The Effect of Caffeinated Chewing Gum on Volleyball-Specific Skills and Physical Performance in Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Pre-Experimental Standardization
2.3. Experimental Design
2.4. Jumping Assessment
2.5. Running Assessment
2.6. Ball Velocity during Attack and Volleyball Service
2.7. Volleyball Specific-Skills Assessment
2.8. Side Effects and Assessment of Blinding
2.9. Statistical Analysis
3. Results
3.1. Jumping Performance Assessment
3.2. Running Performance Assessment
3.3. Ball Velocity during Attack and Volleyball Service
3.4. Volleyball Specific-Skills Assessment
3.5. Side Effects and Assessment of Blinding
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheppard, J.M.; Cronin, J.B.; Gabbett, T.J.; McGuigan, M.R.; Etxebarria, N.; Newton, R.U. Relative Importance of Strength, Power, and Anthropometric Measures to Jump Performance of Elite Volleyball Players. J. Strength Cond. Res. 2008, 22, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Sattler, T.; Sekulic, D.; Hadzic, V.; Uljevic, O.; Dervisevic, E. Vertical Jumping Tests in Volleyball: Reliability, Validity, and Playing-Position Specifics. J. Strength Cond. Res. 2012, 26, 1532–1538. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.; Newton, R.; McGuigan, M. The Effect of Accentuated Eccentric Load on Jump Kinetics in High-Performance Volleyball Players. Int. J. Sports Sci. Coach. 2007, 2, 267–273. [Google Scholar] [CrossRef]
- García-de-Alcaraz, A.; Ramírez-Campillo, R.; Rivera-Rodríguez, M.; Romero-Moraleda, B. Analysis of jump load during a volleyball season in terms of player role. J. Sci. Med. Sport 2020, 23, 973–978. [Google Scholar] [CrossRef]
- Marques, M.C.; van denTillaar, R.; Gabbett, T.J.; Reis, V.M.; González-Badillo, J.J. Physical Fitness Qualities of Professional Volleyball Players: Determination of Positional Differences. J. Strength Cond. Res. 2009, 23, 1106–1111. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. What Should We Do About Habitual Caffeine Use in Athletes? Sports Med. 2019, 49, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.; Kiely, J. Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Monitoring Program|World Anti Doping Agency. Available online: https://www.wada-ama.org/en/resources/monitoring-program (accessed on 12 December 2022).
- NCAA Banned Substances-Student-Athlete Handbook|Athletics. Available online: https://gustavus.edu/athletics/handbook/NCAABannedSubstances.php (accessed on 12 December 2022).
- Mielgo-Ayuso, J.; Marques-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef] [Green Version]
- Wilk, M.; Krzysztofik, M.; Filip, A.; Zajac, A.; Del Coso, J. The Effects of High Doses of Caffeine on Maximal Strength and Muscular Endurance in Athletes Habituated to Caffeine. Nutrients 2019, 11, 1912. [Google Scholar] [CrossRef] [Green Version]
- Spriet, L.L. Exercise and Sport Performance with Low Doses of Caffeine. Sports Med. 2014, 44, 175–184. [Google Scholar] [CrossRef]
- Astorino, T.A.; Roberson, D.W. Efficacy of Acute Caffeine Ingestion for Short-term High-Intensity Exercise Performance: A Systematic Review. J. Strength Cond. Res. 2010, 24, 257–265. [Google Scholar] [CrossRef]
