Micronutrient Profile and Carbohydrate Microstructure of Commercially Prepared and Home Prepared Infant Fruit and Vegetable Purees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Designs
2.1.1. Study 1
2.1.2. Study 2
2.2. Study 1: Micronutrient Analysis of Commercially Prepared Infant Purees Compared to Food Composition Database Profiles as the Home Prepared Norm
2.2.1. Micronutrient Selection
2.2.2. Determination of the Home Prepared Norm
2.2.3. Data Collection, Analysis, and Syntheses
2.3. Study 2: Carbohydrate Profile of Home Prepared and Commercially Prepared Infant Purees
2.3.1. Sample Preparation
2.3.2. Molecular Weight Distribution of Soluble and Insoluble Cell Wall Polysaccharides
2.3.3. Sugar Composition
2.3.4. Chemical Analysis of Macronutrient Composition of Samples
2.3.5. Estimated Glycemic Index (eGI) and Estimated Glycemic Load (eGL)
3. Results
3.1. Study 1: Micronutrient Analysis of Commercially Prepared Infant Purees Compared to Food Composition Database Profiles as the Home Prepared Norm
3.2. Study 2: Carbohydrate Profile of Home Prepared and Commercially Prepared Infant Purees
3.2.1. Molecular Weight Distribution of Soluble and Insoluble Cell Wall Polysaccharides
3.2.2. Sugar Composition
3.2.3. Chemical Analysis of Macronutrient Composition of Samples
3.2.4. Estimated Glycemic Index and Estimated Glycemic Load
4. Discussion
4.1. Study 1: Micronutrient Analysis of Commercially Prepared Infant Purees Compared to Food Composition Database Profiles as the Home Prepared Norm
4.2. Study 2: Carbohydrate Profile and Microstructure of Home Prepared and Commercially Prepared Infant Purees
4.3. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Guiding Principles for Complementary Feeding of the Breastfed Child. 2003. Available online: https://iris.paho.org/handle/10665.2/752. (accessed on 6 April 2020).
- Fewtrell, M.; Bronsky, J.; Campoy, C.; Domellof, M.; Fidler Mis, N.; Hojsak, I.; Hulst, J.; Indrio, F. Complementary feeding: A position paper by the European Society for Paediatric Gastroenterology. J. Pediatr. Gastroenterol. 2017, 64, 119–132. [Google Scholar] [CrossRef] [PubMed]
- EFSA. EFSA panel on dietetic products, nutrition and allergies. Scientific Opinion on nutrient requirements and dietary intakes. EFSA J. 2003, 11, 3408. [Google Scholar]
- Schwartz, C.; Chabanet, C.; Lange, C.; Issanchou, S.; Nicklaus, S. The role of taste in food acceptance at the beginning of complementary feeding. Physiol. Behav. 2011, 104, 646–652. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the appropriate age for introduction of complementary feeding of infants. EFSA J. 2019, 17, 5780. [Google Scholar]
- WHO. Guiding Principles for Feeding Non-Breastfed Children 6–24 Months of Age; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- WHO. Infant and young child nutrition: Global strategy on infant and young children feeding. In Proceedings of the Fifty Fifth World Health Assembly, Geneva, Switzerland, 13–18 May 2022. [Google Scholar]
- Langley-Evans, S. Nutrition in early life and the programming of adult disease: A review. J. Hum. Nutr. Diet. 2015, 28, 1–14. [Google Scholar] [CrossRef]
- Start for Life. Available online: http://www.nhs.uk/start4life (accessed on 6 April 2020).
