Carica papaya Leaf Juice for Dengue: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Inclusion
3.2. Study Characteristics
3.3. Interventions Used
3.4. Ethnobotanical Findings
3.5. In Vitro Findings
3.6. Ex Vivo and In Vivo Findings
3.7. Clinical Findings
3.7.1. Case Reports
3.7.2. Cross-Sectional Study
3.7.3. Quasi Experiment
3.7.4. Randomized Controlled Trial
3.8. Safety Findings
4. Discussion
5. Review Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Zunjar, V.; Dash, R.; Jivrajani, M.; Trivedi, B.; Nivsarkar, M. Antithrombocytopenic activity of carpaine and alkaloidal extract of Carica papaya Linn. leaves in busulfan induced thrombocytopenic Wistar rats. J. Ethnopharmacol. 2016, 181, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Julianti, T.; De Mieri, M.; Zimmermann, S.; Ebrahimi, S.N.; Kaiser, M.; Neuburger, M.; Raith, M.; Brun, R.; Hamburger, M. HPLC-based activity profiling for antiplasmodial compounds in the traditional Indonesian medicinal plant Carica papaya L. J. Ethnopharmacol. 2014, 155, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Ogan, A.U. The basic constituents of the leaves of Carica papaya. Phytochemistry 1971, 10, 2544–2547. [Google Scholar] [CrossRef]
- Tang, C.S. New macrocylic, ∆1-piperideine alkaloids from papaya leaves: Dehydrocarpaine I and II. Phytochemistry 1979, 18, 651–652. [Google Scholar] [CrossRef]
- Gogna, N.; Hamid, N.; Dorai, K. Metabolomic profiling of the phytomedicinal constituents of Carica papaya L. leaves and seeds by 1H NMR spectroscopy and multivariate statistical analysis. J. Pharm. Biomed. Anal. 2015, 115, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Canini, A.; Alesiani, D.; D’Arcangelo, G.; Tagliatesta, P. Gas chromatography-mass spectrometry analysis of phenolic compounds from Carica papaya L. leaf. J. Food Compos. Anal. 2007, 20, 584–590. [Google Scholar] [CrossRef]
- Andarwulan, N.; Kurniasih, D.; Apriady, R.A.; Rahmat, H.; Roto, A.V.; Bolling, B.W. Polyphenols, carotenoids, and ascorbic acid in underutilized medicinal vegetables. J. Funct. Foods 2012, 4, 339–347. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Hirun, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med. 2013, 3, 104–111. [Google Scholar] [CrossRef]
- Ayoola, P.B.; Adeyeye, A. Phytochemical and nutrient evaluation Carica papaya (pawpaw) leaves. Int. J. Recent Res. Appl. Stud. 2010, 5, 325–328. [Google Scholar]
- Ong, H.C.; Norzalina, J. Malay herbal medicine in Gemencheh, Negri Sembilan, Malaysia. Fitoterapia 1999, 70, 10–14. [Google Scholar] [CrossRef]
- Ong, H.C.; Ruzaila, B.N.; Milow, P. Traditional knowledge of medicinal plants among the Malay villagers in Kampung Tanjung Sabtu, Terengganu, Malaysia. Indian J. Tradit. Knowl. 2011, 10, 460–465. [Google Scholar]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Kementerian Kesihatan Malaysia. Kenyataan Akhbar Ketua Pengarah Kesihatan Malaysia mengenai Situasi Semasa Demam Denggi, Zika dan Chikungunya di Malaysia Tahun 2009–2020. Available online: https://www.moh.gov.my/index.php/database_stores/store_view/17 (accessed on 14 February 2022).
- Westaway, E.G.; Brinton, M.A.; Gaidamovich, S.; Horzinek, M.C.; Igarashi, A.; Kääriäinen, L.; Lvov, D.K.; Porterfield, J.S.; Russell, P.K.; Trent, D.W. Flaviviridae. Intervirology 1985, 24, 183–192. [Google Scholar] [CrossRef]
- Mustafa, M.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India 2015, 71, 67–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henchal, E.A.; Putnak, J.R. The dengue viruses. Clin. Microbiol. Rev. 1990, 3, 376–396. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Kohlhepp, P.; Geiser, D.; Frasquillo Mdel, C.; Vazquez-Moreno, L.; Winzerling, J.J. Fate of blood meal iron in mosquitoes. J. Insect Physiol. 2007, 53, 1169–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organisation. Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 14 February 2022).
- Alvarez, M.; Rodriguez-Roche, R.; Bernardo, L.; Vazquez, S.; Morier, L.; Gonzalez, D.; Castro, O.; Kouri, G.; Halstead, S.B.; Guzman, M.G. Dengue hemorrhagic Fever caused by sequential dengue 1–3 virus infections over a long time interval: Havana epidemic, 2001–2002. Am. Soc. Trop. Med. Hyg. 2006, 75, 1113–1117. [Google Scholar] [CrossRef]
- Halstead, S.B. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res. 2003, 60, 421–467. [Google Scholar] [PubMed]
- World Health Organisation. Dengue Control: The human. Available online: http://www.who.int/denguecontrol/human/en/ (accessed on 14 February 2022).
- Dighe, S.N.; Ekwudu, O.m.; Dua, K.; Chellappan, D.K.; Katavic, P.L.; Collet, T.A. Recent update on anti-dengue drug discovery. Eur. J. Med. Chem. 2019, 176, 431–455. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Dengue vaccine: WHO position paper, September 2018–recommendations. Vaccine 2019, 37, 4848–4849. [Google Scholar] [CrossRef]
- World Health Organisation. Immunization, Vaccines and Biologicals: Questions and Answers on Dengue Vaccines. Available online: http://www.who.int/immunization/research/development/dengue_q_and_a/en/ (accessed on 14 February 2022).