- Chia, J.S.; Barrett, L.A.; Chow, J.Y.; Burns, S.F. Effects of Caffeine Supplementation on Performance in Ball Games. Sports Med. 2017, 47, 2453–2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coso, J.D.; Pérez-López, A.; Abian-Vicen, J.; Salinero, J.J.; Lara, B.; Valadés, D. Enhancing Physical Performance in Male Volleyball Players with a Caffeine-Containing Energy Drink. Int. J. Sports Physiol. Perform. 2014, 9, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Pérez-López, A.; Salinero, J.J.; Abian-Vicen, J.; Valadés, D.; Lara, B.; Hernandez, C.; Areces, F.; González, C.; Del Coso, J. Caffeinated Energy Drinks Improve Volleyball Performance in Elite Female Players. Med. Sci. Sports Exerc. 2015, 47, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Zbinden-Foncea, H.; Rada, I.; Gomez, J.; Kokaly, M.; Stellingwerff, T.; Deldicque, L.; Peñailillo, L. Effects of Caffeine on Countermovement-Jump Performance Variables in Elite Male Volleyball Players. Int. J. Sports Physiol. Perform. 2018, 13, 145–150. [Google Scholar] [CrossRef]
- Wickham, K.A.; Spriet, L.L. Administration of Caffeine in Alternate Forms. Sports Med. 2018, 48, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef]
- Paton, C.D.; Lowe, T.; Irvine, A. Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur. J. Appl. Physiol. 2010, 110, 1243–1250. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Krawczyk, R.; Krzysztofik, M.; Rzeszutko-Belzowska, A.; Dornowski, M.; Zajac, A.; Del Coso, J.; Wilk, M. Effects of acute ingestion of caffeinated chewing gum. on performance in elite judo athletes. J. Int. Soc. Sports Nutr. 2021, 18, 49. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Kaszuba, M.; Dorozynski, B.; Komarek, Z.; Gawel, D.; Del Coso, J.; Klocek, T.; Spieszny, M.; Krzysztofik, M. Acute Effects of Caffeinated Chewing Gum on Volleyball Performance in High-Performance Female Players. J. Hum. Kinet. 2022, 84, 92–102. [Google Scholar] [CrossRef]
- Brown, C.R.; Iii, P.J.; Wilson, M.; Benowitz, N.L. Changes in rate and pattern of caffeine metabolism after cigarette abstinence. Clin. Pharmacol. Ther. 1988, 43, 488–491. [Google Scholar] [CrossRef]
- Kalow, W.; Tang, B.K. Caffeine as a metabolic probe: Exploration of the enzyme-inducing effect of cigarette smoking. Clin. Pharmacol Ther. 1991, 49, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Campos, C.; Dengo, A.L.; Moncada-Jiménez, J. Acute Consumption of an Energy Drink Does Not Improve Physical Performance of Female Volleyball Players. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Gutiérrez Hellín, J.; Ruíz-Moreno, C.; Romero-Moraleda, B.; Del Coso, J. Acute caffeine intake increases performance in the 15-s Wingate test during the menstrual cycle. Br. J. Clin. Pharmacol. 2020, 86, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bühler, E.; Lachenmeier, D.W.; Winkler, G. Development of a tool to assess caffeine intake among teenagers and young adults. Ernahrungs Umsch. 2014, 61, 58–63. [Google Scholar]
- Filip, A.; Wilk, M.; Krzysztofik, M.; Del Coso, J. Inconsistency in the Ergogenic Effect of Caffeine in Athletes Who Regularly Consume Caffeine: Is It Due to the Disparity in the Criteria that Defines Habitual Caffeine Intake? Nutrients 2020, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Bosak, A.M.; Bishop, P.; Smith, J.; Green, J.M.; Richardson, M.; Iosia, M. Comparison of 5 km Running Performance after 24 and 72 h of Passive Recovery: 431 Board #22 3:30 PM–5:00 PM. Med. Sci. Sports Exerc. 2005, 37, S77–S78. [Google Scholar]
