Unhealthy Lifestyles and Retinal Vessel Calibers among Children and Adolescents: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Study Selection
2.3. Data Extraction and Quality Assessment
2.4. Data Extraction and Quality Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Juonala, M.; Magnussen, C.G.; Berenson, G.S.; Venn, A.; Burns, T.L.; Sabin, M.A.; Srinivasan, S.R.; Daniels, S.R.; Davis, P.H.; Chen, W.; et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N. Engl. J. Med. 2011, 365, 1876–1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franks, P.W.; Hanson, R.L.; Knowler, W.C.; Sievers, M.L.; Bennett, P.H.; Looker, H.C. Childhood obesity, other cardiovascular risk factors, and premature death. N. Engl. J. Med. 2010, 362, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Lona, G.; Hauser, C.; Köchli, S.; Infanger, D.; Endes, K.; Faude, O.; Hanssen, H. Changes in physical activity behavior and development of cardiovascular risk in children. Scand. J. Med. Sci. Sports 2021, 31, 1313–1323. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Aris, I.; Teo, L.L.Y.; Wong, T.Y.; Chen, W.; Koh, A.S.; Li, L. Exploring associations between cardiac structure and retinal vascular geometry. J. Am. Heart Assoc. 2020, 9, e014654. [Google Scholar] [CrossRef] [PubMed]
- Naiberg, M.R.; Hatch, J.K.; Selkirk, B.; Fiksenbaum, L.; Yang, V.; Black, S.; Kertes, P.J.; Goldstein, B.I. Retinal photography: A window into the cardiovascular-brain link in adolescent bipolar disorder. J. Affect. Disord. 2017, 218, 227–237. [Google Scholar] [CrossRef]
- Gopinath, B.; Baur, L.A.; Wang, J.J.; Hardy, L.L.; Teber, E.; Kifley, A.; Wong, T.Y.; Mitchell, P. Influence of physical activity and screen time on the retinal microvasculature in young children. Arter. Thromb. Vasc. Biol. 2011, 31, 1233–1239. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, B.; Flood, V.; Burlutsky, G.; Louie, J.; Baur, L.; Mitchell, P. Dairy food consumption, blood pressure and retinal microcirculation in adolescents. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1221–1227. [Google Scholar] [CrossRef]
- Köchli, S.; Endes, K.; Steiner, R.; Engler, L.; Infanger, D.; Schmidt-Trucksäss, A.; Zahner, L.; Hanssen, H. Obesity, high blood pressure, and physical activity determine vascular phenotype in young children. Hypertension 2019, 73, 153–161. [Google Scholar] [CrossRef]
- Gopinath, B.; Flood, V.M.; Wang, J.J.; Smith, W.; Rochtchina, E.; Louie, J.C.; Wong, T.Y.; Brand-Miller, J.; Mitchell, P. Carbohydrate nutrition is associated with changes in the retinal vascular structure and branching pattern in children. Am. J. Clin. Nutr. 2012, 95, 1215–1222. [Google Scholar] [CrossRef] [Green Version]
- Kerr, J.A.; Liu, R.S.; Gasser, C.E.; Mensah, F.K.; Burgner, D.; Lycett, K.; Gillespie, A.N.; Juonala, M.; Clifford, S.A.; Olds, T.; et al. Diet quality trajectories and cardiovascular phenotypes/metabolic syndrome risk by 11–12 years. Int. J. Obes. 2021, 45, 1392–1403. [Google Scholar] [CrossRef]
- Imhof, K.; Zahner, L.; Schmidt-Trucksäss, A.; Faude, O.; Hanssen, H. Influence of physical fitness and activity behavior on retinal vessel diameters in primary schoolchildren. Scand. J. Med. Sci. Sports 2016, 26, 731–738. [Google Scholar] [CrossRef]
- Lundberg, K.; Tarp, J.; Vestergaard, A.; Jacobsen, N.; Thykjaer, A.S.; Rønne, M.S.; Bugge, A.; Goldschmidt, E.; Peto, T.; Wedderkopp, N.; et al. Retinal vascular diameters in relation to physical activity in Danish children—The CHAMPS Eye Study. Scand. J. Med. Sci. Sports 2018, 28, 1897–1907. [Google Scholar] [CrossRef]
- Hanssen, H.; Siegrist, M.; Neidig, M.; Renner, A.; Birzele, P.; Siclovan, A.; Blume, K.; Lammel, C.; Haller, B.; Schmidt-Trucksäss, A.; et al. Retinal vessel diameter, obesity and metabolic risk factors in school children (JuvenTUM 3). Atherosclerosis 2012, 221, 242–248. [Google Scholar] [CrossRef]
- Francia, P.; delli Gatti, C.; Bachschmid, M.; Martin-Padura, I.; Savoia, C.; Migliaccio, E.; Pelicci, P.G.; Schiavoni, M.; Lüscher, T.F.; Volpe, M.; et al. Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 2004, 110, 2889–2895. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, H.; Streese, L.; Vilser, W. Retinal vessel diameters and function in cardiovascular risk and disease. Prog. Retin. Eye Res. 2022, 91, 101095. [Google Scholar] [CrossRef]
- Saraf, S.; Grobler, A.; Liu, R.S.; Liu, M.; Wake, M.; Olds, T.; Lycett, K.; Juonala, M.; Ranganathan, S.; Burgner, D.; et al. Takeaway food, sugar-sweetened beverages and preclinical cardiometabolic phenotypes in children and adults. Eur. J. Prev. Cardiol. 2022, 28, 1784–1794. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, T. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Non-Randomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 4 May 2022).