- Romero-Velarde, E.; Villalpando-Carrión, S.; Pérez-Lizaur, A.B.; de la Luz Iracheta-Gerez, M.; Alonso-Rivera, C.G.; López-Navarrete, G.E.; García-Contreras, A.; Ochoa-Ortiz, E.; Zarate-Mondragón, F.; López-Pérez, G.T.; et al. Consenso para las practicas de alimentacion complementaria en lactentes sanos. Bol. Med. Hosp. Infant. Mex. 2016, 73, 338–356. [Google Scholar] [CrossRef] [Green Version]
- Martin, I.S.M.; Vilar, E.G.; Guerra, G.P.; Martin, M.A.C. Knowledge and attitudes towards baby-led-weaning by health professionals and parents: A cross-sectional study. Enferm. Clin. 2022, 32, S64–S72. [Google Scholar] [CrossRef]
- Bialek-Dratwa, A.; Soczewka, M.; Grajek, M.; Szczepanska, E.; Kowalski, O. Use of the baby-led weaning (BLW) method in complementary feeding of the infant–a cross-sectional study of mothers using and not using the BLW method. Nutrients 2022, 14, 2372. [Google Scholar] [CrossRef]
- Pearce, J.; Langley-Evans, S.C. Comparison of food and nutrient intake in infants aged 6–12 months, following baby-led or traditional weaning: A cross-sectional study. J. Hum. Nutr. Diet. 2022, 35, 310–324. [Google Scholar] [CrossRef]
- Bocquet, A.; Brancato, S.; Turck, D.; Chalumeau, M.; Darmaun, D.; De Luca, A.; Feillet, F.; Frelut, M.-L.; Guimber, D.; Lapillonne, A.; et al. “Baby-led weaning”–progress in infant feeding or risky trend? Arch. Pediatr. 2022, 29, 516–525. [Google Scholar] [CrossRef]
- Neves, F.S.; Romano, B.M.; Campos, A.A.L.; Pavam, C.A.; Oliveira, R.M.S.; Candido, A.P.C.; Netto, M.P. Brazilian health professionals’ perception about the baby-led weaning (BLW) method for complementary feeding: An exploratory study. Rev. Paul. Pediatr. 2022, 40, e2020321. [Google Scholar] [CrossRef]
- Synnott, K.; Bogue, J.; Edwards, C.; Scott, J.A.; Higgins, S.; Norin, E.; Frias, D.; Amarri, S.; Adam, R. Parental perceptions of feeding practices in five European countries: An exploratory study. Eur. J. Clin. Nutr. 2007, 61, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Maslin, K.; Galvin, A.; Shepherd, S.; Dean, T.; Dewey, A.; Venter, C. A qualitative study of mothers’ perceptions of weaning and the use of commercial infant food in the United Kingdom. Matern. Pediatr. Nutr. 2015, 1, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Maslin, K.; Venter, C. Nutritional aspects of commercially prepared infant foods in developed countries: A narrative review. Nutr. Res. Rev. 2017, 30, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Carstairs, S.; Craig, L.; Marais, D.; Bora, O.E.; Kiezebrink, K. A comparison of preprepared commercial infant feeding meals with home-cooked recipes. Arch. Dis. Child. 2016, 101, 1037–1042. [Google Scholar] [CrossRef] [Green Version]
- Bernal, M.; Roman, S.; Klerks, M.; Haro-Vicente, J.F.; Sanchez-Siles, L.M. Are homemade and commercial infant foods different? A nutritional profile and food variety analysis in Spain. Nutrients 2021, 13, 777. [Google Scholar] [CrossRef]
- Randhawa, S.; Kakuda, Y.; Wong, C.; L Yeung, D. Microbial safety, nutritive value and residual pesticide levels are comparable among commercial, laboratory and homemade baby food samples–a pilot study. The Open Nutr. J. 2012, 6, 89–96. [Google Scholar] [CrossRef]
- Maguire, K.B.; Owens, N.; Simon, N.B. The price premium for organic babyfood: A hedonic analysis. J. Agric. Res. Econ. 2004, 29, 132–149. [Google Scholar]
- Hoddinott, P.; Craig, L.C.A.; Britten, J.; McInnes, R. A Prospective Study Exploring the Early Infant Feeding Experiences of Parents and Their Significant Others during the First 6 Months of Life: What Would Make a Difference? NHS Health Scotland: Edinburgh, UK, 2010; pp. 1–103. [Google Scholar]
- Savarino, G.; Corsello, A.; Corsello, G. Macronutrient balance and micronutrient amounts through growth and development. Italian J. Pediatr. 2021, 47, 109. [Google Scholar] [CrossRef]
- WHO. Ending Inappropriate Promotion of Commercially Available Complementary Food for Infants And Young Children. 2019. Available online: https://www.euro.who.int/__data/assets/pdf_file/0004/406453/Ending_Final_3June2019.pdf (accessed on 6 April 2020).
- Goran, M. How growing up sweet can turn sour. Pediatr. Obes. 2013, 8, 237–241. [Google Scholar] [CrossRef]
- SACN. Final Minutes of the 48th SACN Meeting; Scientific Advisory Committee on Nutrition (SCAN): London, UK, 2016. [Google Scholar]
- Grammatikaki, E.; Wollgast, J.; Caldeira, S. High levels of nutrients of concern in baby foods available in Europe that contain sugar-contributing ingredients or are ultra-processed. Nutrients 2021, 13, 3105. [Google Scholar] [CrossRef] [PubMed]
- WHO. Sugars Intake for Adults and Children. 2015. Available online: https://www.who.int/publications/i/item/9789241549028 (accessed on 6 April 2020).
- Lott, M.; Callahan, E.; Welker, D.E.; Story, M.; Daniels, S. Healthy Beverage Consumption in Early Childhood: Recommendations from Key Health and Nutrition Organizations. Consensus Statement. 2019. Available online: https://healthyeatingresearch.org/wp-content/uploads/2019/09/HER-HealthyBeverage-ConsensusStatement.pdf (accessed on 6 April 2020).