- Bishop, P.A.; Jones, E.; Woods, A.K. Recovery From Training: A Brief Review: Brief Review. J. Strength Cond. Res. 2008, 22, 1015–1024. [Google Scholar] [CrossRef]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.S.; Frantz, B.A.; Bemben, M.G. Countermovement Jump Reliability Performed with and Without an Arm Swing in NCAA Division 1 Intercollegiate Basketball Players. J. Strength Cond. Res. 2020, 34, 546–558. [Google Scholar] [CrossRef]
- McLellan, C.P.; Lovell, D.I.; Gass, G.C. The Role of Rate of Force Development on Vertical Jump Performance. J. Strength Cond. Res. 2011, 25, 379–385. [Google Scholar] [CrossRef]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and Reliability of Optojump Photoelectric Cells for Estimating Vertical Jump Height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Pauole, K.; Madole, K.; Garhammer, J.; Lacourse, M.; Rozenek, R. Reliability and Validity of the t-test as a Measure of Agility, Leg Power, and Leg Speed in College-Aged Men and Women. J. Strength Cond. Res. 2000, 14, 443–450. [Google Scholar]
- Papla, M.; Krzysztofik, M.; Wojdala, G.; Roczniok, R.; Oslizlo, M.; Golas, A. Relationships between Linear Sprint, Lower-Body Power Output and Change of Direction Performance in Elite Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 6119. [Google Scholar] [CrossRef] [PubMed]
- Matusiński, A.; Pietraszewski, P.; Krzysztofik, M.; Gołaś, A. The Effects of Resisted Post-Activation Sprint Performance Enhancement in Elite Female Sprinters. Front. Physiol. 2021, 12, 651659. [Google Scholar] [CrossRef] [PubMed]
- Gepfert, M.; Golas, A.; Zajac, T.; Krzysztofik, M. The Use of Different Modes of Post-Activation Potentiation (PAP) for Enhancing Speed of the Slide-Step in Basketball Players. Int. J. Environ. Res. Public Health 2020, 17, 5057. [Google Scholar] [CrossRef] [PubMed]
- Palao, J.M.; Valades, D. Testing Protocol for Monitoring Spike and Serve Speed in Volleyball. Strength Cond. J. 2009, 31, 47–51. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Kalinowski, R.; Filip-Stachnik, A.; Wilk, M.; Zajac, A. The Effects of Plyometric Conditioning Exercises on Volleyball Performance with Self-Selected Rest Intervals. Appl. Sci. 2021, 11, 8329. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Georgieff, B. The Development of a Standardized Skill Assessment for Junior Volleyball Players. Int. J. Sports Physiol. Perform. 2006, 1, 95–107. [Google Scholar] [CrossRef]
- Lidor, R.; Arnon, M.; Hershko, Y.; Maayan, G.; Falk, B. Accuracy in a Volleyball Service Test in Rested and Physical Exertion Conditions in Elite and Near-Elite Adolescent Players. J. Strength Cond. Res. 2007, 21, 937. [Google Scholar]
- Krawczyk, R.; Krzysztofik, M.; Kostrzewa, M.; Komarek, Z.; Wilk, M.; Del Coso, J.; Filip-Stachnik, A. Preliminary Research towards Acute Effects of Different Doses of Caffeine on Strength–Power Performance in Highly Trained Judo Athletes. Int. J. Environ. Res. Public Health 2022, 19, 2868. [Google Scholar] [CrossRef]
- de Souza, J.G.; Del Coso, J.; de Fonseca, F.S.; Silva, B.V.C.; de Souza, D.B.; da Silva Gianoni, R.L.; Filip-Stachnik, A.; Serrão, J.C.; Claudino, J.G. Risk or benefit? Side effects of caffeine supplementation in sport: A systematic review. Eur. J. Nutr. 2022, 61, 3823–3834. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences. 0 wyd; Routledge: London, UK, 2013; Available online: https://www.taylorfrancis.com/books/9781134742707 (accessed on 12 December 2022).
