Caffeine Intake among Undergraduate Students: Sex Differences, Sources, Motivations, and Associations with Smoking Status and Self-Reported Sleep Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Participants in the Study
3.2. Caffeine and Caffeine Sources’ Consumption among Participants in the Study
3.3. Analysis of the Variabales Associated with Caffeine and Caffeine Sources’ Consumption
3.4. Caffeine Consumption Stratified per Smoking Habits
3.5. Multivariate Regression Analysis for Subjective Sleep Quality
3.6. Motivations for Caffeine Consumption among Participants in the Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heckman, M.A.; Weil, J.; de Mejia, E.G. Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci. 2010, 75, R77–R87. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. EFSA NDA Panel (EFSA Panel on Dietetic Products, N. and A. Scientific Opinion on the safety of caffeine. EFSA J. 2015, 13, 4102. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, H.R.; Agarwal, S.; Fulgoni, V.L. Daily Patterns of Caffeine Intake and the Association of Intake with Multiple Sociodemographic and Lifestyle Factors in US Adults Based on the NHANES 2007–2012 Surveys. J. Acad. Nutr. Diet. 2019, 119, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stachyshyn, S.; Ali, A.; Wham, C.; Knightbridge-Eager, T.; Rutherfurd-Markwick, K. Caffeine consumption habits of new zealand tertiary students. Nutrients 2021, 13, 1493. [Google Scholar] [CrossRef]
- Mackus, M.; van de Loo, A.J.A.E.; Benson, S.; Scholey, A.; Verster, J.C. Consumption of caffeinated beverages and the awareness of their caffeine content among Dutch students. Appetite 2016, 103, 353–357. [Google Scholar] [CrossRef]
- Mahoney, C.R.; Giles, G.E.; Marriott, B.P.; Judelson, D.A.; Glickman, E.L.; Geiselman, P.J.; Lieberman, H.R. Intake of caffeine from all sources and reasons for use by college students. Clin. Nutr. 2019, 38, 668–675. [Google Scholar] [CrossRef] [Green Version]
- Hewlett, P.; Smith, A. Correlates of daily caffeine consumption. Appetite 2006, 46, 97–99. [Google Scholar] [CrossRef]
- McPhillips, J.B.; Eaton, C.B.; Gans, K.M.; Derby, C.A.; Lasater, T.M.; McKenney, J.L.; Carleton, R.A. Dietary differences in smokers and nonsmokers from two southeastern New England communities. J. Am. Diet. Assoc. 1994, 94, 287–292. [Google Scholar] [CrossRef]
- Carrillo, J.A.; Benítez, J. Caffeine metabolism in a healthy Spanish population: N-Acetylator phenotype and oxidation pathways. Clin. Pharmacol. Ther. 1994, 55, 293–304. [Google Scholar] [CrossRef]
- Kalow, W.; Tang, B.K. Caffeine as a metabolic probe: Exploration of the enzyme-inducing effect of cigarette smoking. Clin. Pharmacol. Ther. 1991, 49, 44–48. [Google Scholar] [CrossRef]
- Turton, P.; Piché, L.; Battram, D.S. Adolescent Attitudes and Beliefs Regarding Caffeine and the Consumption of Caffeinated Beverages. J. Nutr. Educ. Behav. 2016, 48, 181–189.e1. [Google Scholar] [CrossRef] [PubMed]