- USDA. FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 6 April 2020).
- Ciqual. Ciqual French Food Composition Table. Available online: https://ciqual.anses.fr/ (accessed on 6 April 2020).
- Souci-Fachmann-Kraut. Souci-Fachmann-Kraut Online Database. Available online: https://www.sfk.online (accessed on 6 April 2020).
- Siega-Riz, A.; Deming, D.; Reidy, K.; Fox, M.K.; Condon, E.; Briefel, R.R. Food consumption patterns of infants and toddlers: Where are we now? J. Am. Diet Assoc. 2010, 110, S38–S51. [Google Scholar] [CrossRef] [PubMed]
- Roess, A.A.; Jacquier, E.F.; Catellier, D.J.; Carvalho, R.; Lutes, A.C.; Anater, A.S.; Dietz, W.H. Food consumption patterns of infants and toddlers: Findings from the Feeding Infants and Toddlers Study (FITS) 2016. J. Nutr. 2018, 148, 1525S–1535S. [Google Scholar] [CrossRef] [PubMed]
- EFSA. EFSA panel on dietetic products, nutrition and allergies. Scientific Opinion on establishing food-based dietary guidelines. EFSA J. 2010, 8, 1460. [Google Scholar]
- Herforth, A.; Arimond, M.; Alvarez-Sanchez, C.; Coates, J.; Christianson, K.; Muehlhoff, E. A global review of food-based dietary guidelines. Adv. Nutr. 2019, 10, 590–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagnese, C.; Santarpia, L.; Buonifacio, M.; Nardelli, A.; Caldara, A.R.; Silvestri, E.; Contaldo, F.; Pasanisi, F. European food-based dietary guidelines: A comparison and update. Nutrition 2015, 31, 908–915. [Google Scholar] [CrossRef]
- WHO. Food Based Dietary Guidelines in the WHO European Region. 2003. Available online: https://apps.who.int/iris/handle/10665/107490 (accessed on 6 April 2020).
- US Food and Drug Administration. Guidance for Industry: Guide for Developing and Using Data Bases for Nutrition Labelling. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guide-developing-and-using-data-bases-nutrition-labeling (accessed on 6 April 2020).
- Hedstrom, N. Making Your Own Baby Food. 2021. Available online: https://extension.umaine.edu/publications/4309e/ (accessed on 30 November 2022).
- Nestlé Quality Assurance Center. TDS-NQA-00.1610-5: Fatty Acid Profile. Available online: https://www.nqacdublin.com/wp-content/uploads/2022/10/TDS-NQA-00.1610.pdf (accessed on 27 October 2022).
- Destaillats, F. Identification of the botanical origin of pine nuts found in food products by gas-liquid chromatography analysis of fatty acid profile. J. Agric. Food Chem. 2010, 58, 2082–2087. [Google Scholar] [CrossRef]
- International Organization for Standardization. International Standard: General Requirements for the Competence of Testing and Calibration Laboratories; ISO: Geneva, Switzerland, 2017; Available online: https://www.iso.org/publication/PUB100424.html (accessed on 6 April 2020).
- FAO. Food Energy: Methods of Analysis and Conversion Factors: Report of a Technical Workshop; FAO: Rome, Italy, 2003; Available online: https://www.fao.org/uploads/media/FAO_2003_Food_Energy_02.pdf (accessed on 6 April 2020).
- Oberson, J.; Campos-Gimenez, E.; Riviere, J.; Martin, F. Application of supercritical fluid chromatography coupled to mass spectrometry to the determination of fat-soluble vitamins in selected food products. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1086, 118–129. [Google Scholar] [CrossRef]
- European Standards. BS Standards. 2022. Available online: https://www.en-standard.eu/bs-standards/ (accessed on 6 April 2020).
- AOAC. Official Methods of Analysis, 21st ed.; AOAC: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Nestlé Quality Assurance Center. Technical Data Sheets. Available online: https://www.nqacdublin.com/tech-data-sheets/ (accessed on 6 April 2020).
- Anders Moller, Danish Food Informatics. Compilers’ Toolbox. Available online: http://toolbox.foodcomp.info/Toolbox_RecipeCalculation_MoistureAdjustment.asp (accessed on 6 April 2020).
- National Institutes of Health Office of Dietary Supplements. Dietary Supplement Ingredient Database. Available online: https://dsid.od.nih.gov/Conversions.php (accessed on 6 April 2020).
