Evaluation of the Safety of a Plant-Based Infant Formula Containing Almonds and Buckwheat in a Neonatal Piglet Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Care
2.2. Diet Groups
2.3. Sample Collection and Measurements
2.4. Metabolic and Trace Mineral Profiling in Plasma
2.5. Statistical Analysis
3. Results
3.1. Body Weights
3.2. Caloric Intake
3.3. Organ Development
3.4. Plasma Biomarkers
3.4.1. Metabolic Profiling
3.4.2. Mineral Panel
3.4.3. Complete Blood Count
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Eidelman, A.I.; Schanler, R.J.; Johnston, M.; Landers, S.; Noble, L.; Szucs, K.; Viehmann, L. Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.T.; Carroll, R.E. Infant Feeding. Pediatr. Rev. 2000, 21, 191–200. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, N.R. Infant formula. Am. Fam. Physician 2009, 79, 565–570. [Google Scholar] [PubMed]
- American Academy of Pediatrics. Committee on Nutrition. Soy protein-based formulas: Recommendations for use in infant feeding. Pediatrics 1998, 101, 148–153. [Google Scholar] [CrossRef] [Green Version]
- American Academy of Pediatrics. Committee on Nutrition. Hypoallergenic infant formulas. Pediatrics 2000, 106, 346–349. [Google Scholar] [CrossRef] [Green Version]
- Rossen, L.M.; Simon, A.E.; Herrick, K.A. Types of Infant Formulas Consumed in the United States. Clin. Pediatr. 2016, 55, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Vandenplas, Y.; Castrellon, P.G.; Rivas, R.; Gutiérrez, C.J.; Garcia, L.D.; Jimenez, J.E.; Anzo, A.; Hegar, B.; Alarcon, P. Safety of soya-based infant formulas in children. Br. J. Nutr. 2014, 111, 1340–1360. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, J.; Greer, F. Use of soy protein-based formulas in infant feeding. Pediatrics 2008, 121, 1062–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasekan, J.B.; Ostrom, K.M.; Jacobs, J.R.; Blatter, M.M.; Ndife, L.I.; Gooch, W.M., 3rd; Cho, S. Growth of newborn, term infants fed soy formulas for 1 year. Clin. Pediatr. 1999, 38, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.; Ziegler, E.; Mitmesser, S.H.; Harris, C.L.; Diersen-Schade, D.A. Soy-based infant formula supplemented with DHA and ARA supports growth and increases circulating levels of these fatty acids in infants. Lipids 2008, 43, 29–35. [Google Scholar] [CrossRef]
- Lasekan, J.B.; Baggs, G.E. Efficacy of Soy-Based Formulas in Alleviating Gastrointestinal Symptoms in Infants With Milk-Based Formula Intolerance: A Randomized Clinical Trial. Clin. Pediatr. 2021, 60, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Osborn, D.A.; Sinn, J. Soy formula for prevention of allergy and food intolerance in infants. Cochrane Database Syst. Rev. 2004, 2004, Cd003741. [Google Scholar] [CrossRef]
