs | Sample Size | Adjustments | Population | ||
---|---|---|---|---|---|---|---|
APOA1 | UK Biobank | 299 | 393,193 | Age, sex, and genotyping chip array | European | ||
APOB | UK Biobank | 198 | 439,214 | ||||
HDL | UK Biobank | 362 | 403,943 | ||||
LDL | UK Biobank | 177 | 440,546 | ||||
TG | UK Biobank | 313 | 441,016 | ||||
Main Outcomes | Dataset | No. Cases | Control | Total | Adjustments | Population | |
KHOA | UK Biobank | 39,427 | 378,169 | 417,596 | Age, sex, genotyping chip array, and 10 genetic principal components | European | |
KOA | UK Biobank | 24,955 | 378,169 | 403,124 | |||
HOA | UK Biobank | 15,704 | 378,169 | 393,873 |
Main Outcome | Method | No. of SNPs | OR (95% CI) | P for Association | P for Heterogeneity Test | P for MR-Egger Intercept | P for MR-PRESSO Global Test | Statistical Power |
---|---|---|---|---|---|---|---|---|
KHOA | IVW | 188 | 0.925 (0.881–0.972) | 0.002 | 8.23 × 10−12 | 0.09 | 1.00 | |
MR Egger | 188 | 0.889 (0.832–0.950) | 0.001 | 2.21 × 10−11 | ||||
Weighted median | 188 | 0.900 (0.848–0.956) | 0.001 | |||||
MR-PRESSO (raw,3outliers) | 185 | 0.927 (0.924–0.930) | 0.001 | <1 × 10−4 | ||||
KOA | IVW | 188 | 0.930 (0.876–0.987) | 0.016 | 3.81 × 10−11 | 0.19 | 1.00 | |
MR Egger | 188 | 0.896 (0.827–0.972) | 0.009 | 5.79 × 10−11 | ||||
Weighted median | 188 | 0.892 (0.824–0.966) | 0.005 | |||||
MR-PRESSO (raw,2outliers) | 186 | 0.927 (0.923–0.930) | 0.006 | <1 × 10−4 | ||||
HOA | IVW | 188 | 0.894 (0.832–0.961) | 0.002 | 5.05 × 10−9 | 0.44 | 0.96 | |
MR Egger | 188 | 0.871 (0.789–0.961) | 0.006 | 4.79 × 10−9 | ||||
Weighted median | 188 | 0.873 (0.800–0.953) | 0.002 | |||||
MR-PRESSO (raw,4outliers) | 184 | 0.881 (0.877–0.885) | <0.001 | <1 × 10−4 |
Main Outcome | Method | No. of SNPs | OR (95% CI) | P for Association | P for Heterogeneity Test | P for MR-Egger Intercept | P for MR-PRESSO Global Test | Statistical Power |
---|---|---|---|---|---|---|---|---|
KHOA | IVW | 162 | 0.898 (0.843–0.957) | 0.001 | 3.24 × 10−18 | 0.18 | 1.00 | |
MR Egger | 162 | 0.856 (0.778–0.941) | 0.002 | 6.80 × 10−18 | ||||
Weighted median | 162 | 0.867 (0.810–0.927) | <0.001 | |||||
MR-PRESSO (raw, 5outliers) | 157 | 0.901 (0.897–0.905) | <0.001 | <1 × 10−4 | ||||
KOA | IVW | 163 | 0.899 (0.835–0.968) | 0.005 | 2.99 × 10−14 | 0.25 | 0.97 | |
MR Egger | 163 | 0.857 (0.767–0.957) | 0.007 | 4.22 × 10−14 | ||||
Weighted median | 163 | 0.934 (0.854–1.021) | 0.135 | |||||
MR-PRESSO (raw, 5outliers) | 158 | 0.900 (0.896–0.905) | 0.002 | <1 × 10−4 | ||||
HOA | IVW | 163 | 0.870 (0.797–0.949) | 0.002 | 1.07 × 10−9 | 0.56 | 0.88 | |
MR Egger | 163 | 0.845 (0.741–0.963) | 0.012 | 9.06 × 10−10 | ||||
Weighted median | 163 | 0.891 (0.798–0.994) | 0.039 | |||||
MR-PRESSO (raw, 5outliers) | 158 | 0.863 (0.858–0.868) | <0.001 | <1 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, H.; Jiang, L.; Song, Z.; Wang, F. Causal Associations of Circulating Lipids with Osteoarthritis: A Bidirectional Mendelian Randomization Study. Nutrients 2022, 14, 1327. https://doi.org/10.3390/nu14071327
Meng H, Jiang L, Song Z, Wang F. Causal Associations of Circulating Lipids with Osteoarthritis: A Bidirectional Mendelian Randomization Study. Nutrients. 2022; 14(7):1327. https://doi.org/10.3390/nu14071327
Chicago/Turabian StyleMeng, Hongen, Li Jiang, Zijun Song, and Fudi Wang. 2022. "Causal Associations of Circulating Lipids with Osteoarthritis: A Bidirectional Mendelian Randomization Study" Nutrients 14, no. 7: 1327. https://doi.org/10.3390/nu14071327
APA StyleMeng, H., Jiang, L., Song, Z., & Wang, F. (2022). Causal Associations of Circulating Lipids with Osteoarthritis: A Bidirectional Mendelian Randomization Study. Nutrients, 14(7), 1327. https://doi.org/10.3390/nu14071327