- Foley, M.; Tao, R.; Kumar, R. How Do Consumers Prepare Homemade Baby Food? Nestlé Unpublished Data: Fremont, MI, USA, 2021. [Google Scholar]
- Rytz, A.; Adeline, D.; Lê, K.A.; Tan, D.; Lamothe, L.; Roger, O.; Macé, L. Predicting glycemic index and glycemic load from macronutrients to accelerate development of foods and beverages with lower glucose responses. Nutrients 2019, 11, 1172. [Google Scholar] [CrossRef] [Green Version]
- Feliciano, R.P.; Antunes, C.; Ramos, A.; Serra, A.T.; Figueira, M.E.; Duarte, C.M.M.; Carvalho, A.; Bronze, M.R. Characterization of traditional and exotic apple varieties from Portugal. Part 1–Nutritional, phytochemical and sensory evaluation. J. Func. Foods 2010, 2, 35–45. [Google Scholar] [CrossRef]
- Simmonds, M.; Preedy, V.R. Nutritional Composition of Fruit Cultivars; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Ottaway, P. Stability of Vitamins in Food. The Technology of Vitamins in Food; Spring New York: New York, NY, USA, 1993; pp. 90–113. [Google Scholar]
- Bernhardt, S.; Bernhardt, S.E. Impact of different cooking methods on food quality: Retention of lipophilic vitamins in fresh and frozen vegetables. J. Food Eng. 2006, 77, 327–333. [Google Scholar] [CrossRef]
- Leskova, E.; Kubikova, J.; Kovacikova, E.; Kosicka, M.; Porubska, J.; Holcikova, K. Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. J. Food Comp. Anal. 2006, 19, 252–276. [Google Scholar] [CrossRef]
- Bevis, L.E.M. Soil-to-human mineral transmission with an emphasis on zinc, selenium, and iodine. Springer Sci. Rev. 2015, 3, 77–96. [Google Scholar] [CrossRef]
- McDowell, L. Minerals in Animal and Human Nutrition; Elsevier Science BV: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Monteiro, C.; Cannon, G.; Levy, R.; Moubarac, J.; Louzada, M.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 5, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.; Astrup, A. Does the concept of “ultra-processed foods” help to inform dietary guidelines, beyond conventional classification systems? YES. Am. J. Clin. Nutr. 2022, 116, 1–6. [Google Scholar] [CrossRef]
- Monteiro, C.; Astrup, A. Does the concept of “ultra-processed foods” help to inform dietary guidelines, beyond conventional classification systems? NO. Am. J. Clin. Nutr. 2022, 116, 1–7. [Google Scholar] [CrossRef]
- Rocha, K.F.; Araujo, C.R.; Morais, I.L.; Padrao, P.; Moreira, P.; Ribeiro, K.D. Commercial foods for infants under the age of 36 months: An assessment of the availability and nutrient profile of ultra-processed foods. Public Health Nutr. 2021, 11, 3179–3186. [Google Scholar] [CrossRef]
- Santos, M.; Matias, F.; Loureiro, I.; Rito, A.; Castanheira, I.; Bento, A.; Assuncao, R. Commercial baby foods aimed at children up to 36 months: Are they a matter of concern? Foods 2022, 11, 1424. [Google Scholar] [CrossRef]
- Crawley, W.S. Baby Foods in the UK. A Review of Commercially Produced Jars and Pouches; First Steps Nutrition Trust: London, UK, 2017. [Google Scholar]
- Swan, G.; Powell, N.; Knowles, L.; Bush, M.; Levy, L. A definition of free sugars for the UK. Public Health Nutr. 2018, 21, 1636–1638. [Google Scholar] [CrossRef] [Green Version]
- Haber, G.; Heaton, K.; Murphy, D.; Burroughs, L. Depletion and disruption of dietary fibre. Effects on satiety, plasma-glucose, and serum-insulin. Lancet 1977, 2, 679–682. [Google Scholar] [CrossRef]
- ISO 26642:2010; Food Products—Determination of the Glycaemic Index (GI) and Recommendation for Food Classification. International Organization for Standardization: Geneva, Switzerland, 2010.