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Hasan, M.; Islam, T.; Rahman, A.; Mitra, S.; Das, S.K. Ethnobotany of medicinal plants used by Rakhine indigenous communities in Patuakhali and Barguna District of Southern Bangladesh. J. Evid.-Based Integr. Med. 2020, 25, 2515690x20971586. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, W.T.; Cancino, L.T.; Dudang, E.B.; De Vera, I.A.; Pambid, R.M.; Junio, A.D. Ethnobotanical study of traditional medicinal plants used by indigenous Sambal-Bolinao of Pangasinan, Philippines. PSU J. Nat. Allied Sci. 2017, 1, 52–63. [Google Scholar]
- Roldan Fiscal, R. Ethnomedicinal plants used by traditional healers in Laguna, Philippines. Asia Pac. J. Multidiscip. Res. 2017, 5, 132–137. [Google Scholar]
- Ranasinghe, P.; Ranasinghe, P.; Abeysekera, W.P.; Premakumara, G.A.; Perera, Y.S.; Gurugama, P.; Gunatilake, S.B. In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts. Pharmacogn. Res. 2012, 4, 196–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinnappan, S.; Ramachandrappa, V.S.; Tamilarasu, K.; Krishnan, U.M.; Pillai, A.K.; Rajendiran, S. Inhibition of platelet aggregation by the leaf extract of Carica papaya during dengue infection: An in vitro study. Viral Immunol. 2016, 29, 164–168. [Google Scholar] [CrossRef]
- Jayasinghe, C.D.; Gunasekera, D.S.; De Silva, N.; Jayawardena, K.K.M.; Udagama, P.V. Mature leaf concentrate of Sri Lankan wild type Carica papaya Linn. modulates nonfunctional and functional immune responses of rats. BMC Complement. Altern. Med. 2017, 17, 230. [Google Scholar] [CrossRef] [Green Version]
- Rubio, I.C.S.; Lubos, L.C. Effectiveness of Carica papaya Linnaeus (papaya) and Azadirachta indica A. Jussieu (Neem) crushed leaves as potential larvicides for mosquitoes. Asian J. Health 2016, 6, 146–162. [Google Scholar] [CrossRef]
- Jayawardhane, N.D.C.K.K.; Jayasinghe, C.D.; Vivehananthan, K.; Udagama, P.V. Immunostimulatory activity of Sri Lankan wild type Carica papaya L. mature leaf concentrate in a rat model. In 13th Agricultural Research Symposium, Faculty of Agriculture and Plantation Management; Wayamba University of Sri Lanka: Makandura, Sri Lanka, 2014; pp. 195–199. [Google Scholar]
- Akhter, T.; Khan, M.I.; Eva, E. Comparative evaluation of platelet augmentation activity of Carica papaya leaf juice and hydrocortisone in thrombocytopenic rats. Bangladesh J. Physiol. Pharmacol. 2015, 30, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Santosh Kumar, M.; Geetha, M.; Mansi, J.S.; Malvika, G.; Srinivas, L.D. Evaluation of efficacy of Carica papaya leaf extracts to increase platelet count in hydroxyurea induced thrombocytopenia in albino rats. Int. J. Basic Clin. Pharmacol. 2017, 7, 173–174. [Google Scholar] [CrossRef] [Green Version]
- Nandini, C.; Madhunapantula, S.V.; Bovilla, V.R.; Ali, M.; Mruthunjaya, K.; Santhepete, M.N.; Jayashree, K. Platelet enhancement by Carica papaya L. leaf fractions in cyclophosphamide induced thrombocytopenic rats is due to elevated expression of CD110 receptor on megakaryocytes. J. Ethnopharmacol. 2021, 275, 114074. [Google Scholar] [CrossRef] [PubMed]
- Anjum, V.; Arora, P.; Ansari, S.H.; Najmi, A.K.; Ahmad, S. Antithrombocytopenic and immunomodulatory potential of metabolically characterized aqueous extract of Carica papaya leaves. Pharm. Biol. 2017, 55, 2043–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahir, N.; Zaheer, Z.; Kausar, S.; Chiragh, S. Prevention of fall in platelet count by Carica papaya leaf juice in carboplatin induced thrombocytopaenia in mice. Biomedica 2014, 30, 21–25. [Google Scholar]
- Mohd Abd Razak, M.R.; Mohmad Misnan, N.; Md Jelas, N.H.; Norahmad, N.A.; Muhammad, A.; Ho, T.C.D.; Jusoh, B.; Sastu, U.R.; Zainol, M.; Wasiman, M.I.; et al. The effect of freeze-dried Carica papaya leaf juice treatment on NS1 and viremia levels in dengue fever mice model. BMC Complement. Altern. Med. 2018, 18, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohd Abd Razak, M.R.; Norahmad, N.A.; Md Jelas, N.H.; Jusoh, B.; Muhammad, A.; Mohmad Misnan, N.; Zainol, M.; Thayan, R.; Syed Mohamed, A.F. Preliminary study on the expression of endothelial cell biology related genes in the liver of dengue virus infected mice treated with Carica papaya leaf juice. BMC Res. Notes 2019, 12, 206. [Google Scholar] [CrossRef] [Green Version]
- Norahmad, N.A.; Mohd Abd Razak, M.R.; Mohmad Misnan, N.; Md Jelas, N.H.; Sastu, U.R.; Muhammad, A.; Ho, T.C.D.; Jusoh, B.; Zolkifli, N.A.; Thayan, R.; et al. Effect of freeze-dried Carica papaya leaf juice on inflammatory cytokines production during dengue virus infection in AG129 mice. BMC Complement. Med. Ther. 2019, 19, 44. [Google Scholar] [CrossRef]
- Mohd Abd Razak, M.R.; Norahmad, N.A.; Md Jelas, N.H.; Afzan, A.; Mohmad Misnan, N.; Mat Ripen, A.; Thayan, R.; Zainol, M.; Syed Mohamed, A.F. Immunomodulatory activities of Carica papaya L. leaf juice in a non-lethal, symptomatic dengue mouse model. Pathogens 2021, 10, 501. [Google Scholar] [CrossRef]
- Dharmarathna, S.L.C.A.; Wickramasinghe, S.; Waduge, R.N.; Rajapakse, R.P.V.J.; Kularatne, S.A.M. Does Carica papaya leaf-extract increase the platelet count? An experimental study in a murine model. Asian Pac. J. Trop. Biomed. 2013, 3, 720–724. [Google Scholar] [CrossRef] [Green Version]
- Siddique, O.; Sundus, A.; Ibrahim, M.F. Effects of papaya leaves on thrombocyte counts in dengue–a case report. J. Pak. Med. Assoc. 2014, 64, 364–366. [Google Scholar]
- Ahmad, N.; Fazal, H.; Ayaz, M.; Abbasi, B.H.; Mohammad, I.; Fazal, L. Dengue fever treatment with Carica papaya leaves extracts. Asian Pac. J. Trop. Biomed. 2011, 1, 330–333. [Google Scholar] [CrossRef] [Green Version]