- Boland, M.; Critch, J.; Kim, J.H.; Marchand, V.; Prince, T.; Robertson, M.A.; Leung, A.; Otley, A.; Comm, N.G. Concerns for the use of soy-based formulas in infant nutrition. Paediatr. Child Health 2009, 14, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Testa, I.; Salvatori, C.; Di Cara, G.; Latini, A.; Frati, F.; Troiani, S.; Principi, N.; Esposito, S. Soy-Based Infant Formula: Are Phyto-Oestrogens Still in Doubt? Front. Nutr. 2018, 5, 110. [Google Scholar] [CrossRef] [Green Version]
- Andres, A.; Casey, P.H.; Cleves, M.A.; Badger, T.M. Body fat and bone mineral content of infants fed breast milk, cow’s milk formula, or soy formula during the first year of life. J. Pediatr. 2013, 163, 49–54. [Google Scholar] [CrossRef]
- Verduci, E.; D’Elios, S.; Cerrato, L.; Comberiati, P.; Calvani, M.; Palazzo, S.; Martelli, A.; Landi, M.; Trikamjee, T.; Peroni, D.G. Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients 2019, 11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Merritt, R.J.; Fleet, S.E.; Fifi, A.; Jump, C.; Schwartz, S.; Sentongo, T.; Duro, D.; Rudolph, J.; Turner, J.; Nutrition, N.C.o. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper: Plant-based Milks. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 276–281. [Google Scholar] [CrossRef]
- Fructuoso, I.; Romão, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Zandonadi, R.P. An Overview on Nutritional Aspects of Plant-Based Beverages Used as Substitutes for Cow’s Milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef]
- Mazzocchi, A.; Venter, C.; Maslin, K.; Agostoni, C. The Role of Nutritional Aspects in Food Allergy: Prevention and Management. Nutrients 2017, 9, 850. [Google Scholar] [CrossRef]
- Greer, F.R.; Sicherer, S.H.; Burks, A.W.; Committee on Nutrition; Section on Allergy and Immunology; Abrams, S.A.; Fuchs, G.J., III; Kim, J.H.; Lindsey, C.W.; Magge, S.N.; et al. The Effects of Early Nutritional Interventions on the Development of Atopic Disease in Infants and Children: The Role of Maternal Dietary Restriction, Breastfeeding, Hydrolyzed Formulas, and Timing of Introduction of Allergenic Complementary Foods. Pediatrics 2019, 143, e20190281. [Google Scholar] [CrossRef] [Green Version]
- Council, N.R. Nutrient Requirements of Swine: Eleventh Revised Edition; The National Academies Press: Washington, DC, USA, 2012; p. 420. [Google Scholar] [CrossRef] [Green Version]