- Ludyga, S.; Kochli, S.; Puhse, U.; Gerber, M.; Hanssen, H. Effects of a school-based physical activity program on retinal microcirculation and cognitive function in adolescents. J. Sci. Med. Sport 2019, 22, 672–676. [Google Scholar] [CrossRef]
- Siegrist, M.; Hanssen, H.; Neidig, M.; Fuchs, M.; Lechner, F.; Stetten, M.; Blume, K.; Lammel, C.; Haller, B.; Vogeser, M.; et al. Association of leptin and insulin with childhood obesity and retinal vessel diameters. Int. J. Obes. 2014, 38, 1241–1247. [Google Scholar] [CrossRef]
- Siegrist, M.; Hanssen, H.; Lammel, C.; Haller, B.; Koch, A.-M.; Stemp, P.; Dandl, E.; Liestak, R.; Parhofer, K.G.; Vogeser, M.; et al. Effects of a cluster-randomized school-based prevention program on physical activity and microvascular function (JuvenTUM 3). Atherosclerosis 2018, 278, 73–81. [Google Scholar] [CrossRef]
- Gopinath, B.; Moshtaghian, H.; Flood, V.M.; Louie, J.C.Y.; Liew, G.; Burlutsky, G.; Mitchell, P. Pattern of omega-3 polyunsaturated fatty acid intake and fish consumption and retinal vascular caliber in children and adolescents: A cohort study. PLoS ONE 2017, 12, e0172109. [Google Scholar] [CrossRef] [Green Version]
- Kerr, J.A.; Gillespie, A.N.; Gasser, C.E.; Mensah, F.K.; Burgner, D.; Wake, M. Childhood dietary trajectories and adolescent cardiovascular phenotypes: Australian community-based longitudinal study. Public Health Nutr. 2018, 21, 2642–2653. [Google Scholar] [CrossRef]
- Davis, A.; Liu, R.; Kerr, J.A.; Wake, M.; Grobler, A.; Juonala, M.; Liu, M.; Baur, L.; Burgner, D.; Lycett, K. Inflammatory diet and preclinical cardiovascular phenotypes in 11–12 year-olds and mid-life adults: A cross-sectional population-based study. Atherosclerosis 2019, 285, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Lim, L.S.; Cheung, N.; Saw, S.M.; Yap, M.; Wong, T.Y. Does diet influence the retinal microvasculature in children? Stroke 2009, 40, e473–e474. [Google Scholar] [CrossRef] [Green Version]
- Derks, I.P.; Gillespie, A.N.; Kerr, J.A.; Wake, M.; Jansen, P.W. Associations of infant sleep duration with body composition and cardiovascular health to Mid-Adolescence: The PEAS kids growth study. Child Obes. 2019, 15, 379–386. [Google Scholar] [CrossRef]
- Anuradha, S.; Healy, G.; Dunstan, D.; Klein, R.; Klein, B.E.; Cotch, M.F.; Wong, T.Y.; Owen, N. Physical activity, television viewing time, and retinal microvascular caliber: The multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 2011, 173, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Streese, L.; Khan, A.W.; Deiseroth, A.; Hussain, S.; Suades, R.; Tiaden, A.; Kyburz, D.; Hanssen, H.; Cosentino, F. Physical activity may drive healthy microvascular ageing via downregulation of p66Shc. Eur. J. Prev. Cardiol. 2020, 27, 168–176. [Google Scholar] [CrossRef]
- Flitcroft, D.I.; Harb, E.N.; Wildsoet, C.F. The spatial frequency content of urban and indoor environments as a potential risk factor for myopia development. Investig. Ophthalmol. Vis. Sci. 2020, 61, 42. [Google Scholar] [CrossRef]
- Green, D.J.; Hopman, M.T.; Padilla, J.; Laughlin, M.H.; Thijssen, D.H. Vascular adaptation to exercise in humans: Role of hemodynamic stimuli. Physiol. Rev. 2017, 97, 495–528. [Google Scholar] [CrossRef] [PubMed]