- Deepak, B.S.R.; Girish, K.J.; Jadhav, L.L. Effect of papaya leaf juice on platelet and WBC count in dengue fever: A case report. J. Ayurveda Holist. Med. 2013, 1, 44–47. [Google Scholar]
- Ismail, I.S.; Hairon, S.M.; Yaacob, N.M.; Besari, A.M.; Abdullah, S. Usage of traditional and complementary medicine among dengue fever patients in the Northeast Region of Peninsular Malaysia. Malays. J. Med. Sci. 2019, 26, 90–101. [Google Scholar] [CrossRef]
- Hettige, S. Salutary effects of Carica papaya leaf extract in dengue fever patients–a pilot study. Sri Lankan Fam. Physician 2008, 29, 17–19. [Google Scholar]
- Prakash Kala, C. Leaf juice of Carica papaya L.: A remedy of dengue fever. Med. Aromat. Plants 2012, 1, 109. [Google Scholar] [CrossRef] [Green Version]
- Solanki, S.G.; Trivedi, P. Evaluation of the efficacy of Carica papaya leaf extract on platelet counts in dengue patients. J. Adv. Sci. Res. 2020, 11, 62–65. [Google Scholar]
- Naresh Kumar, C.V.M.; Taranath, V.; Venkatamuni, A.; Vishnu Vardhan, R.; Siva Prasad, Y.; Ravi, U.; Sai Gopal, D.V.R. Therapeutic potential of Carica papaya L. leaf extract in treatment of dengue patients. Int. J. Appl. Biol. Pharm. Technol. 2015, 6, 93–98. [Google Scholar]
- Subenthiran, S.; Choon, T.C.; Cheong, K.C.; Thayan, R.; Teck, M.B.; Muniandy, P.K.; Afzan, A.; Abdullah, N.R.; Ismail, Z. Carica papaya leaves juice significantly accelerates the rate of increase in platelet count among patients with dengue fever and dengue haemorrhagic fever. Evid.-Based Complement. Altern. Med. 2013, 2013, 616737. [Google Scholar] [CrossRef] [Green Version]
- Hettige, S.; Pushpakumara, J.; Wanigabadu, L.U.; Ransirini Hettige, E.M.; Kottege, A.; Jayaratne, S.D.; Saman, G. Controlled clinical trial on effect of ‘Carica papaya’ leaf extract on patients with dengue fever. J. Clin. Res. Med. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Chao, C.H.; Wu, W.C.; Lai, Y.C.; Tsai, P.J.; Perng, G.C.; Lin, Y.S.; Yeh, T.M. Dengue virus nonstructural protein 1 activates platelets via toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog. 2019, 15, e1007625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Emerging and Zoonotic Infectious Diseases. Mosquito Life Cycle. Available online: https://www.cdc.gov/dengue/resources/factsheets/mosquitolifecyclefinal.pdf (accessed on 14 February 2022).
- Patel, S.R.; Hartwig, J.H.; Italiano, J.E., Jr. The biogenesis of platelets from megakaryocyte proplatelets. J. Clin. Investig. 2005, 115, 3348–3354. [Google Scholar] [CrossRef] [Green Version]
- Vogt, M.B.; Lahon, A.; Arya, R.P.; Spencer Clinton, J.L.; Rico-Hesse, R. Dengue viruses infect human megakaryocytes, with probable clinical consequences. PLoS Negl. Trop. Dis. 2019, 13, e0007837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.; Li, Y.; Jin, G.; Huang, T.; Zou, M.; Duan, S. The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases. Biomed. Pharmacother. 2020, 129, 110354. [Google Scholar] [CrossRef]
- Zimmerman, G.A.; McIntyre, T.M.; Prescott, S.M.; Stafforini, D.M. The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Crit. Care Med. 2002, 30, S294–S301. [Google Scholar] [CrossRef] [PubMed]
- Jayaratne, S.D.; Atukorale, V.; Gomes, L.; Chang, T.; Wijesinghe, T.; Fernando, S.; Ogg, G.S.; Malavige, G.N. Evaluation of the WHO revised criteria for classification of clinical disease severity in acute adult dengue infection. BMC Res. Notes 2012, 5, 645. [Google Scholar] [CrossRef] [Green Version]
- Malavige, G.N.; Ranatunga, P.K.; Jayaratne, S.D.; Wijesiriwardana, B.; Seneviratne, S.L.; Karunatilaka, D.H. Dengue viral infections as a cause of encephalopathy. Indian J. Med. Microbiol. 2007, 25, 143–145. [Google Scholar] [CrossRef]
- Trung, D.T.; Thao le, T.T.; Hien, T.T.; Hung, N.T.; Vinh, N.N.; Hien, P.T.; Chinh, N.T.; Simmons, C.; Wills, B. Liver involvement associated with dengue infection in adults in Vietnam. Am. J. Trop. Med. Hyg. 2010, 83, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J.; Baldwin, L.A. Chemotherapeutics and hormesis. Crit. Rev. Toxicol. 2003, 33, 305–353. [Google Scholar] [CrossRef]
- Zellweger, R.M.; Shresta, S. Mouse models to study dengue virus immunology and pathogenesis. Front. Immunol. 2014, 5, 151. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.J.; Roehrig, J.T. New mouse model for dengue virus vaccine testing. J. Virol. 1999, 73, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.R.; Khakpoor, A. Involvement of the liver in dengue infections. Dengue Bull. 2009, 3, 75–86. [Google Scholar]
- McClatchey, W.C.; Mahady, G.B.; Bennett, B.C.; Shiels, L.; Savo, V. Ethnobotany as a pharmacological research tool and recent developments in CNS-active natural products from ethnobotanical sources. Pharmacol. Ther. 2009, 123, 239–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, X.Y.; Chan, J.S.W.; Japri, N.; Lee, J.C.; Tan, T.Y.C. Carica papaya L. leaf: A systematic scoping review on biological safety and herb-drug interactions. Evid.-Based Complement. Altern. Med. 2021, 2021, 5511221. [Google Scholar] [CrossRef] [PubMed]
- Halim, S.Z.; Abdullah, N.; Afzan, A.; Abd Rashid, B.; Jantan, I.; Ismail, Z. Acute toxicity study of Carica papaya leaf extract in Sprague Dawley rats. J. Med. Plants Res. 2011, 5, 1867–1872. [Google Scholar]
- World Health Organisation. Annex 1 WHO Guidelines on Good Herbal Processing Practices for Herbal Medicines. Available online: https://www.who.int/traditional-complementary-integrative-medicine/publications/trs1010_annex1.pdf (accessed on 14 February 2022).