- Ventrella, D.; Dondi, F.; Barone, F.; Serafini, F.; Elmi, A.; Giunti, M.; Romagnoli, N.; Forni, M.; Bacci, M.L. The biomedical piglet: Establishing reference intervals for haematology and clinical chemistry parameters of two age groups with and without iron supplementation. BMC Vet. Res. 2017, 13, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanlon, P.R.; Thorsrud, B.A. A 3-week pre-clinical study of 2′-fucosyllactose in farm piglets. Food Chem. Toxicol. 2014, 74, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Vu, V.H.; Donovan, S.M.; Brink, L.R.; Li, Q.; Gross, G.; Dilger, R.N.; Fleming, S.A. Developing a Reference Database for Typical Body and Organ Growth of the Artificially Reared Pig as a Biomedical Research Model. Front. Pediatr. 2021, 9, 746471. [Google Scholar] [CrossRef] [PubMed]
- Julius, A.D.; Wiggers, K.D.; Richard, M.J. Effect of infant formuLas on blood and tissue cholesterol, bone calcium, and body composition in weanling pigs. J. Nutr. 1982, 112, 2240–2249. [Google Scholar] [CrossRef]
- Miklavcic, J.J.; Badger, T.M.; Bowlin, A.K.; Matazel, K.S.; Cleves, M.A.; LeRoith, T.; Saraf, M.K.; Chintapalli, S.V.; Piccolo, B.D.; Shankar, K.; et al. Human Breast-Milk Feeding Enhances the Humoral and Cell-Mediated Immune Response in Neonatal Piglets. J. Nutr. 2018, 148, 1860–1870. [Google Scholar] [CrossRef] [Green Version]
- Jacobi, S.K.; Yatsunenko, T.; Li, D.; Dasgupta, S.; Yu, R.K.; Berg, B.M.; Chichlowski, M.; Odle, J. Dietary Isomers of Sialyllactose Increase Ganglioside Sialic Acid Concentrations in the Corpus Callosum and Cerebellum and Modulate the Colonic Microbiota of Formula-Fed Piglets. J. Nutr. 2015, 146, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Yeruva, L.; Spencer, N.E.; Saraf, M.K.; Hennings, L.; Bowlin, A.K.; Cleves, M.A.; Mercer, K.; Chintapalli, S.V.; Shankar, K.; Rank, R.G.; et al. Formula diet alters small intestine morphology, microbial abundance and reduces VE-cadherin and IL-10 expression in neonatal porcine model. BMC Gastroenterol. 2016, 16, 40. [Google Scholar] [CrossRef] [Green Version]
- Egeli, A.K.; Framstad, T.; Morberg, H. Clinical biochemistry, haematology and body weight in piglets. Acta Vet. Scand. 1998, 39, 381–393. [Google Scholar] [CrossRef]
- Wehrend, A.; Failing, K.; Tschachtschal, J.; Bostedt, H. Reference values of electrolyte plasma concentrations in healthy piglets during the first 48 hours of life. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2003, 50, 67–71. [Google Scholar] [CrossRef]
- Mackie, R.I.; Sghir, A.; Gaskins, H.R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 1999, 69, 1035S–1045S. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.L.; Dennis, B.L. Hyperbilirubinemia in the term newborn. Am. Fam. Physician 2002, 65, 599–606. [Google Scholar] [PubMed]
- Sharma, U.; Pal, D.; Prasad, R. Alkaline phosphatase: An overview. Indian J. Clin. Biochem. 2014, 29, 269–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, D.; Sanvictores, T.; John, S. Alkaline Phosphatase. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2021. [Google Scholar]