- Tikellis, G.; Anuradha, S.; Klein, R.; Wong, T.Y. Association between physical activity and retinal microvascular signs: The Atherosclerosis Risk in Communities (ARIC) Study. Microcirculation 2010, 17, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Islam, F.M.A.; Klein, R.; Klein, B.E.K.; Cotch, M.F.; Castro, C.; Sharrett, A.R.; Shahar, E. Retinal vascular caliber, cardiovascular risk factors, and inflammation: The multi-ethnic study of atherosclerosis (MESA). Investig. Ophthalmol. Vis. Sci. 2006, 47, 2341–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, H.; Motoyama, T.; Hirashima, O.; Hirai, N.; Miyao, Y.; Sakamoto, T.; Kugiyama, K.; Ogawa, H.; Yasue, H. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 1998, 97, 1695–1701. [Google Scholar]
Study ID | Country | Sample Size (Female%) | Age (Mean, SD/Range) | Exposures | Study Quality (Stars) |
---|---|---|---|---|---|
Gopinath 2011 [6] | Australia | 1492 (49.3) | 6.7 (0.4) | PA, SB | 7 |
Hanssen 2012 [13] | Germany | 578 (43.1) | 11.1 (0.6) | PA, SB | 7 |
Siegrist 2014 [20] | Germany | 381 (41.5) | 10–11 | PA, SB | 7 |
Siegrist 2018 [21] | Germany | 434 (42.8) | 10–11 | PA | 8 |
Lundberg 2018 [12] | Denmark | 307 (47.6) | 15.4 (0.7) | PA, SB | 8 |
Imhof 2016 [11] | Switzerland | 391 (51.2) | 7.3 (0.4) | PA, SB | 9 |
Ludyga 2019 [19] | Switzerland | 36 (36) | 12–15 | PA | 8 |
Köchli 2019 [8] | Switzerland | 1171 (50.7) | 7.2 (0.4) | PA, SB | 8 |
Lona 2021 [3] | Switzerland | 262 (54.2) | 7.4 (0.3)–11.4 (0.3) | PA, SB | 8 |
Lim 2009 [25] | Singapore | 823 | 12.8 (0.8) | Diet | 5 |
Gopinath 2012 [9] | Australia | 1855 (50.6) | 12.7 (0.4) | Diet | 7 |
Gopinath 2014 [7] | Australia | 888 (49) | girl:12.7 (0.4), boy:12.8 (0.5) | Diet | 7 |
Gopinath 2017 [22] | Australia | 1920 (50.7)/ 1199 (55.3) | 12/17 | Diet | 7 |
Kerr 2018 [23] | Australia | 188 (52) | 15.1 (0.5) | Diet | 6 |
Davis 2019 [24] | Australia | 1771 (49) | 11–12 | Diet | 7 |
Saraf 2022 [16] | Australia | 1838 (49.1) | 11.5 | Diet | 7 |
Kerr 2021 [10] | Australia | 1861 (49) | 2–11 | Diet | 7 |
Derks 2019 [26] | Australia | 336 (50.6) | 14 | Sleep | 6 |
Variable | Study ID | Statistical Analysis | Minimum Level of Adjustment | Associations | ||
---|---|---|---|---|---|---|
Arteriole CRAE | Venule CRVE | AVR | ||||
PA | ||||||
Siegrist 2014 [20] | LR | Age and gender | Sβ = 0.098 (p = 0.492) | Sβ = −0.11 (p = 0.436) | Sβ = 0.19 (p = 0.171) | |
Siegrist 2018 [21] | LR | Study group, age and gender | β = 0.019 (PAschool, p = 0.284) | β = −0.001 (p = 0.967) | None | |
Lona 2021 [3] | LR | Age, sex, height | Sβ = −0.055 (p = 0.934) | Sβ = −0.06 (p = 0.271) | Sβ = −1.5 (p = 0.189) | |
Ludyga 2019 [19] | ANCOVA | A structured exercise program lead to a widening CRAE (p = 0.036) | No effect was observed on CRVE. | None | ||
Vigorous PA | ||||||
Lundberg 2018 [12] | LR | Age, gender and axial length | Sβ = −0.040 (p = 0.490) | Sβ = −0.16 (p < 0.010) | Sβ = 0.100 (p = 0.110) | |
Imhof 2016 [11] | LR | Age and sex | Sβ = 0.090 (p = 0.200) | Sβ = 0.060 (p = 0.200) | Sβ < 0.820 (p = 0.800) | |
Köchli 2019 [8] | LR | Age and sex | Sβ = −0.045 (p = 0.224) | Sβ = 0.022 (p = 0.560) | Sβ = −0.100 (p = 0.008) | |
SB(/ST/TV) | ||||||
Hanssen 2012 [13] | LR | Age and gender | Sβ = −0.022 (p = 0.589) | Sβ = 0.073 (p = 0.045) | Sβ < 0.260 (p = 0.010) | |