- Choi, J. Motivations influencing caffeine consumption behaviors among college students in Korea: Associations with sleep quality. Nutrients 2020, 12, 953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeling, P.; Dawson, B. Influence of caffeine ingestion on perceived mood states, concentration, and arousal levels during a 75-min university lecture. Am. J. Physiol.-Adv. Physiol. Educ. 2007, 31, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.; Landolt, H.P. Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials. Sleep Med. Rev. 2017, 31, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Bíró, É. Determinants of sleep quality in college students: A literature review. Explore 2021, 17, 170–177. [Google Scholar] [CrossRef]
- Marta, O.F.D.; Kuo, S.Y.; Bloomfield, J.; Lee, H.C.; Ruhyanudin, F.; Poynor, M.Y.; Brahmadhi, A.; Pratiwi, I.D.; Aini, N.; Mashfufa, E.W.; et al. Gender differences in the relationships between sleep disturbances and academic performance among nursing students: A cross-sectional study. Nurse Educ. Today 2020, 85, 104270. [Google Scholar] [CrossRef]
- Putilov, A.A.; Sveshnikov, D.S.; Bakaeva, Z.B.; Yakunina, E.B.; Starshinov, Y.P.; Torshin, V.I.; Alipov, N.N.; Sergeeva, O.V.; Trutneva, E.A.; Lapkin, M.M.; et al. Differences between male and female university students in sleepiness, weekday sleep loss, and weekend sleep duration. J. Adolesc. 2021, 88, 84–96. [Google Scholar] [CrossRef]
- Bartlett, J.E.; Kotrlik, J.W.; Higgins, C.C. Organizational research: Determining appropriate sample size in survey research appropriate sample size in survey research. Inf. Technol. Learn. Perform. J. 2001, 19, 43–50. [Google Scholar]
- Rodas, L.; Riera-Sampol, A.; Aguilo, A.; Martínez, S.; Tauler, P. Effects of habitual caffeine intake, physical activity levels, and sedentary behavior on the inflammatory status in a healthy population. Nutrients 2020, 12, 2325. [Google Scholar] [CrossRef]
- Irons, J.G.; Heinz, A.J.; Bassett, D.T.; Correia, C.J.; Babson, K.A.; Boden, M.T.; Feldner, M.T.; Bonn-Miller, M.O. Development and Initial Validation of the Caffeine Motives Questionnaire. J. Caffeine Res. 2014, 4, 49–55. [Google Scholar] [CrossRef]
- Ministerio de Sanidad Ministerio de Sanidad, Consumo y Bienestar Social. Portal Estadístico del SNS. Available online: https://www.mscbs.gob.es/estadEstudios/estadisticas/EncuestaEuropea/Enc_Eur_Salud_en_Esp_2020.htm (accessed on 30 November 2021).
- Hays, R.D.; Martin, S.A.; Sesti, A.M.; Spritzer, K.L. Psychometric properties of the Medical Outcomes Study Sleep measure. Sleep Med. 2005, 6, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; Wegener, S.T. Measures of sleep: The Insomnia Severity Index, Medical Outcomes Study (MOS) Sleep Scale, Pittsburgh Sleep Diary (PSD), and Pittsburgh Sleep Quality Index (PSQI). Arthritis Rheum. 2003, 49, S184–S196. [Google Scholar] [CrossRef]
- Stachyshyn, S.; Wham, C.; Ali, A.; Knightbridge-Eager, T.; Rutherfurd-Markwick, K. Motivations for Caffeine Consumption in New Zealand Tertiary Students. Nutrients 2021, 13, 4236. [Google Scholar] [CrossRef]
- Rochat, C.; Eap, C.B.; Bochud, M.; Chatelan, A. Caffeine Consumption in Switzerland: Results from the First National Nutrition Survey MenuCH. Nutrients 2019, 12, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, E.; Faerbinger, A.; Koenig, J. Caffeine intake from all sources in adolescents and young adults in Austria. Eur. J. Clin. Nutr. 2014, 68, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Jeffers, A.J.; Hill, K.E.V.; Benotsch, E.G. Energy drinks, weight loss, and disordered eating behaviors. J. Am. Coll. Heal. 2014, 62, 336–342. [Google Scholar] [CrossRef]