- Manroe, B.L.; Weinberg, A.G.; Rosenfeld, C.R.; Browne, R. The neonatal blood count in health and disease. I. Reference values for neutrophilic cells. J. Pediatr. 1979, 95, 89–98. [Google Scholar] [CrossRef]
- Maheshwari, A. Neutropenia in the newborn. Curr. Opin. Hematol. 2014, 21, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Moman, R.N.; Gupta, N.; Varacallo, M. Physiology, Albumin. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2021. [Google Scholar]
- Monaco, M.H.; Gurung, R.B.; Donovan, S.M. Safety evaluation of 3′-siallylactose sodium salt supplementation on growth and clinical parameters in neonatal piglets. Regul. Toxicol. Pharmacol. 2019, 101, 57–64. [Google Scholar] [CrossRef]
- Gutierrez, K.; Dicks, N.; Glanzner, W.G.; Agellon, L.B.; Bordignon, V. Efficacy of the porcine species in biomedical research. Front. Genet. 2015, 6, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, K.S.; Mazur, M.J.; Vashisht, K.; Rund, L.A.; Beever, J.E.; Counter, C.M.; Schook, L.B. Genomics and clinical medicine: Rationale for creating and effectively evaluating animal models. Exp. Biol. Med. 2004, 229, 866–875. [Google Scholar] [CrossRef]
- Flamm, E.G. Neonatal animal testing paradigms and their suitability for testing infant formula. Toxicol. Mech. Methods 2013, 23, 57–67. [Google Scholar] [CrossRef]
- Eiby, Y.A.; Wright, L.L.; Kalanjati, V.P.; Miller, S.M.; Bjorkman, S.T.; Keates, H.L.; Lumbers, E.R.; Colditz, P.B.; Lingwood, B.E. A pig model of the preterm neonate: Anthropometric and physiological characteristics. PLoS ONE 2013, 8, e68763. [Google Scholar] [CrossRef] [Green Version]
- Brink, L.R.; Matazel, K.; Piccolo, B.D.; Bowlin, A.K.; Chintapalli, S.V.; Shankar, K.; Yeruva, L. Neonatal Diet Impacts Bioregional Microbiota Composition in Piglets Fed Human Breast Milk or Infant Formula. J. Nutr. 2019, 149, 2236–2246. [Google Scholar] [CrossRef]
- Saraf, M.K.; Piccolo, B.D.; Bowlin, A.K.; Mercer, K.E.; LeRoith, T.; Chintapalli, S.V.; Shankar, K.; Badger, T.M.; Yeruva, L. Formula diet driven microbiota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon. Microbiome 2017, 5, 77. [Google Scholar] [CrossRef] [PubMed]
- Mercer, K.E.; Bhattacharyya, S.; Sharma, N.; Chaudhury, M.; Lin, H.; Yeruva, L.; Ronis, M.J. Infant Formula Feeding Changes the Proliferative Status in Piglet Neonatal Mammary Glands Independently of Estrogen Signaling. J. Nutr. 2020, 150, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.R.; Lazarenko, O.P.; Blackburn, M.L.; Badeaux, J.V.; Badger, T.M.; Ronis, M.J. Infant formula promotes bone growth in neonatal piglets by enhancing osteoblastogenesis through bone morphogenic protein signaling. J. Nutr. 2009, 139, 1839–1847. [Google Scholar] [CrossRef] [Green Version]