- Abian-Vicen, J.; Puente, C.; Salinero, J.J.J.; González-Millán, C.; Areces, F.; Muñoz, G.; Muñoz-Guerra, J.; Del Coso, J. A caffeinated energy drink improves jump performance in adolescent basketball players. Amino Acids 2014, 46, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Stanković, R.; Antić, V.; Milanović, Z. Acute caffeine supplementation promotes small to moderate improvements in performance tests indicative of in-game success in professional female basketball players. Appl. Physiol. Nutr. Metab. 2019, 44, 849–856. [Google Scholar] [CrossRef] [Green Version]
- Foskett, A.; Ali, A.; Gant, N. Caffeine Enhances Cognitive Function and Skill Performance during Simulated Soccer Activity. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Gonzalez-Millán, C.; Salinero, J.J.; Abian-Vicen, J.; Areces, F.; Barbero-Alvarez, J.C.; Muñoz, V.; Portillo, L.J.; Rave, J.M.G.; Del Coso, J. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 2014, 46, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Ranchordas, M.K.; King, G.; Russell, M.; Lynn, A.; Russell, M. Effects of Caffeinated Gum on a Battery of Soccer-Specific Tests in Trained University-Standard Male Soccer Players. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Del Coso, J.; Portillo, J.; Muñoz, G.; Abián-Vicén, J.; Gonzalez-Millán, C.; Muñoz-Guerra, J. Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids 2013, 44, 1511–1519. [Google Scholar] [CrossRef]
- Lara, B.; Ruiz-Moreno, C.; Salinero, J.J.; Del Coso, J. Time course of tolerance to the performance benefits of caffeine. Sandbakk, Ø.; redaktor. PLoS ONE 2019, 14, e0210275. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, R.; Cordery, P.; Funnell, M.; Mears, S.; James, L.; Watson, P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J. Sports Sci. 2017, 35, 1920–1927. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Krzysztofik, M.; Del Coso, J.; Wilk, M. Acute Effects of High Doses of Caffeine on Bar Velocity during the Bench Press Throw in Athletes Habituated to Caffeine: A Randomized, Double-Blind and Crossover Study. J. Clin. Med. 2021, 10, 4380. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Wilk, M.; Krzysztofik, M.; Lulińska, E.; Tufano, J.J.; Zajac, A.; Stastny, P.; Del Coso, J. The effects of different doses of caffeine on maximal strength and strength-endurance in women habituated to caffeine. J. Int. Soc. Sports Nutr. 2021, 18, 25. [Google Scholar] [CrossRef]
- Collomp, K.; Ahmaidi, S.; Chatard, J.C.; Audran, M.; Prefaut, C. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur. J. Appl. Physiol. 1992, 64, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Cottrell, T.; Talhami Lozano, A.; Aburto-Pratt, K.; Duhon, J. Effect of caffeine on RPE and perceptions of pain, arousal, and pleasure/displeasure during a cycling time trial in endurance trained and active men. Physiol. Behav. 2012, 106, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M. Caffeine and sports performance. Appl. Physiol. Nutr. Metab. 2008, 33, 1319–1334. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Kimura, Y.; Tokizawa, K.; Ishii, K.; Oda, K.; Sasaki, T.; Nakamura, Y.; Muraoka, I.; Ishiwata, K. Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance-trained men: A [11C]TMSX PET study. Nucl. Med. Biol. 2005, 32, 831–836. [Google Scholar] [CrossRef]
- Johnson, T.M.; Brown, L.E.; Coburn, J.W.; Judelson, D.A.; Khamoui, A.V.; Tran, T.T.; Uribe, B.P. Effect of Four Different Starting Stances on Sprint Time in Collegiate Volleyball Players. J. Strength Cond. Res. 2010, 24, 2641–2646. [Google Scholar] [CrossRef] [PubMed]