- Joshi, D.; Adhikari, N. An overview on common organic solvents and their toxicity. J. Pharm. Res. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Afzan, A.; Abdullah, N.R.; Halim, S.Z.; Rashid, B.A.; Semail, R.H.; Abdullah, N.; Jantan, I.; Muhammad, H.; Abdullah, N.R.; Halim, S.Z.; et al. Repeated dose 28-days oral toxicity study of Carica papaya L. leaf extract in Sprague Dawley rats. Molecules 2012, 17, 4326–4342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, Z.; Halim, S.Z.; Abdullah, N.R.; Afzan, A.; Abdul Rashid, B.A.; Jantan, I. Safety evaluation of oral toxicity of Carica papaya Linn. leaves: A subchronic toxicity study in Sprague Dawley rats. Evid.-Based Complement. Altern. Med. 2014, 2014, 741470. [Google Scholar] [CrossRef] [Green Version]
- Kaul, T.N.; Middleton, E.J.; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol. 1985, 15, 71–79. [Google Scholar] [CrossRef]
- Sánchez, I.; Gómez-Garibay, F.; Taboada, J.; Ruiz, B.H. Antiviral effect of flavonoids on the dengue virus. Phytother. Res. 2000, 14, 89–92. [Google Scholar] [CrossRef]
- Kiat, T.S.; Pippen, R.; Yusof, R.; Ibrahim, H.; Khalid, N.; Rahman, N.A. Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorganic Med. Chem. Lett. 2006, 16, 3337–3340. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, L.R.; Wu, H.; Nebo, L.; Fernandes, J.B.; da Silva, M.F.; Kiefer, W.; Kanitz, M.; Bodem, J.; Diederich, W.E.; Schirmeister, T.; et al. Flavonoids as noncompetitive inhibitors of dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorganic Med. Chem. 2015, 23, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Coulerie, P.; Maciuk, A.; Eydoux, C.; Hnawia, E.; Lebouvier, N.; Figadere, B.; Guillemot, J.C.; Nour, M. New inhibitors of the DENV-NS5 RdRp from Carpolepis laurifolia as potential antiviral drugs for dengue treatment. Rec. Nat. Prod. 2014, 8, 286–289. [Google Scholar]
- Allard, P.-M.; Dau, E.T.H.; Eydoux, C.; Guillemot, J.-C.; Dumontet, V.; Poullain, C.; Canard, B.; Guéritte, F.; Litaudon, M. Alkylated flavanones from the bark of Cryptocarya chartacea as dengue virus NS5 polymerase inhibitors. J. Nat. Prod. 2011, 74, 2446–2453. [Google Scholar] [CrossRef]
- Coulerie, P.; Eydoux, C.; Hnawia, E.; Stuhl, L.; Maciuk, A.; Lebouvier, N.; Canard, B.; Figadère, B.; Guillemot, J.C.; Nour, M. Biflavonoids of Dacrydium balansae with potent inhibitory activity on dengue 2 NS5 polymerase. Planta Med. 2012, 78, 672–677. [Google Scholar] [CrossRef] [Green Version]
- Coulerie, P.; Nour, M.; Maciuk, A.; Eydoux, C.; Guillemot, J.C.; Lebouvier, N.; Hnawia, E.; Leblanc, K.; Lewin, G.; Canard, B.; et al. Structure-activity relationship study of biflavonoids on the dengue virus polymerase DENV-NS5 RdRp. Planta Med. 2013, 79, 1313–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senthilvel, P.; Lavanya, P.; Kumar, K.M.; Swetha, R.; Anitha, P.; Bag, S.; Sarveswari, S.; Vijayakumar, V.; Ramaiah, S.; Anbarasu, A. Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents dengue 2 viral assembly. Bioinformation 2013, 9, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Mir, A.; Ismatullah, H.; Rauf, S.; Niazi, U.H.K. Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach. Inform. Med. Unlocked 2016, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Anju Krishnan, K.; Latha, M.S.; Sruthy, B. A computational analysis of the therapeutic effect of Carica papaya leaves against dengue fever. Indian J. Sci. Res. 2018, 18, 55–61. [Google Scholar]
- Keramagi, A.R.; Skariyachan, S. Prediction of binding potential of natural leads against the prioritized drug targets of chikungunya and dengue viruses by computational screening. 3 Biotech 2018, 8, 274. [Google Scholar] [CrossRef] [PubMed]
- Qamar, M.T.; Ashfaq, U.A.; Tusleem, K.; Mumtaz, A.; Tariq, Q.; Goheer, A.; Ahmed, B. In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach. Pak. J. Pharm. Sci. 2017, 30, 2119–2137. [Google Scholar]
- Oteiza, P.I.; Erlejman, A.G.; Verstraeten, S.V.; Keen, C.L.; Fraga, C.G. Flavonoid-membrane interactions: A protective role of flavonoids at the membrane surface? Clin. Dev. Immunol. 2005, 12, 592035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrich, A.B. Flavonoid-membrane interactions: Possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sin. 2006, 27, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinzade, A.; Sadeghi, O.; Naghdipour Biregani, A.; Soukhtehzari, S.; Brandt, G.S.; Esmaillzadeh, A. Immunomodulatory effects of flavonoids: Possible Induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front. Immunol. 2019, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Chapter 12-Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 253–271. [Google Scholar]
- Faggio, C.; Sureda, A.; Morabito, S.; Sanches-Silva, A.; Mocan, A.; Nabavi, S.F.; Nabavi, S.M. Flavonoids and platelet aggregation: A brief review. Eur. J. Pharmacol. 2017, 807, 91–101. [Google Scholar] [CrossRef]
- Tham, C.S.; Chakravarthi, S.; Haleagrahara, N.; De Alwis, R. Morphological study of bone marrow to assess the effects of lead acetate on haemopoiesis and aplasia and the ameliorating role of Carica papaya extract. Exp. Ther. Med. 2013, 5, 648–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, Y.K. Breeding the papaya–Carica papaya. UTAR Agric. Sci. J. 2015, 1, 32–42. [Google Scholar]
- Sanimah, S.; Sarip, J. Metabolomic analysis of Carica papaya variety eksotika and sekaki. J. Trop. Agric. Food Sci. 2015, 43, 103–117. [Google Scholar]
- Bok, Z.K.; Balakrishnan, M.; Jong, Y.X.; Kong, Y.R.; Khaw, K.Y.; Ong, Y.S. The plausible mechanisms of action of Carica papaya on dengue infection: A comprehensive review. Prog. Drug Discov. Diomedical Sci. 2020, 3, a0000097. [Google Scholar] [CrossRef]