- Ronis, M.J.; Chen, Y.; Shankar, K.; Gomez-Acevedo, H.; Cleves, M.A.; Badeaux, J.; Blackburn, M.L.; Badger, T.M. Formula feeding alters hepatic gene expression signature, iron and cholesterol homeostasis in the neonatal pig. Physiol. Genom. 2011, 43, 1281–1293. [Google Scholar] [CrossRef] [Green Version]
Macronutrient | Dairy-Based Formula | Plant-Based Formula |
Protein, g/Kg | 240.59 | 240.40 |
Carbohydrate, g/Kg | 279.19 | 308.36 |
Fat, g/Kg | 311.85 | 312.91 |
Essential amino acids | Dairy-based formula | Plant-based formula |
Arginine, g/Kg | 9.27 | 11.96 |
Cystine, g/Kg | 8.22 | 6.29 |
Histidine, g/Kg | 6.84 | 6.84 |
Isoleucine, g/Kg | 14.56 | 12.92 |
Leucine, g/Kg | 32.16 | 28.37 |
Lysine, g/Kg | 25.41 | 20.68 |
Methionine, g/Kg | 5.82 | 4.64 |
Phenylalanine, g/Kg | 11.19 | 15.29 |
Threonine, g/Kg | 12.81 | 10.79 |
Tryptophan, g/Kg | 5.30 | 4.64 |
Valine, g/Kg | 13.69 | 11.42 |
Minerals 2 | Dairy-based formula | Plant-based formula |
Ca, g/Kg | 10.10 | 10.16 |
Cl, g/Kg | 6.83 | 5.58 |
K, g/Kg | 8.15 | 8.82 |
Mg, g/Kg | 0.66 | 0.90 |
Na, g/Kg | 5.06 | 5.11 |
P, g/Kg | 8.68 | 8.68 |
Cr, mg/Kg | 1.00 | 1.00 |
Cu, mg/Kg | 8.26 | 9.17 |
Fe, mg/Kg | 124.13 | 123.65 |
I, mg/Kg | 0.35 | 0.98 |
Mn, mg/Kg | 10.67 | 13.54 |
Mo, mg/Kg | 0.15 | 0.15 |
Se, mg/Kg | 0.38 | 0.38 |
Zn, mg/Kg | 179.39 | 174.29 |
Vitamins | Dairy-based formula | Plant-based formula |
B12, mg/Kg | 0.03 | 0.05 |
B6, mg/Kg | 7.25 | 11.73 |
Biotin, mg/Kg | 0.31 | 0.50 |
Folic Acid, mg/Kg | 2.38 | 3.02 |
Niacin, mg/Kg | 55.99 | 62.28 |
Pantothenate, mg/Kg | 25.77 | 54.26 |
Riboflavin, mg/Kg | 9.78 | 17.58 |
Thiamin, mg/Kg | 7.23 | 13.02 |
Vit A, IU/Kg | 7101.48 | 11,160.00 |
Vit D, IU/Kg | 1775.37 | 3096.00 |
Vit E, IU/Kg | 36.02 | 154.20 |
Vit K, mg/Kg | 0.94 | 1.01 |
Other compounds | Dairy-based formula | Plant-based formula |
Linoleic acid, g/Kg | 103.27 | 100.99 |
Choline, mg/Kg | 1221.33 | 1221.30 |
Inositol, mg/Kg | 114.76 | 750.00 |
Organ 1 | Dairy-Based Formula 2 | Plant-Based Formula 3 | p-Value 4 |
---|---|---|---|
Spleen | 8.47 ± 1.99 | 7.52 ± 1.95 | 0.37 |
Pancreas | 7.51 ± 2.41 | 7.50 ± 2.78 | 0.71 |
Kidneys | 33.38 ± 9.48 | 25.16 ± 2.30 | 0.10 |
Liver | 142 ± 33 | 132 ± 25 | 0.55 |
Adrenals | 0.76 ± 0.17 | 0.82 ± 0.32 | 0.74 |
Prostate | 0.23 ± 0.05 | 0.15 ± 0.05 | 0.12 |
Left testicle | 3.4 ± 0.82 | 3.52 ± 1.29 | 0.87 |
Right testicle | 3.38 ± 0.72 | 3.45 ± 1.67 | 0.44 |
Uterine horn | 3.26 ± 1.21 | 3.17 ± 0.55 | 0.79 |
Ovaries | 0.12 ± 0.04 | 0.15 ± 0.07 | 0.99 |
p4 | p-Adjusted 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dairy-Based Formula 1 | Plant-Based Formula 2 | SEM 3 | Time | Group | Group × Time | w1 | w2 | w3 | |||||
Enzyme | w1 | w2 | w3 | w1 | w2 | w3 | |||||||
CK (U/L) | 244.4 | 476.2 | 941.7 | 183.0 | 422.2 | 448.2 | 195.80 | <0.01 | 0.11 | 0.14 | 0.99 | 0.99 | 0.03 |