Lundberg 2018 [12] | LR | Age, gender, and axial length | Sβ = 0.037 (p = 0.54) | Sβ = 0.160 (p < 0.01) | Sβ = −0.087 (p = 0.050) | |
Gopinath 2011 [6] | LR | Age, sex, ethnicity, iris color, axial length, BMI, birth weight and MABP | Sβ = −0.061(ST, p = 0.02) | Sβ = 0.350 (p = 0.080) | None | |
Sβ = −0.066 (TV, p = 0.006) | Sβ = −0.020 (p = 0.280) | None | ||||
Imhof 2016 [11] | LR | Age and sex | Sβ = −0.035 (ST, p = 0.500) | Sβ = 0.035 (p = 0.700) | Sβ <0.960 (p = 0.200) | |
Köchli 2019 [8] | LR | Age and sex | Sβ = −0.058 (ST, p = 0.089) | Sβ = 0.026 (p = 0.435) | Sβ = −0.120 (p = 0.002) | |
Lona 2021 [3] | LR | Age, sex, height | Sβ = −0.038 (ST, p = 0.075) | Sβ = −0.041 (p = 0.421) | Sβ = −1.100 (p = 0.359) | |
Diet | ||||||
Lim 2009 [25] | LR | Age, gender, MABP and BMI | β = 0.060 (fiber, p = 0.350), β = 0.005 (sugar, p = 0.710) | β = −0.010 (fiber, p = 0.950)β = −0.010 (sugar, p = 0.640) | None | |
Gopinath 2012 [9] | ANCOVA | Great consumption of soft drinks and cordials narrowed retinal arterioles (p = 0.030). | High carbohydrate consumption widened venules among boys (p = 0.020). | None | ||
Gopinath 2014 [7] | ANCOVA | Yogurt intake widened retinal arterioles of adolescents (p = 0.050) | Yogurt intake narrowed venules of adolescents (p = 0.040). | None | ||
Gopinath 2017 [22] | ANOVA | LCn-3PUFA intake widened the retinal arteriolar caliber among girls but not boys (p = 0.001). | No associations were observed with retinal venules. | None | ||
Davis 2019 [24] | LR | Age, sex and SEP | β = 0.340 (inflammatory diet score, p = 0.330) | β = 0.210 (p = 0.670) | None | |
Saraf 2022 [16] | LR | Age, sex and SEP | Sβ = 0.130 (takeaway food, p = 0.050) | Sβ = 0.030 (p = 0.650) | None | |
Sβ = 0.090 (SSB, p = 0.190) | Sβ = 0.040 (p = 0.510) | None | ||||
Kerr 2021 [10] | LR | Age, sex and SEP | Sβ = −0.050 (DQ moderately healthy, p = 0.540) | Sβ = 0.020 (p = 0.790) | None | |
Sβ = 0.040 (DQ less healthy, p = 0.550) | Sβ = −0.030 (p = 0.680) | None | ||||
Sβ = 0.130 (DQ never healthy, p = 0.320) | Sβ = −0.090 (p = 0.420) | None | ||||
Kerr 2018 [23] | Decade-long dietary trajectories did not appear to influence microvascular structure by mid-adolescence | |||||
Sleep | ||||||
Derks 2019 [26] | Infant sleep duration was not associated with artery structure at 14 years of age. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.-L.; Zhou, M.; Pan, C.-W.; Chen, D.-D.; Liu, M.-J. Unhealthy Lifestyles and Retinal Vessel Calibers among Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 150. https://doi.org/10.3390/nu15010150
Li D-L, Zhou M, Pan C-W, Chen D-D, Liu M-J. Unhealthy Lifestyles and Retinal Vessel Calibers among Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients. 2023; 15(1):150. https://doi.org/10.3390/nu15010150
Chicago/Turabian StyleLi, Dan-Lin, Miao Zhou, Chen-Wei Pan, Dan-Dan Chen, and Meng-Jiao Liu. 2023. "Unhealthy Lifestyles and Retinal Vessel Calibers among Children and Adolescents: A Systematic Review and Meta-Analysis" Nutrients 15, no. 1: 150. https://doi.org/10.3390/nu15010150
APA StyleLi, D. -L., Zhou, M., Pan, C. -W., Chen, D. -D., & Liu, M. -J. (2023). Unhealthy Lifestyles and Retinal Vessel Calibers among Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients, 15(1), 150. https://doi.org/10.3390/nu15010150