1. Study characteristic | Year Author(s) Title |
2. Study type | Ethnobotanical In vitro In vivo Human |
3. Subject | Description |
4. Intervention | Dose Frequency Treatment duration |
5. Comparator | Dose Frequency Treatment duration |
6. Outcome | Reported findings |
7. Safety outcome | Reported findings |
Study Type (Design, if Any) | Author (Year) | Country | Subject | Intervention | Comparator | Outcome |
---|---|---|---|---|---|---|
Ethnobotanical information | Fajardo WT et al. (2017) [28] | Philippines | 19 herbalists from 11 barangays in Bolinao town, Pangasinan, Philippines | Consumed young leaf juice added with milk | Not applicable | Not applicable |
Ethnobotanical information | Roldan Fiscal R (2017) [29] | Philippines | 32 traditional healers in Laguna, Philippines | Consumed pounded pure leaf juice | Not applicable | Not applicable |
Ethnobotanical information | Islam ATM et al. (2020) [27] | Bangladesh | 41 elderly Rakhine tribes, including traditional health practitioners, in 2 districts of Bangladesh | Consumed pure leaf juice until recover | Not applicable | Not applicable |
In vitro | Ranasinghe P et al. (2012) [30] | Sri Lanka | Heat-induced hemolysis erythrocytes obtained from healthy volunteers and dengue patients | Crushed, filtered, centrifuged and freeze-dried fresh leaf juice added with water (37.5 µg/mL) | Aspirin (90 µg/mL) | Higher inhibition on healthy and dengue infected erythrocytes Intervention (for all 3 leaf maturities) vs. control: X Higher inhibition on dengue infected erythrocytes Intervention (for partly mature leaves) vs. control: X |
In vitro | (same as above) | Sri Lanka | Hypotonicity-induced hemolysis erythrocytes obtained from healthy volunteers and dengue patients | Crushed, filtered, centrifuged and freeze-dried fresh leaf juice added with water (37.5 µg/mL) | Indomethacin (No dose given) | Higher inhibition on healthy and dengue infected erythrocytes Intervention (for partly mature leaves) vs. control: X |
In vivo | Dharmarathna SLCA et al. (2013) [44] | Sri Lanka | Male healthy white mice (32–33 g body weight, 18 mice per group) | Oral gavage once daily 0.2 mL of blended pure fresh leaf juice for 7 days and observed for extra 14 days | Oral gavage once daily water for 7 days and observed for extra 14 days | Increase platelet count Intervention vs. control: O Increase red blood cell count Intervention vs. control: O |
In vivo | Rubio ICS (2016) [33] | Philippines | Mosquito larvae (5 larvae per treatment time) captured from artificial mosquitoes’ trap that contain only clear water (8-week exposed at outdoor) | Pounded and squeezed pure leaf juice (0.5 mL) for 5-, 20- and 35-min treatment | Not applicable | All the larvae died within the treatment time frames. Mosquitoes’ larvae trapped was belong to Aedes sp. and Culex sp. |
In vitro | Chinnappan et al. (2016) [31] | India | Adenosine diphosphate-induced platelet aggregation on plasma rich platelet and plasma poor platelet obtained from 60 healthy volunteers and 60 dengue patients | Grinded, strained and freeze-dried mature fresh pure leaf juice (No dose given) | Untreated plasma platelet | Decrease platelet aggregation Intervention vs. control: O Intervention (pre-infected with intervention pre-treated dengue plasma poor platelet) vs. control: O |
In vitro | Jayasinghe CD et al. (2017) [32] | Sri Lanka | Peritoneal macrophages isolated from healthy Wistar rats | Blended dried pure leaf juice (62.5, 125, 250, 500, 1000 µg/mL) | Complete RPMI 1640 cell media | Higher phagocytic activity Intervention vs. control: O Increase IFN-γ Intervention vs. control: O * Increase IL-10 Intervention vs. control: O * |
Ex vivo | (same as above) | Sri Lanka | Bone marrow cells (absence of mitogen) and splenocytes isolated from healthy Wistar rats | Blended dried pure leaf juice (31.25, 62.5, 125, 250, 500, 1000 µg/mL) | Complete RPMI 1640 cell media | Higher proliferation activity of bone marrow cells Intervention (31.25 µg/mL) vs. control: O Higher proliferation activity of splenocytes Intervention (31.25 µg/mL) vs. control: O Increase IFN-γ from bone marrow cells Intervention (62.5–1000 µg/mL) vs. control: O Increase IFN-γ from splenocytes Intervention (31.25–1000 µg/mL) vs. control: O Increase IL-10 from bone marrow cells Intervention (62.5 µg/mL) vs. control: O Increase IL-10 from splenocytes Intervention (31.25–500 µg/mL) vs. control: O |
In vivo | (same as above) | Sri Lanka | Healthy Wistar rats (both genders, 180–230 g body weight, 6 rats per group) | Oral gavage once daily 0.36 and 0.72 mL/100 g body weight of blended dried pure leaf juice for 3 days | Oral gavage once daily distilled water for 3 days | Increase platelet count Intervention vs. control: O * Increase bone marrow cells Intervention vs. control: O * Increase total white blood counts Intervention vs. control: O * Increase monocyte and lymphocyte count Intervention vs. control: O * Increase TNF-α Intervention vs. control: O * Increase IL-6 Intervention vs. control: O * Higher phagocytic activity Intervention vs. control: O * |
In vivo | Akhter T et al. (2014) [35] | Bangladesh | Cyclophosphamide-induced thrombocytopenia Long Evans Norwegian rats (150–200 g body weight, 6 rats per group) | Oral gavage once daily 2 mL of blended pure fresh leaf juice for 3 days | Subcutaneous once daily 0.1 mL of hydrocortisone for 3 days | Increase platelet count Intervention vs. control: O |