- Hardy, R.; Kliemann, N.; Dahlberg, P.; Bode, A.; Monroe, E.; Brand, J. The Relationship Between Energy Drink Consumption, Caffeine Content, and Nutritional Knowledge Among College Students. J. Prim. Prev. 2021, 42, 297–308. [Google Scholar] [CrossRef]
- Mitchell, D.C.; Knight, C.A.; Hockenberry, J.; Teplansky, R.; Hartman, T.J. Beverage caffeine intakes in the U.S. Food Chem. Toxicol. 2014, 63, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Brice, C.F.; Smith, A.P. Factors associated with caffeine consumption. Int. J. Food Sci. Nutr. 2002, 53, 55–64. [Google Scholar]
- Swanson, J.A.; Lee, J.W.; Hopp, J.W. Caffeine and nicotine: A review of their joint use and possible interactive effects in tobacco withdrawal. Addict. Behav. 1994, 19, 229–256. [Google Scholar] [CrossRef]
- Ratliff-Crain, J.; Kane, J. Predictors for Altering Caffeine Consumption During Stress. Addict. Behav. 1995, 20, 509–516. [Google Scholar] [CrossRef]
- Reissig, C.J.; Strain, E.C.; Griffiths, R.R. Caffeinated energy drinks—A growing problem. Drug Alcohol Depend. 2009, 99, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verweij, K.J.H.; Treur, J.L.; Vink, J.M. Investigating causal associations between use of nicotine, alcohol, caffeine and cannabis: A two-sample bidirectional Mendelian randomization study. Addiction 2018, 113, 1333–1338. [Google Scholar] [CrossRef]
- Paz-Graniel, I.; Babio, N.; Becerra-Tomás, N.; Toledo, E.; Camacho-Barcia, L.; Corella, D.; Castañer-Niño, O.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M.; et al. Association between coffee consumption and total dietary caffeine intake with cognitive functioning: Cross-sectional assessment in an elderly Mediterranean population. Eur. J. Nutr. 2020, 60, 2381–2396. [Google Scholar] [CrossRef]
- Park, H.; Chiang, J.J.; Irwin, M.R.; Bower, J.E.; McCreath, H.; Fuligni, A.J. Developmental trends in sleep during adolescents’ transition to young adulthood. Sleep Med. 2019, 60, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Reid, A.; Baker, F.C. Perceived sleep quality and sleepiness in South African university students. South African J. Psychol. 2008, 38, 287–303. [Google Scholar] [CrossRef]
- Brick, C.A.; Seely, D.L.; Palermo, T.M. Association between sleep hygiene and sleep quality in medical students. Behav. Sleep Med. 2010, 8, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Landolt, H.P. Sleep homeostasis: A role for adenosine in humans? Biochem. Pharmacol. 2008, 75, 2070–2079. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Battig, K.; Holmen, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 1999, 51, 83–133. [Google Scholar]
- Shilo, L.; Sabbah, H.; Hadari, R.; Kovatz, S.; Weinberg, U.; Dolev, S.; Dagan, Y.; Shenkman, L. The effects of coffee consumption on sleep and melatonin secretion. Sleep Med. 2002, 3, 271–273. [Google Scholar] [CrossRef]