- Bolton, R.; Heaton, K.; Burroughs, L. The role of dietary fiber in satiety, glucose, and insulin: Studies with fruit and fruit juice. Am. J. Clin. Nutr. 1981, 34, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, R.; Stitt, S. Food form, postprandial glycemia, and satiety. Am. J. Clin. Nutr. 1978, 31, 738–739. [Google Scholar] [CrossRef] [PubMed]
- Tey, S.; Lee, D.; Henry, C. Fruit form influences postprandial glycemic response in elderly and young adults. J. Nutr. Health Aging. 2017, 21, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Elizondo-Montemayor, L.; Hernandez-Brenes, C.; Ramos-Parra, P.; Moreno-Sanchez, D.; Nieblas, B.; Rosas-Perez, A.; Lamadrid-Zertuche, A. High hydrostatic pressure processing reduces the glycemic index of fresh mango puree in healthy subjects. Food Funct. 2015, 6, 1352–1360. [Google Scholar] [CrossRef]
Fruit or Vegetable | Brazil | China | Finland | France | Mexico | Poland | United States | Total |
---|---|---|---|---|---|---|---|---|
Apples | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 8 |
Bananas | - | - | - | - | 1 | 1 | 3 | 5 |
Butternut Squash | - | - | - | - | - | - | 2 | 2 |
Carrots | - | - | - | - | 1 | 1 | 1 | 3 |
Green Beans | - | - | - | - | - | - | 2 | 2 |
Green Peas | - | - | - | - | - | - | 2 | 2 |
Mangoes | - | - | 1 | - | - | 1 | 1 | 3 |
Peaches | - | - | - | - | - | 1 | 1 | 2 |
Pears | - | 1 | - | - | 1 | 1 | 2 | 5 |
Sweet Potatoes | - | - | - | - | - | - | 2 | 2 |
Total | 1 | 2 | 2 | 1 | 4 | 6 | 18 | 34 |
Fruit or Vegetable | Ciqual (France) | SFK (Germany) | Food Data Central (United States) | Total |
---|---|---|---|---|
Apples | 2 | 1 | 3 | 6 |
Bananas | 1 | 1 | 1 | 3 |
Butternut Squash | 2 | 1 | 5 | 8 |
Carrots | 4 | 3 | 2 | 9 |
Green Beans | 5 | 2 | 1 | 8 |
Green Peas | 6 | 3 | 5 | 14 |
Mangoes | 1 | 1 | 3 | 5 |
Peaches | 3 | 2 | 4 | 9 |
Pears | 4 | 2 | 3 | 9 |
Sweet Potatoes | 3 | 1 | 4 | 8 |
Total | 31 | 17 | 31 | 79 |
Apple | Banana | Mango | Peach | Pear | ||||||
---|---|---|---|---|---|---|---|---|---|---|
H | C | H | C | H | C | H | C | H | C | |
n = 6 | n = 8 | n = 3 | n = 5 | n = 5 | n = 3 | n = 9 | n = 2 | n = 9 | n = 5 | |
Vitamins | ||||||||||
Vitamin A, RAE (mcg/100 g) | 2.3 (2.0, 3.0) | 2.8 (1.4, 3.9) | 3.0 (3.0, 3.0) | 40 (1.4, 8.2) | 49.3 (40.0, 54.0) | 153.9 (103.5, 190.6) | 24.5 (16.0, 31.0) | 31.7 (24.0, 39.3) | 1.0 (1.0, 1.0) | 1.9 (1.6, 2.4) |
Vitamin C (mg/100 g) | 4.7 (0.2, 12.0) | 58.1 (14.8, 103.0) | 9.0 (7.2, 11.0) | 73.8 (62.2, 82.2) | 32.1 (25.0, 37.0) | 26.8 (1.5, 66.2) | 4.2 (0.7, 9.5) | 40.6 (35.6, 45.6) | 3.5 (0.7, 6) | 36.6 (1.1, 98.2) |
Vitamin E (mg/100 g) | 0.2 (0.1, 0.5) | 0.4 (0.2, 0.5) | 0.2 (0.1, 0.3) | 1.2 (0.3, 4.6) | 0.8 (0.1, 1.0) | 1.4 (1.0, 2.1) | 0.7 (0.5, 1.2) | 2.3 (2.1, 2.4) | 0.3 (0.1, 0.4) | 0.8 (0.6, 1.0) |