In vivo | Jayawardhane NDCKK (2014) [34] | Sri Lanka | Healthy adult Wistar rats (both genders, 180–250 g body weight, 6 rats per group) | Oral gavage once daily 0.72 mL/100 g body weight of blended pure mature leaf juice for 3 days | Oral gavage once daily distilled water for 3 days | Increase platelet count Intervention vs. control: O Increase monocyte and lymphocyte counts Intervention vs. control: O Increase bone marrow cells Intervention vs. control: O Higher phagocytic activity Intervention vs. control: O |
In vivo | Tahir N et al. (2014) [39] | Pakistan | Carboplatin-induced myelosuppression adult Swiss mice (either gender, 35–45 g body weight, 11 mice per group) | Oral gavage once daily 5 and 10 mL/kg body weight of pounded and squeezed pure medium size leaf juice (respectively, male and female varieties) for 21 days | Oral gavage once daily distilled water for 21 days | Platelet count Male variety vs. female variety: X Increase platelet count Intervention vs. control: O * |
In vivo | Anjum V et al. (2017) [38] | India | Cyclophosphamide-induced thrombocytopenia female albino Wistar rats (200–300 g body weight, 6 rats per group) | Oral gavage once daily 50 and 150 mg/kg body weight of freeze-dried ground fresh leaf juice added with distilled water for 14 days | Oral gavage once daily 0.8 mL of saline for 14 days | Increase platelet count Intervention vs. control: O Increase monocytes, basophils, eosinophils, lymphocytes and neutrophils Intervention vs. control: O Shorter bleeding time Intervention (50 mg/kg body weight) vs. control: O Shorter clotting time Intervention vs. control: O |
In vivo | (same as above) | India | Cyclophosphamide-induced thrombocytopenia female Swiss albino mice (30–45 g body weight, 6 mice per group) (re-induced thrombocytopenia condition on Day 8, 9 and 10) | Oral gavage once daily 150 mg/kg body weight of freeze-dried ground fresh leaf juice added with distilled water for 3 days and observed for another 7 days | Untreated mice | Decrease inflammation Intervention vs. control: O Increase total leukocyte count Intervention vs. control: O Decrease phagocytic index Intervention vs. control: O Decrease mean antibody titre Intervention vs. control: O Decrease TNF-α Intervention vs. control: O |
In vivo | Mohd Abd Razak MR et al. (2018) [40] | Malaysia | AG129 male mice inoculated intraperitoneal with 2 × 106 PFU of New Guinea C strain-DENV-2 or plain media (20–27 g body weight; 5 mice per group) | Oral gavage once daily 1000 mg/kg body weight of freeze-dried powder of blended pure fresh leaf juice for 3 days | Oral gavage once daily distilled water for 3 days | Plasma antigen level Intervention vs. control: X Plasma viral RNA level Intervention vs. control: X |
In vivo | Santosh Kumar M et al. (2018) [36] | India | Hydroxyurea-induced thrombocytopenia albino rats (either gender; 100–125 g body weight, 6 rats per group) | Oral gavage once daily 0.18 and 0.36 mL/100 g body weight of pounded and squeezed pure mature leaf juice for 5 days | Untreated rats | Increase red blood cell count Intervention vs. control: O Shorter bleeding time Intervention vs. control: O |
In vivo | Mohd Abd Razak MR et al. (2019) [41] | Malaysia | AG129 male mice inoculated intraperitoneal with New Guinea C strain-DENV-2 (2 × 106 PFU) or plain media (20–27 g body weight; 3 or 4 mice per group) | Oral gavage once daily 1000 mg/kg body weight of freeze-dried powder of blended pure fresh leaf juice for 3 days | Untreated mice | Increase 1 gene expression Intervention vs. control: O Decrease 3 gene expressions Intervention vs. control: O |
In vivo | Norahmad NA et al. (2019) [42] | Malaysia | AG129 male mice inoculated intraperitoneal with New Guinea C strain-DENV-2 (2 × 106 PFU) or plain media (20–27 g body weight; 5 mice per group) | Oral gavage once daily 1000 mg/kg body weight of freeze-dried powder of blended pure fresh leaf juice for 3 days | Untreated mice | Decrease 8 inflammatory cytokines and receptors (CCL6/MRP- 1, CCL8/MCP-2, CCL12/MCP-5, CCL17/TARC, IL1R1, IL1RN/IL1Ra, NAMPT/PBEF1, PF4/CXCL4) in the liver Intervention vs. control: O |
In vivo | Mohd Abd Razak MR et al. (2021) [43] | Malaysia | AG129 male mice inoculated intraperitoneal with Malaysian clinical DENV-2 (DMOF015) (2 × 105 PFU) or plain media (7–8 weeks old; 20–27 g body weight; 5 mice per group) | Oral gavage once daily 500 and 1000 mg/kg body weight of freeze-dried powder of blended pure fresh leaf juice for 3 days | Untreated mice | Increase total white blood cell count Intervention (1000 mg/kg body weight) vs. control: O Increase neutrophil count Intervention (1000 mg/kg body weight) vs control: O Decrease 5 plasma cytokines Intervention vs. control: O Decrease IL-6 in liver Intervention (500 mg/kg body weight) vs. control: O Decrease viral RNA in liver Intervention vs. control: O |
In vivo | Nandini C et al. (2021) [37] | India | Cyclophosphamide-induced thrombocytopenia Sprague Dawley rats (180–200 g body weight, 8 rats per group) | Oral gavage once daily 200 and 400 mg/kg body weight of freeze-dried blended and squeezed pure fresh leaf juice for 14 days | Untreated rats; Oral gavage once daily water for 14 days | Shorter bleeding time Intervention vs. untreated control: O * Shorter clotting time Intervention vs. untreated control: O * Decrease cellular malondialdehyde Intervention vs. untreated control: O * Decrease serum thrombopoietin cytokine Intervention vs. untreated control: O * Increase SOD Intervention vs. untreated control: O * Increase GSH Intervention vs. untreated control: O * Increase platelet count Intervention vs. water control: O * Shorter prothrombin time Intervention vs. untreated control: O Increase MPL-CD110 Intervention vs. untreated control: O |