- Brzezinski, A. Melatonin in Humans. N. Engl. J. Med. 1997, 336, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Lund, H.G.; Reider, B.D.; Whiting, A.B.; Prichard, J.R. Sleep Patterns and Predictors of Disturbed Sleep in a Large Population of College Students. J. Adolesc. Heal. 2010, 46, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Olfert, M.D.; Barr, M.L.; Charlier, C.C.; Greene, G.; Zhou, W.; Colby, S.E. Sex differences in lifestyle behaviors among U.S. college freshmen. Int. J. Environ. Res. Public Health 2019, 16, 482. [Google Scholar] [CrossRef] [Green Version]
- Pengpid, S.; Peltzer, K. Fruit and vegetable consumption is protective from short sleep and poor sleep quality among university students from 28 countries. Nat. Sci. Sleep 2020, 12, 627–633. [Google Scholar] [CrossRef]
- Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.Y.; Xu, D.P.; Li, H. Bin Dietary sources and bioactivities of melatonin. Nutrients 2017, 9, 367. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.P.; Mikic, A.; Pietrolungo, C.E. Effects of diet on sleep quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef]
- Noorwali, E.; Hardie, L.; Cade, J. Bridging the Reciprocal Gap between Sleep and Fruit and Vegetable Consumption: A Review of the Evidence, Potential Mechanisms, Implications, and Directions for Future Work. Nutrients 2019, 11, 1382. [Google Scholar] [CrossRef] [Green Version]
- Al Khatib, H.K.; Harding, S.V.; Darzi, J.; Pot, G.K. The effects of partial sleep deprivation on energy balance: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2017, 71, 614–624. [Google Scholar] [CrossRef]
- Noorwali, E.A.; Cade, J.E.; Burley, V.J.; Hardie, L.J. The relationship between sleep duration and fruit/vegetable intakes in UK adults: A cross-sectional study from the National Diet and Nutrition Survey. BMJ Open 2018, 8, 20810. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, H.R.; Wurtman, R.J.; Emde, G.G.; Roberts, C.; Coviella, I.L.G. The effects of low doses of caffeine on human performance and mood. Psychopharmacology 1987, 92, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Amendola, C.A.; Gabrieli, J.D.E.; Lieberman, H.R. Caffeine’s Effects on Performance and Mood are Independent of Age and Gender. Nutr. Neurosci. 1998, 1, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Brice, C.F.; Smith, A.P. Effects of caffeine on mood and performance: A study of realistic consumption. Psychopharmacology 2002, 164, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Frewer, L.J.; Lader, M. The effects of caffeine on two computerized tests of attention and vigilance. Hum. Psychopharmacol. Clin. Exp. 1991, 6, 119–128. [Google Scholar] [CrossRef]
All (n = 886) | Men (n = 278) | Women (n = 608) | p Value (Cohen’s d) | |
---|---|---|---|---|
Age (years) | 20.6 ± 2.1 | 20.6 ± 2.1 | 20.6 ± 2.1 | 0.705 (−0.027) |
Course year | 0.036 * | |||
First | 283 (31.9) | 105 (37.8) | 178 (29.3) | |
Second | 261 (29.5) | 80 (28.8) | 181 (29.8) | |
Third | 195 (22.0) | 58 (20.9) | 137 (22.5) | |
Fourth | 147 (16.6) | 35 (12.6) | 112 (18.4) | |
Body mass (kg) | 64.2 ± 12.8 | 72.7 ± 11.7 | 60.3 ± 11.4 | <0.001 * (1.074) |
Stature (cm) | 169 ± 9 | 178 ± 8 | 165 ± 7 | <0.001 * (1.944) |
BMI (kg·m−2) | 22.5 ± 3.7 | 22.9 ± 3.2 | 22.3 ± 3.9 | 0.008 * (0.180) |
Smoking | 0.180 | |||
Daily smokers (n (%)) | 73 (8.2) | 29 (10.4) | 44 (7.2) | |
Occasional smokers (n (%)) | 52 (5.9) | 13 (4.7) | 39 (6.4) | |
Ex-smokers (n (%)) | 55 (6.2) | 13 (4.7) | 42 (6.9) | |
Non- smokers (n (%)) | 706 (79.7) | 223 (80.2) | 483 (79.4) | |