Minerals | ||||||||||
Potassium (mg/100 g) | 107.3 (88.0, 150.0) | 140.1 (122.5, 156.5) | 348.3 (320.0, 367.0) | 465.6 (415.0, 504.5) | 161.4 (150.0, 170.0) | 203.7 (180.0, 218.2) | 132.2 (94.0, 192.0) | 260.4 (257.9, 262.9) | 101.7 (65.0, 150.0) | 155.8 (111.2, 184.0) |
Calcium (mg/100 g) | 5.2 (4.7, 6.0) | 6.5 (4.0, 11.0) | 5.5 (5.0, 6.5) | 10.0 (4.8, 12.9) | 11.2 (10.0, 12.0) | 28.6 (14.2, 56.2) | 5.3 (2.0, 10.0) | 11.9 (11.0, 12.8) | 8.3 (5.0, 11.0) | 12.0 (9.6, 13.3) |
Iron (mg/100 g) | 0.1 (0.1, 0.3) | 0.3 (0.1, 0.7) | 0.3 (0.2, 0.4) | 0.6 (0.3, 0.8) | 0.2 (0.1, 0.4) | 0.3 (0.2, 0.6) | 0.3 (0.1, 0.4) | 0.8 (0.6, 0.9) | 0.2 (0.1, 0.4) | 0.4 (0.1, 0.8) |
Copper (mg/100 g) | 0.0 (0.0, 0.1) | 0.1 (0.0, 0.1) | 0.1 (0.1, 0.1) | 0.1 (0.1, 0.1) | 0.1 (0.1, 0.1) | 0.1 (0.1, 0.1) | 0.1 (0.0, 0.1) | 0.1 (0.1, 0.2) | 0.1 (0.1, 0.1) | 0.1 (0.1, 0.1) |
Magnesium (mg/100 g) | 4.4 (3.0, 5.4) | 5.2 (4.6, 5.6) | 28.3 (27.0, 30.0) | 33.4 (32.0, 36.3) | 11.8 (10.0, 18.0) | 49.1 (11.8, 122.9) | 6.4 (4.9, 9.0) | 11.6 (11.0, 12.2) | 6.0 (4.0, 8.2) | 8.7 (7.1, 9.5) |
Zinc (mg/100 g) | 0.1 (0.0, 0.1) | 0.1 (0.0, 0.4) | 0.2 (0.1, 0.2) | 0.3 (0.2, 0.4) | 0.1 (0.1, 0.1) | 0.2 (0.1, 0.3) | 0.1 (0.1, 0.2) | 0.2 (0.2, 0.3) | 0.1 (0.1, 0.1) | 0.2 (0.1, 0.4) |
Phosphorus (mg/100 g) | 10.7 (8.0, 12.0) | 11.7 (8.9, 13.3) | 24.3 (22.0, 29.0) | 25.7 (23.7, 30.7) | 13.4 (12.0, 14.0) | 13.9 (11.8, 17.6) | 14.6 (9.6, 22.0) | 21.2 (17.6, 24.9) | 10.7 (7, 15.4) | 12.7 (11.1, 14.8) |
Manganese (mg/100 g) | 0.1 (0.0, 0.1) | 0.1 (0.0, 0.1) | 0.3 (0.3, 0.4) | 0.2 (0.1, 0.2) | 0.1 (0.1, 0.2) | 0.2 (0.2, 0.2) | 0.0 (0.0, 0.1) | 0.1 (0.1, 0.1) | 0.0 (0.0, 0.1) | 0.0 (0.0, 0.1) |
Butternut Squash | Carrots | Green Bean | Green Peas | Sweet Potato | ||||||
---|---|---|---|---|---|---|---|---|---|---|
H | C | H | C | H | C | H | C | H | C | |
n = 8 | n = 2 | n = 9 | n = 3 | n = 8 | n = 2 | n = 14 | n = 2 | n = 8 | n = 2 | |
Vitamins | ||||||||||
Vitamin A, RAE (mcg/100 g) | 1219.0 (167.0, 4598.0) | 168.2 (144.7, 191.8) | 843.5 (835.0, 852.0) | 1157.1 (779.5, 1470.3) | 35.0 (35.0, 35.0) | 30.8 (26.5, 35) | 52.5 (27.0, 105.0) | 36.8 (26.2, 47.4) | 692.5 (435, 787) | 1030.9 (1026.8, 1035.1) |
Vitamin C (mg/100 g) | 11.2 (3.5, 21.0) | 1.0 (0.8, 1.3) | 3.4 (0.5, 7) | 1.1 (0.6, 1.4) | 8.8 (1.2, 19.0) | 2.2 (0.6, 3.9) | 14.9 (1.8, 41.5) | 13.0 (11.9, 14.1) | 10.6 (2.4, 16.2) | 58.6 (44.3, 72.8) |
Vitamin E (mg/100 g) | 1.5 (1.3, 1.9) | 0.8 (0.7, 0.8) | 0.7 (0.3, 1.2) | 1.2 (1.0, 1.4) | 0.3 (0.0, 0.5) | 0.3 (0.2, 0.3) | 0.1 (0, 0.2) | 0.4 (0.3, 0.5) | 0.8 (0.2, 1.4) | 0.5 (0.4, 0.6) |
Minerals | ||||||||||