Human (case report) | Ahmad N et al. (2011) [46] | Pakistan | A 45 year old male dengue patient treated with standard treatment for first 5 days (different broad spectrum of antibiotics, anti-malarial drugs) | Consumed twice daily (in the morning and evening) 25 mL of ground leaf juice added with water and sucrose for next 5 days | Not applicable | Increase platelet count. Increase level of white blood cell. Increase level of neutrophil. |
Human (case report) | Deepak BSR et al. (2013) [47] | India | A 51 year old male dengue fever patient treated with standard treatment (ringer lactate, dexamethasone, gramocef, paracetamol) | Consumed twice daily 25 mL of ground tender leaf juice added with water for 8 days (first 5 days together with standard treatment, next 3 days together with Ayurveda treatment) | Not applicable | Increase platelet count. Increase white blood cell counts. Patient discharged on a day after completing intervention treatment period. |
Human (case report) | Siddique O et al. (2014) [45] | Pakistan | A 23 year old male dengue patient treated with azithromycin 250 mg once daily, acetaminophen per 8-h, unlimited amount of oral hydration for the first 5 days | Consumed once daily 150 mL of ground leaf juice added with water and took alternate sips between intervention and commercially-made fruit juice for next 5 days | Different days of treatment | Increase platelet count. Increase level of white blood cell. Increase level of hemoglobin. |
Human (cross-sectional) | Ismail IS et al. (2019) [48] | Malaysia | Dengue patients admitted to Hospital Universiti Sains Malaysia Kelantan between January 2014 and December 2015 (≥18 years old, 214 respondents) treated with standard treatment | Consumed at least once daily leaf juice for 3 days | Not applicable | 131 out of 214 respondents |
Human (quasi trial) | Hettige S (2008) [49] | Sri Lanka | Dengue patients (6 females and 6 males, adult and children (<10 years old), 4 children and 8 adults) also received standard oral treatment (antiemetic, paracetamol, antibiotics) as necessary | Consumed twice in a day (8-h interval) of crushed and squeezed pure tender fresh leaf juice (2 leaves) for 1 day (adult: 5 mL, children: 2.5 mL) | Before/after treatment | Increase white blood cell After vs. before: O Increase platelet count After vs. before: O 5 patients no longer experienced hemorrhagic skin rash. All 12 patients recovered with no hospital admission. |
Human (quasi trial) | Naresh Kumar CVM et al. (2015) [52] | India | Dengue patients (6 females and 3 males) received usual management (saline, anti-emetics, paracetamol) as necessary (only after receiving intervention treatment) | Consumed thrice daily (6-h interval) 5 mL of blended and filtered fresh partly mature leaf juice added with sucrose for 6 days | Different days of treatment | Increase total white blood cell Day 3 vs. day 1, day 2: O Day 6 vs. day 1, day 2, day 3, day 4, day 5: O Increase platelet count Day 3 vs. day 1, day 2: O Day 6 vs. day 1, day 2, day 3, day 4, day 5: O All 9 patients gradually recovered from lethargy, fatigue, and fever. No excess fluid collected at pleural, pericardial and peritoneal sites of patients after intervention treatment. |
Human (quasi trial) | Prakash Kala C (2012) [50] | India | Dengue patients (19–52 years old, 5 subjects) | Consumed thrice daily (6-h interval) 2 tablespoons of crushed, squeezed and filtered pure fresh leaf juice (2 leaves) for 1 day | Before/after treatment | Increase platelet count After vs. before: O |
Human (quasi trial) | Solanki SG et al. (2020) [51] | India | Dengue patients 100 patients in intervention group (42 females and 58 males), 50 patients in control group (20 females and 30 males) | Consumed thrice daily of blended fresh leaf juice added with water (adult: 10 mL, children: 5 mL) for 3 days (together with 1 kiwi fruit per consumption) | Before/after treatment | Increase white blood cell After vs. before: O Increase platelet count After vs. before: O |
Human (open labelled RCT) | Subenthiran S et al. (2013) [53] | Malaysia | Dengue patients (18–60 years old), grade 1 and 2 dengue fever, 111 patients in intervention group (20 females and 91 males), 117 patients in control group (14 females and 103 males)) | Consumed once daily 30 mL of blended pure leaf juice for 3 days (together with standard treatment) | Standard treatment | Increase platelet count Intervention 40-h vs. 8-h: O Control 48-h vs. 8-h: O |
Human (open labelled RCT) | Hettige S et al. (2020) [54] | Sri Lanka | Dengue patients (16–60 years old), 43 subjects in intervention group (7 females and 36 males), 76 subjects in control group (15 females and 61 males) who have at least seven days of fever but not dengue hemorrhagic fever | Consumed twice daily (12-h interval) 20 mL of blended mature leaf juice added with water until the day of discharge | Standard treatment | Shorter total duration of illness Intervention vs. control: O Shorter duration of fever Intervention vs. control: O Shorter duration of hospitalization Intervention vs. control: O Lesser episode of pleural effusion Intervention vs. control: O |
Author (Year) | Ingredient Added into Juice | Leaf Maturity | Leaf Condition | Leaf Cleansing | Juice Extraction Technique |
---|---|---|---|---|---|
Hettige S (2008) [49] | None | Tender | Fresh | Not mentioned | Crush, squeeze |
Ahmad N et al. (2011) [46] | Water and sucrose | Not mentioned | Not mentioned | Rinse with water | Grind |
Prakash Kala C (2012) [50] | None | Not mentioned | Fresh | Rinse with water | Crush, squeeze, filter |
Ranasinghe P et al. (2012) [30] | Water | Immature, partly mature, mature | Fresh | Rinse with water | Crush, filter, centrifuge, freeze-dry |
Deepak BSR et al. (2013) [47] | Water | Tender | Not mentioned | Rinse with water | Grind |