Cannabis consumption | ||||
Yes (n (%)) | 39 (4.4) | 19 (6.8) | 20 (3.3) | 0.017 * |
Alcohol consumption | ||||
Yes (n (%)) | 680 (76.7) | 201 (72.3) | 479 (78.8) | 0.034 * |
Fruit and vegetables intake | ||||
Fruit (servings·day−1) | 1.72 ± 1.26 | 1.67 ± 1.32 | 1.74 ± 1.24 | 0.465 (−0.053) |
Vegetables (servings·day−1) | 1.52 ± 1.19 | 1.30 ± 1.04 | 1.62 ± 1.25 | <0.001 * (−0.271) |
Fruit and vegetables (servings·day−1) | 3.24 ± 2.08 | 2.97 ± 1.96 | 3.36 ± 2.12 | 0.010 * (−0.187) |
Sleep quality | 14.3 ± 3.8 | 13.9 ± 3.6 | 14.5 ± 3.9 | 0.014 * (−0.173) |
All (n = 886) | Men (n = 278) | Women (n = 608) | p Value (Cohens’ d) | |
---|---|---|---|---|
Caffeine (mg·day−1) | 155.4 ± 173.5 | 132.3 ± 158.9 | 165.9 ± 178.9 | 0.007 * (−0.195) |
Caffeine (mg·kg−1·day−1) | 2.48 ± 2.85 | 1.82 ± 2.20 | 2.78 ± 3.06 | <0.001 * (−0.338) |
Caffeine (mg·day−1) # | 172.5 ± 174.5 | 155.2 ± 161.5 | 179.8 ± 179.4 | 0.068 (−0.141) |
Caffeine (mg·kg−1·day−1) # | 2.75 ± 2.88 | 2.14 ± 2.23 | 3.01 ± 3.08 | <0.001 * (−0.306) |
Caffeine (n (%)) | 807 (91.1) | 243 (87.4) | 564 (92.8) | 0.009 * |
Coffee (n (%)) | 474 (53.5) | 131 (47.1) | 343 (56.4) | 0.010 * |
Instant coffee (n (%)) | 118 (13.3) | 26 (9.4) | 92 (15.1) | 0.019 * |
Tea/mate (n (%)) | 300 (33.9) | 55 (19.8) | 245 (40.3) | <0.001 * |
Cola drinks (n (%)) | 274 (30.9) | 83 (29.9) | 191 (31.4) | 0.641 |
Energy drinks (n (%)) | 95 (10.7) | 50 (18.0) | 45 (7.4) | <0.001 * |
Chocolate (n (%)) | 496 (56.0) | 145 (52.2) | 351 (57.7) | 0.121 |
All (n = 807) | Men (n = 243) | Women (n = 564) | p Value (Cohens’ d) | |
---|---|---|---|---|
Coffee (%) | 48.9 ± 42.7 | 47.1 ± 43.9 | 49.6 ± 42.2 | 0.460 (−0.058) |
Instant coffee (%) | 3.9 ± 14.0 | 3.2 ± 14.0 | 4.5 ± 14.0 | 0.625 (−0.038) |
Tea/mate (%) | 15.7 ± 28.9 | 9.25 ± 24.0 | 18.4 ± 30.4 | <0.001 * (−0.320) |
Cola drinks (%) | 7.8 ± 21.9 | 9.3 ± 24.4 | 7.2 ± 20.8 | 0.248 (0.096) |
Energy drinks (%) | 3.4 ± 13.9 | 7.6 ± 21.6 | 1.6 ± 8.2 | <0.001 * (0.444) |
Chocolate (%) | 20.3 ± 36.6 | 23.1 ± 38.8 | 19.1 ± 35.6 | 0.170 (0.110) |
Variable | B | β | 95%CI | t | p Value | R2 | Adjusted R2 | R2 Change |
---|---|---|---|---|---|---|---|---|
Smoking | 85.756 | 0.172 | 52.799, 118.714 | 5.107 | <0.001 * | 0.052 | 0.051 | 0.052 |
Fruit/Vegetables | 12.394 | 0.149 | 7.190, 17.598 | 4.675 | <0.001 * | 0.078 | 0.076 | 0.026 |
Alcohol | 57.734 | 0.141 | 31.699, 83.769 | 4.352 | <0.001 * | 0.100 | 0.097 | 0.023 |
Cannabis | 91.897 | 0.109 | 36.670, 147.124 | 3.266 | 0.001 * | 0.111 | 0.107 | 0.010 |
Sex | 29.271 | 0.078 | 5.844, 52.699 | 2.452 | 0.014 * | 0.117 | 0.112 | 0.006 |
Age | 5.524 | 0.066 | 0.285, 10.763 | 2.069 | 0.039 * | 0.121 | 0.115 | 0.004 |
Variable | OR Adjusted | 95%CI | p Value |
---|---|---|---|
Sex (Reference men) | 1.750 | 1.085, 2.822 | 0.022 * |
Age | 1.064 | 0.942, 1.202 | 0.320 |
Smoking (Reference non-smokers) | 3.359 | 1.003, 11.526 | 0.048 * |
Cannabis consumption (Reference non-consumers) | 2.058 | 0.262, 16.171 | 0.493 |
Alcohol consumption (Reference non-consumers) | 2.047 | 1.252, 3.346 | 0.004 * |
Daily fruit and vegetable servings | 1.121 | 0.989, 1.271 | 0.073 |
Non-Smokers (n = 706) | Ex-Smokers (n = 55) | Occasional Smokers (n = 52) | Habitual Smokers (n = 73) | ANOVA | |