AST (U/L) | 30.78 | 36.89 | 43.67 | 38.77 | 47.22 | 29.33 | 9.87 | 0.47 | 0.83 | 0.10 | 0.81 | 0.61 | 0.34 |
ALT (U/L) | 18.33 | 19.33 | 22.67 | 21.73 | 24.67 | 20.78 | 2.80 | 0.55 | 0.17 | 0.15 | 0.55 | 0.14 | 0.86 |
p4 | p-Adjusted 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dairy-Based Formula 1 | Plant-Based Formula 2 | SEM 3 | Time | Group | Group × Time | w1 | w2 | w3 | |||||
Electrolytes | w1 | w2 | w3 | w1 | w2 | w3 | |||||||
Sodium (mEq/L) | 135.10 | 137.20 | 136.7 | 129.50 | 135.80 | 137.30 | 1.34 | <0.01 | 0.04 | <0.01 | <0.01 | 0.61 | 0.94 |
Potassium (mEq/L) | 4.54 | 4.53 | 4.91 | 4.26 | 4.63 | 4.23 | 0.28 | 0.57 | 0.10 | 0.12 | 0.69 | 0.98 | 0.04 |
S:K ratio | 29.83 | 30.48 | 28.66 | 30.59 | 29.86 | 32.50 | 1.57 | 0.90 | 0.19 | 0.08 | 0.95 | 0.97 | 0.04 |
Chloride (mEq/L) | 102.30 | 104.90 | 106.70 | 101.80 | 102.00 | 104.00 | 1.08 | <0.01 | 0.01 | 0.20 | 0.95 | 0.02 | 0.03 |
Kidney function | |||||||||||||
Creatinine (mg/dL) | 0.37 | 0.40 | 0.51 | 0.41 | 0.33 | 0.51 | 0.034 | <0.01 | 0.74 | 0.05 | 0.42 | 0.12 | 1.00 |
BUN (mg/dL) | 5.89 | 3.67 | 2.78 | 3.29 | 5.56 | 4.00 | 0.37 | 0.84 | 0.07 | 0.23 | 0.45 | 0.76 |
p4 | p-Adjusted 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dairy-Based Formula 1 | Plant-Based Formula 2 | SEM 3 | Time | Group | Group × Time | w1 | w2 | w3 | |||||
Minerals | w1 | w2 | w3 | w1 | w2 | w3 | |||||||
Calcium (mg/dL) | 10.78 | 10.24 | 9.92 | 11.55 | 10.10 | 9.79 | 0.27 | <0.01 | 0.50 | <0.01 | 0.02 | 0.93 | 0.94 |
Phosphorus (mg/dL) | 5.50 | 7.78 | 8.07 | 5.57 | 7.39 | 7.72 | 0.49 | <0.01 | 0.55 | 0.65 | 1.00 | 0.79 | 0.85 |
Iron (µg/dL) | 254.90 | 371.90 | 507.40 | 555.00 | 492.90 | 249.20 | 190.40 | 0.92 | 0.65 | 0.11 | 0.32 | 0.90 | 0.45 |
Selenium (ng/mL) | 171.90 | 161.60 | 153.10 | 191.30 | 167.30 | 162.40 | 16.58 | 0.12 | 0.24 | 0.83 | 0.58 | 0.98 | 0.92 |
Zinc (µg/mL) | 1.32 | 1.12 | 1.06 | 1.88 | 0.94 | 0.72 | 0.27 | <0.01 | 0.94 | 0.05 | 0.12 | 0.88 | 0.51 |
Manganese (ng/mL) | 3.14 | 2.76 | 2.92 | 4.35 | 3.18 | 1.83 | 0.87 | 0.08 | 0.71 | 0.15 | 0.43 | 0.94 | 0.46 |
Molybdenum (ng/mL) | 6.19 | 5.85 | 5.44 | 6.57 | 6.75 | 5.24 | 3.63 | 0.40 | 0.61 | 0.80 | 0.99 | 0.83 | 1.00 |
Cobalt (ng/mL) | 0.50 | 0.22 | 0.52 | 1.06 | 0.36 | 0.32 | 0.22 | 0.01 | 0.22 | 0.06 | 0.04 | 0.90 | 0.74 |
Copper (ng/mL) | 0.81 | 1.23 | 1.24 | 1.13 | 1.37 | 1.31 | 0.13 | <0.01 | 0.08 | 0.21 | 0.04 | 0.61 | 0.91 |
p4 | p-Adjusted 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dairy-Based Formula 1 | Plant-Based Formula 2 | SEM 3 | Time | Group | Group × Time | w1 | w2 | w3 | |||||
Variable | w1 | w2 | w3 | w1 | w2 | w3 | |||||||
RBC (M/µL) | 4.22 | 4.44 | 5.31 | 5.02 | 4.69 | 5.47 | 0.38 | <0.01 | 0.10 | 0.23 | 0.02 | 0.82 | 0.96 |