Dharmarathna SLCA et al. (2013) [44] | None | Middle stage age | Fresh | Rinse with water; remove stems | Blend |
Subenthiran S et al. (2013) [53] | None | Not mentioned | Not mentioned | Rinse with water | Blend |
Akhter T et al. (2014) [35] | None | Not mentioned | Fresh | Remove petioles and veins | Blend |
Jayawardhane NDCKK (2014) [34] | None | Mature | Not mentioned | Rinse with water; remove petioles, primary veins and leaf blades | Blend |
Siddique O et al. (2014) [45] | Water | Not mentioned | Not mentioned | Rinse with water | Grind |
Tahir N et al. (2014) [39] | None | Medium size | Not mentioned | Rinse with water | Pound, squeeze |
Chinnappan et al. (2016) [31] | None | Mature | Fresh | Rinse with water; remove petioles, veins and leaf blades | Grind, strain, freeze-dry |
Rubio ICS (2016) [33] | None | Not mentioned | Not mentioned | Not mentioned | Pound, squeeze |
Anjum V et al. (2017) [38] | Water | Not mentioned | Fresh | Remove woody stalks | Chop, grind, filter, freeze-dry |
Fajardo WT et al. (2017) [28] | Milk | Young | Not mentioned | Not mentioned | Not mentioned |
Jayasinghe CD et al. (2017) [32] | None | Mature | Dry | Rinse with water; remove petioles and primary veins | Blend |
Roldan Fiscal R 2017 [29] | None | Not mentioned | Not mentioned | Not mentioned | Pound |
Mohd Abd Razak MR et al. (2018) [40] | None | Not mentioned | Healthy (without ring spot) | Rinse with water and veggie wash | Blend, freeze-dry |
Santosh Kumar M et al. (2018) [36] | None | Mature | Not mentioned | Rinse with water; remove petioles, primary veins and leaf blades | Crush, pound, squeeze |
Ismail IS et al. (2019) [48] | Not mentioned | Not mentioned | Not mentioned | Not mentioned | Not mentioned |
Mohd Abd Razak MR et al. (2019) [41] | None | Not mentioned | Healthy (without ring spot) | Rinse with water and veggie wash | Blend, freeze-dry |
Norahmad NA et al. (2019) [42] | None | Not mentioned | Healthy (without ring spot) | Rinse with water and veggie wash | Blend, freeze-dry |
Hettige S et al. (2020) [54] | Water | Mature | Not mentioned | Not mentioned | Grind, blend |
Islam ATM et al. (2020) [27] | Not mentioned | Not mentioned | Not mentioned | Not mentioned | Not mentioned |
Solanki SG et al. (2020) [51] | Water | Not mentioned | Fresh | Not mentioned | Blend |
Mohd Abd Razak MR et al. (2021) [43] | None | Not mentioned | Healthy (without ring spot) | Rinse with water and veggie wash | Blend, freeze-dry |
Author (Year) | Chemical Composition |
---|---|
Ranasinghe P et al. (2012) [30] | Phenolics; flavonoids |
Subenthiran S et al. (2013) [53] | Manghaslin; clitorin; rutin |
Jayawardhane NDCKK (2014) [34] | Polyphenols; flavonoids; tannins; saponins; alkaloids; carbohydrates; proteins; amino acids |
Anjum V et al. (2017) [38] | Myricetin; caffeic acid; trans-ferulic acid; kaempferol |
Jayasinghe CD et al. (2017) [32] | Phenolics; flavonoids; bis (2-(2-chloroethoxy)ethyl) ether; dimethoxydimethylsilane; 3-benzoyl-8-oxo-6-azabicyclo [3.2.1] octan-6,7-dicarboxylicacid, dibenzyl ester; benzhydrazide; o-butylisourea; 10-oxatetracyclo [5.5.2.0(1,5).0(8,12)] tetradecene-9,11,14-trione; 4-[(2-methoxyethoxy)methoxyl]- 5-methyl-; 2-chloro-5,5-dimethyl-1-phenyl-3- hexen-1-ol; 2-methoxybenzeneacetaldehyde; 1-methyl-2-pyrrolidinone; benzonitrile; nonanal; octanoic acid; methyl ester; 1-decene, n-benzyl-n-phenylethylisobutyramide; nonanoic acid; benzene; 1,3-bis(1,1-dimethylethyl)-; 1-iodooctadecane; 2-methylnaphthalene; 2-tetradecene; 10-undecenoic acid; dodecanal; 1,4-dimethylnaphthalene; 9-oxononanoic acid; 1-hentriacontane; 2,4-di-tert-butylphenol; nonanedioic acid; dimethyl ester; azelaic acid; 2-tetradecene; 1-octadecene; 1-hexadecanoic acid; n-hexadecanoic acid; cycloeicosane; 9-octadecenoic acid; cethyl stearate; methyl 2-octylcyclopropene-1- heptanoate; 9,12-octadecadienoic acid |
Mohd Abd Razak MR et al. (2018) [40] | Quinic acid; malic acid; protocatechuic acid; chlorogenic acid; p-coumaric; caffeic acid; manghaslin; clitorin; sinapic acid; isoquercetin; ferulic acid; rutin; astragalin; nicotiflorin; deoxyhydrocarpaine I; deoxyhydrocarpaine II; myricetin; fisetin; morin; quercetin; kaempferol; citropten; isorhamnetin |
Norahmad NA et al. (2019) [42] | Manghaslin; clitorin; rutin; nicotiflorin |
Nandini C et al. (2021) [37] | Benzoic acid; o-methyl syringic acid; caffeic acid; syringic acid; gallic acid; ferulic acid; veratric acid; 3,4,5-trihydroxy cinnamic acid; kaempferol; dimethyl caffeic acid; protocatechuic acid; quercetin; 4-hydroxy; trans-cinnamic acid; carpaine |
Mohd Abd Razak MR et al. (2021) [43] | Manghaslin; clitorin; rutin; nicotiflorin; carpaine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teh, B.P.; Ahmad, N.B.; Mohamad, S.B.; Tan, T.Y.C.; Mohd Abd Razak, M.R.B.; Afzan, A.B.; Syed Mohamed, A.F.B. Carica papaya Leaf Juice for Dengue: A Scoping Review. Nutrients 2022, 14, 1584. https://doi.org/10.3390/nu14081584
Teh BP, Ahmad NB, Mohamad SB, Tan TYC, Mohd Abd Razak MRB, Afzan AB, Syed Mohamed AFB. Carica papaya Leaf Juice for Dengue: A Scoping Review. Nutrients. 2022; 14(8):1584. https://doi.org/10.3390/nu14081584
Chicago/Turabian StyleTeh, Bee Ping, Norzahirah Binti Ahmad, Saharuddin Bin Mohamad, Terence Yew Chin Tan, Mohd Ridzuan Bin Mohd Abd Razak, Adlin Binti Afzan, and Ami Fazlin Binti Syed Mohamed. 2022. "Carica papaya Leaf Juice for Dengue: A Scoping Review" Nutrients 14, no. 8: 1584. https://doi.org/10.3390/nu14081584
APA StyleTeh, B. P., Ahmad, N. B., Mohamad, S. B., Tan, T. Y. C., Mohd Abd Razak, M. R. B., Afzan, A. B., & Syed Mohamed, A. F. B. (2022). Carica papaya Leaf Juice for Dengue: A Scoping Review. Nutrients, 14(8), 1584. https://doi.org/10.3390/nu14081584