---|---|---|---|---|---|
Caffeine (mg·day−1) | 137.0 ± 165.4 | 169.4 ± 165.7 | 250. 9 ± 201.2 | 254.3 ± 181.1 | p < 0.001 * (η2 = 0.054) |
Coffee (servings·day−1) | 0.95 ± 1.34 | 1.20 ± 1.35 | 1.92 ± 1.69 | 2.04 ± 1.72 | p < 0.001 * (η2 = 0.063) |
Non-Smokers (n = 761) | Smokers (n = 125) | p Value (Cohen’s d) | |
---|---|---|---|
Caffeine (mg·day−1) | 139.3 ± 165.5 | 252.9 ± 189.0 | <0.001 * (−0.672) |
Coffee (servings·day−1) | 0.99 ± 1.34 | 1.99 ± 1.70 | <0.001 * (−0.729) |
Caffeine (n (%)) | 685 (90.0) | 122 (97.6) | 0.006 * |
Coffee (n (%)) | 378 (49.7) | 96 (76.8) | <0.001 * |
Instant coffee (n (%)) | 98 (12.9) | 20 (16.0) | 0.341 |
Tea / mate (n (%)) | 260 (34.2) | 40 (32.0) | 0.635 |
Cola drinks (n (%)) | 215 (28.3) | 59 (47.2) | <0.001 * |
Energy drinks (n (%)) | 70 (9.2) | 25 (20.0) | <0.001 * |
Chocolate (n (%)) | 431 (56.6) | 65 (52.0) | 0.333 |
Variable | B | β | 95%CI | t | p Value | R2 | Adjusted R2 | R2 Change |
---|---|---|---|---|---|---|---|---|
Caffeine | 0.004 | 0.194 | 0.003, 0.006 | 5.839 | <0.001 * | 0.034 | 0.033 | 0.034 |
Sex | 0587 | 0.072 | 0.058, 1.117 | 2.178 | 0.030 * | 0.050 | 0.046 | 0.005 |
Age | −0.079 | −0.043 | −0.198, 0.040 | −1.299 | 0.194 | |||
Fruit/Vegetables | −0.197 | −0.108 | −0.315, −0.078 | −3.248 | 0.001 * | 0.045 | 0.042 | 0.010 |
Smoking | 0.321 | 0.030 | −0.429, 1.072 | 0.840 | 0.401 | |||
Cannabis | −0.821 | −0.044 | −2.079, 0.438 | −1.280 | 0.201 |
CMQ (Score Range) | All (n = 807) | Men (n = 243) | Women (n = 564) | p Value (Cohen’s d) |
---|---|---|---|---|
CMQ Global (21–105) | 37.21 ± 9.14 | 36.47 ± 9.08 | 37.50 ± 9.16 | 0.262 (0.112) |
CMQ Factor 1-Cognitive enhancement (6–30) | 15.31 ± 6.18 | 14.91 ± 5.94 | 15.47 ± 6.27 | 0.363 (−0.091) |
CMQ Factor 2-Negative affect relief (3–15) | 4.06 ± 2.10 | 3.96 ± 2.01 | 4.10 ± 2.14 | 0.508 (−0.066) |
CMQ Factor 3-Reinforcing effects (9–45) | 14.47 ± 3.91 | 14.39 ± 4.02 | 14.50 ± 3.87 | 0.784 (−0.027) |
CMQ Factor 4-Weight control (3–15) | 3.38 ± 1.05 | 3.22 ± 0.78 | 3.44 ± 1.14 | 0.016 * (−0.206) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riera-Sampol, A.; Rodas, L.; Martínez, S.; Moir, H.J.; Tauler, P. Caffeine Intake among Undergraduate Students: Sex Differences, Sources, Motivations, and Associations with Smoking Status and Self-Reported Sleep Quality. Nutrients 2022, 14, 1661. https://doi.org/10.3390/nu14081661
Riera-Sampol A, Rodas L, Martínez S, Moir HJ, Tauler P. Caffeine Intake among Undergraduate Students: Sex Differences, Sources, Motivations, and Associations with Smoking Status and Self-Reported Sleep Quality. Nutrients. 2022; 14(8):1661. https://doi.org/10.3390/nu14081661
Chicago/Turabian StyleRiera-Sampol, Aina, Lluis Rodas, Sonia Martínez, Hannah J. Moir, and Pedro Tauler. 2022. "Caffeine Intake among Undergraduate Students: Sex Differences, Sources, Motivations, and Associations with Smoking Status and Self-Reported Sleep Quality" Nutrients 14, no. 8: 1661. https://doi.org/10.3390/nu14081661
APA StyleRiera-Sampol, A., Rodas, L., Martínez, S., Moir, H. J., & Tauler, P. (2022). Caffeine Intake among Undergraduate Students: Sex Differences, Sources, Motivations, and Associations with Smoking Status and Self-Reported Sleep Quality. Nutrients, 14(8), 1661. https://doi.org/10.3390/nu14081661