Potassium (mg/100 g) | 260.0 (133.0, 407.0) | 486.0 (479.6, 492.5) | 226.2 (96.4, 328.0) | 303.2 (234.8, 379.6) | 185.4 (94.0, 260.0) | 266.4 (264.4, 268.5) | 171.7 (71.5, 272.0) | 260.8 (235.3, 286.2) | 299.9 (210.0, 425.0) | 494.2 (464.0, 524.4) |
Calcium (mg/100 g) | 32.4 (19.0, 48.0) | 46.0 (40.2, 51.8) | 29.6 (25.0, 35.0) | 39.8 (37.6, 41.3) | 47.9 (34.0, 64.0) | 57.7 (53.6, 61.8) | 25.9 (20.0, 38.0) | 44.1 (42.1, 46.0) | 28.9 (22.0, 37.5) | 48.0 (44.5, 51.5) |
Iron (mg/100 g) | 0.7 (0.5, 0.9) | 0.9 (0.8, 1.0) | 0.3 (0.1, 0.5) | 0.4 (0.3, 0.7) | 0.8 (0.5, 1.3) | 0.8 (0.7, 0.9) | 1.4 (1.0, 1.7) | 2.3 (2.3, 2.4) | 0.8 (0.7, 1.3) | 1.3 (1.1, 1.5) |
Copper (mg/100 g) | 0.1 (0.0, 0.1) | 0.2 (0.2, 0.2) | 0.1 (0.0, 0.6) | 0.1 (0.0, 0.1) | 0.1 (0.1, 0.2) | 0.1 (0.1, 0.2) | 0.1 (0.1, 0.2) | 0.2 (0.2, 0.2) | 0.2 (0.1, 0.3) | 0.7 (0.2, 1.2) |
Magnesium (mg/100 g) | 20.9 (9.0, 34.0) | 28.4 (28.1, 28.7) | 9.1 (0.1, 13.0) | 12.4 (11.4, 12.9) | 21.0 (13.0, 26.) | 28.0 (24.8, 31.1) | 26.1 (16.3, 39.0) | 38.7 (34.6, 42.8) | 19.6 (17.0, 24.0) | 26.6 (26.4, 26.7) |
Zinc (mg/100 g) | 0.2 (0.1, 0.2) | 0.0 (0.0, 0.0) | 0.2 (0.1, 0.4) | 0.2 (0.2, 0.3) | 0.3 (0.2, 0.4) | 0.4 (0.4, 0.5) | 0.8 (0.3, 1.2) | 1.2 (1.2, 1.3) | 0.2 (0.2, 0.4) | 0.5 (0.2, 0.8) |
Phosphorus (mg/100 g) | 25.7 (14.0, 37.0) | 45.6 (45.5, 45.6) | 25.8 (18.0, 36.0) | 24.7 (23.2, 25.9) | 33.1 (24.0, 38.5) | 35.6 (34.8, 36.4) | 89.0 (62.0, 119.0) | 111.3 (105.7, 116.9) | 39.4 (31.0, 52.0) | 38.6 (35.4, 41.8) |
Manganese (mg/100 g) | 0.2 (0.1, 0.3) | 0.1 (0.1, 0.1) | 0.1 (0.1, 0.2) | 0.1 (0.1, 0.1) | 0.2 (0.1, 0.3) | 0.3 (0.2, 0.5) | 0.3 (0.2, 0.5) | 0.3 (0.3, 0.4) | 0.4 (0.0, 1.0) | 0.5 (0.5, 0.6) |
Apple Puree | Carrot Puree | Green Pea Puree | ||||
---|---|---|---|---|---|---|
Home Prepared | Commercially Prepared | Home Prepared | Commercially Prepared | Home Prepared | Commercially Prepared | |
Energy 2 (kcal/100 g) | 52.0 ± N/A | 51.9 ± N/A | 32.0 ± N/A | 32.2 ± N/A | 61.0 ± N/A | 60.4 ± N/A |
Moisture (%) | 87.0 ± 2.18 | 87.0 ± 2.18 | 91.6 ± 2.29 | 91.6 ± 2.29 | 84.2 ± 2.11 | 84.2 ± 2.11 |
Total Solids (%) | 13.0 ± 0.33 | 13.0 ± 0.33 | 8.4 ± 0.21 | 8.4 ± 0.21 | 15.8 ± 0.40 | 15.8 ± 0.40 |
Ash (%) | <0.05 ± 0.00 | <0.05 ± 0.00 | 0.26 ± 0.00 | 0.33 ± 0.00 | 0.43 ± 0.00 | 0.60 ± 0.00 |
Total CHO 2 (g/100 g) | 12.8 ± N/A | 12.8 ± N/A | 7.5 ± N/A | 7.5 ± N/A | 11.0 ± N/A | 10.9 ± N/A |
Total Dietary Fiber (g/100 g) | 1.46 ± 0.29 | 1.23 ± 0.25 | 2.93 ± 0.59 | 1.56 ± 0.31 | 5.90 ± 1.18 | 1.52 ± 0.30 |
Soluble Fiber (g/100 g) | <0.50 ± 0.15 | <0.50 ± 0.15 | 1.41 ± 0.42 | 0.67 ± 0.20 | 0.77 ± 0.23 | <0.50 ± 0.15 |
Insoluble Fiber (g/100 g) | 1.46 ± 0.15 | 1.23 ± 0.12 | 1.52 ± 0.15 | 0.89 ± 0.09 | 5.13 ± 0.51 | 1.52 ± 0.15 |