Hemoglobin (g/dL) | 8.63 | 9.15 | 10.65 | 10.01 | 8.80 | 10.46 | 0.63 | <0.01 | 0.43 | 0.03 | <0.01 | 0.90 | 1.00 |
Hematocrit (%) | 29.06 | 29.44 | 34.50 | 34.44 | 29.21 | 33.66 | 2.08 | 0.01 | 0.22 | 0.02 | <0.01 | 1.00 | 0.97 |
MCV (fL) | 69.29 | 66.44 | 64.56 | 61.63 | 62.22 | 61.04 | 7.66 | 0.74 | 0.09 | 0.78 | 0.19 | 0.73 | 0.90 |
MCH (pg) | 20.53 | 20.65 | 20.02 | 20.70 | 18.77 | 18.93 | 1.07 | 0.16 | 0.08 | 0.22 | 1.00 | 0.10 | 0.68 |
Plasma protein (g/dL) | 5.59 | 5.30 | 5.22 | 7.03 | 5.23 | 5.27 | 0.43 | <0.01 | 0.05 | 0.01 | <0.01 | 1.00 | 1.00 |
Total WBC (k/µL) | 6.15 | 7.00 | 8.61 | 7.24 | 6.93 | 6.30 | 1.27 | 0.63 | 0.49 | 0.11 | 0.57 | 1.00 | 0.22 |
Neutrophils (%) | 37.89 | 42.11 | 34.29 | 48.33 | 45.11 | 33.71 | 5.23 | 0.02 | 0.13 | 0.27 | 0.08 | 0.89 | 1.00 |
Monocytes (%) | 3.86 | 4.00 | 3.30 | 2.89 | 2.99 | 2.49 | 1.07 | 0.66 | 0.14 | 0.99 | 0.64 | 0.61 | 0.84 |
Lymphocytes (%) | 56.78 | 52.11 | 61.86 | 47.78 | 50.78 | 63.14 | 5.28 | 0.01 | 0.29 | 0.31 | 0.17 | 0.99 | 0.99 |
Abs neutrophils (k/µL) | 2.38 | 3.01 | 2.98 | 3.62 | 3.17 | 2.30 | 0.86 | 0.70 | 0.58 | 0.19 | 0.16 | 0.99 | 0.82 |
Abs monocytes (k/µL) | 0.25 | 0.28 | 0.32 | 0.25 | 0.21 | 0.19 | 0.14 | 1.00 | 0.35 | 0.72 | 1.00 | 0.89 | 0.75 |
Abs lymphocytes (k/µL) | 3.42 | 3.60 | 5.22 | 3.27 | 3.47 | 3.83 | 0.66 | 0.02 | 0.09 | 0.27 | 0.98 | 0.99 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, F.; Yelvington, B.; Terry, N.; Tripp, P.; Pittman, H.E., III; Fay, B.L.; Ross, T.J.; Sikes, J.D.; Flowers, J.B.; Bar-Yoseph, F.; et al. Evaluation of the Safety of a Plant-Based Infant Formula Containing Almonds and Buckwheat in a Neonatal Piglet Model. Nutrients 2022, 14, 1499. https://doi.org/10.3390/nu14071499
Rosa F, Yelvington B, Terry N, Tripp P, Pittman HE III, Fay BL, Ross TJ, Sikes JD, Flowers JB, Bar-Yoseph F, et al. Evaluation of the Safety of a Plant-Based Infant Formula Containing Almonds and Buckwheat in a Neonatal Piglet Model. Nutrients. 2022; 14(7):1499. https://doi.org/10.3390/nu14071499
Chicago/Turabian StyleRosa, Fernanda, Brooke Yelvington, Nathan Terry, Patricia Tripp, Hoy E. Pittman, III, Bobby L. Fay, Taylor J. Ross, James D. Sikes, Jessica B. Flowers, Fabiana Bar-Yoseph, and et al. 2022. "Evaluation of the Safety of a Plant-Based Infant Formula Containing Almonds and Buckwheat in a Neonatal Piglet Model" Nutrients 14, no. 7: 1499. https://doi.org/10.3390/nu14071499
APA StyleRosa, F., Yelvington, B., Terry, N., Tripp, P., Pittman, H. E., III, Fay, B. L., Ross, T. J., Sikes, J. D., Flowers, J. B., Bar-Yoseph, F., & Yeruva, L. (2022). Evaluation of the Safety of a Plant-Based Infant Formula Containing Almonds and Buckwheat in a Neonatal Piglet Model. Nutrients, 14(7), 1499. https://doi.org/10.3390/nu14071499