Total Sugars (g/100 g) | 9.96 ± 1.99 | 9.79 ± 1.96 | 3.90 ± 0.78 | 4.46 ± 0.89 | 2.35 ± 0.47 | 4.73 ± 0.95 |
Galactose (g/100 g) | <0.10 ± 0.20 | <0.10 ± 0.02 | <0.05 ± 0.01 | <0.05 ± 0.01 | <0.05 ± 0.01 | <0.05 ± 0.01 |
Glucose (g/100 g) | 1.84 ± 3.68 | 1.70 ± 0.34 | 0.74 ± 0.15 | 1.03 ± 0.21 | <0.05 ± 0.01 | 0.55 ± 0.11 |
Sucrose (g/100 g) | 2.25 ± 0.45 | 2.41 ± 0.48 | 2.54 ± 0.51 | 2.59 ± 0.52 | 2.35 ± 0.47 | 3.94 ± 0.79 |
Fructose (g/100 g) | 5.87 ± 1.17 | 5.68 ± 1.14 | 0.62 ± 0.12 | 0.84 ± 0.17 | <0.05 ± 0.01 | 0.25 ± 0.05 |
Lactose (g/100 g) | <0.10 ± 0.02 | <0.10 ± 0.02 | <0.05 ± 0.01 | <0.05 ± 0.01 | <0.05 ± 0.01 | <0.05 ± 0.01 |
Maltose (g/100 g) | <0.10 ± 0.02 | <0.10 ± 0.02 | <0.05 ± 0.01 | <0.05 ± 0.01 | <0.05 ± 0.01 | <0.05 ± 0.01 |
Total Fat (g/100 g) | <0.60 ± 0.09 | <0.60 ± 0.09 | <0.60 ± 0.09 | <0.60 ± 0.09 | <0.60 ± 0.09 | <0.60 ± 0.09 |
Total Protein (g/100 g) | 0.17 ± 0.00 | 0.18 ± 0.00 | 0.57 ± 0.00 | 0.51 ± 0.00 | 4.29 ± 0.03 | 4.23 ± 0.01 |
Predictions | ||||||
---|---|---|---|---|---|---|
Total Sugars (g/100 g) | Available Carbohydrates (g/100 g) | eGI | eGL (g/113 g Serving) | eGI * Status | eGL ** Status | |
Carrot—Home Prepared | 3.9 | 4.6 | 55 | 2.9 | Medium | Low |
Carrot—Commercially Prepared | 4.5 | 6.0 | 63 | 4.3 | Medium | Low |
Apple—Home Prepared | 10.0 | 11.3 | 49 | 6.2 | Low | Low |
Apple—Commercially Prepared | 9.8 | 11.6 | 50 | 6.6 | Low | Low |
Green Pea—Home Prepared | 2.4 | 5.1 | 46 | 2.7 | Low | Low |
Green Pea—Commercially Prepared | 4.7 | 9.4 | 60 | 6.3 | Medium | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huss, L.R.; Dean, J.; Lamothe, L.M.; Hamaker, B.; Reuhs, B.; Goran, M.I.; Lê, K.-A. Micronutrient Profile and Carbohydrate Microstructure of Commercially Prepared and Home Prepared Infant Fruit and Vegetable Purees. Nutrients 2023, 15, 45. https://doi.org/10.3390/nu15010045
Huss LR, Dean J, Lamothe LM, Hamaker B, Reuhs B, Goran MI, Lê K-A. Micronutrient Profile and Carbohydrate Microstructure of Commercially Prepared and Home Prepared Infant Fruit and Vegetable Purees. Nutrients. 2023; 15(1):45. https://doi.org/10.3390/nu15010045
Chicago/Turabian StyleHuss, Lyndsey R., Julie Dean, Lisa M. Lamothe, Bruce Hamaker, Brad Reuhs, Michael I. Goran, and Kim-Anne Lê. 2023. "Micronutrient Profile and Carbohydrate Microstructure of Commercially Prepared and Home Prepared Infant Fruit and Vegetable Purees" Nutrients 15, no. 1: 45. https://doi.org/10.3390/nu15010045
APA StyleHuss, L. R., Dean, J., Lamothe, L. M., Hamaker, B., Reuhs, B., Goran, M. I., & Lê, K. -A. (2023). Micronutrient Profile and Carbohydrate Microstructure of Commercially Prepared and Home Prepared Infant Fruit and Vegetable Purees. Nutrients, 15(1), 45. https://doi.org/10.3390/nu15010045