- Forthomme, B.; Croisier, J.L.; Ciccarone, G.; Crielaard, J.M.; Cloes, M. Factors Correlated with Volleyball Spike Velocity. Am. J. Sports Med. 2005, 33, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Muñoz-Fernández, V.E.; Muñoz, G.; Fernández-Elías, V.E.; Ortega, J.F.; Hamouti, N.; Barbero, J.C.; Muñoz-Guerra, J. Effects of a Caffeine-Containing Energy Drink on Simulated Soccer Performance. Lucia, A.; redaktor. PLoS ONE 2012, 7, e31380. [Google Scholar] [CrossRef]
- Sadek, P.; Pan, X.; Shepherd, P.; Malandain, E.; Carney, J.; Coleman, H. A Randomized, Two-Way Crossover Study to Evaluate the Pharmacokinetics of Caffeine Delivered Using Caffeinated Chewing Gum Versus a Marketed Caffeinated Beverage in Healthy Adult Volunteers. J. Caffeine Res. 2017, 7, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.; Reynolds, N.A.; Crewther, B.T.; Cook, C.J.; Kilduff, L.P. Physiological and Performance Effects of Caffeine Gum Consumed During a Simulated Half-Time by Professional Academy Rugby Union Players. J. Strength Cond. Res. 2020, 34, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Ryan, E.J.; Kim, C.H.; Fickes, E.J.; Williamson, M.; Muller, M.D.; Barkley, J.E.; Gunstad, J.; Glickman, E. Caffeine Gum and Cycling Performance: A Timing Study. J. Strength Cond. Res. 2013, 27, 259–264. [Google Scholar] [CrossRef]
- Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Gonzalez-Millán, C.; Areces, F.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Del Coso, J. The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br. J. Nutr. 2014, 112, 1494–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbull, D.; Rodricks, J.V.; Mariano, G.F. Neurobehavioral hazard identification and characterization for caffeine. Regul. Toxicol. Pharmacol. 2016, 74, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juliano, L.M.; Griffiths, R.R. A critical review of caffeine withdrawal: Empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology 2004, 176, 1–29. [Google Scholar] [CrossRef] [PubMed]
Variable | CAF (95% CI) | PLAC (95% CI) | p | d (95% CI) |
---|---|---|---|---|
CMJ (cm) | 51.2 ± 11.2 (44.09–58.28) | 51.0 ± 11.4 (43.77–58.25) | 0.820 | 0.02 (−0.78–0.82) |
SJ (cm) | 39.1 ± 7.8 (34.11–44.09) | 40.9 ± 9.6 (34.75–46.95) | 0.230 | 0.21 (−0.60–1.00) |
Attack jump (cm) | 61.4 ± 14.9 (51.95–70.86) | 62.4 ± 13.9 (53.61–71.25) | 0.342 | 0.07 (−0.73–0.87) |
Block jump (cm) | 48.4 ± 10.6 (41.68–55.09) | 48.4 ± 11.6 (41.02–55.73) | 0.995 | 0.00 (−0.80–0.80) |
5 m sprint (s) | 0.95 ± 0.11 (0.89–1.02) | 0.95 ± 0.11 (0.88–1.03) | 1.000 | 0.00 (−0.80–0.80) |
10 m sprint (s) | 1.69 ± 0.12 (1.61–1.76) | 1.68 ± 0.13 (1.60–1.76) | 0.619 | 0.08 (−0.72–0.88) |
Agility t-test (s) | 9.44 ± 0.69 (9.01–9.88) | 9.45 ± 0.77 (8.96–9.94) | 0.952 | 0.01 (−0.79–0.81) |
Standing attack (km/h) | 82 ± 11 (75–89) | 79 ± 12 (71–86) | 0.274 | 0.26 (−0.55–1.05) |
Attack (km/h) | 85 ± 14 (76–94) | 81 ± 13 (73–89) | 0.119 | 0.30 (−0.52–1.09) |
Serve (km/h) | 88 ± 14 (79–97) | 86 ± 13 (78–95) | 0.254 | 0.15 (−0.66–0.94) |
Attack accuracy (points) | 18 ± 3 (16–19) | 15 ± 4 (13–18) | 0.023 * | 0.85 (−0.01–1.65) |
Serve accuracy (points) | 12 ± 4 (9–15) | 10 ± 3 (8–13) | 0.140 | 0.57 (−0.27–1.36) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaszuba, M.; Klocek, O.; Spieszny, M.; Filip-Stachnik, A. The Effect of Caffeinated Chewing Gum on Volleyball-Specific Skills and Physical Performance in Volleyball Players. Nutrients 2023, 15, 91. https://doi.org/10.3390/nu15010091
Kaszuba M, Klocek O, Spieszny M, Filip-Stachnik A. The Effect of Caffeinated Chewing Gum on Volleyball-Specific Skills and Physical Performance in Volleyball Players. Nutrients. 2023; 15(1):91. https://doi.org/10.3390/nu15010091
Chicago/Turabian StyleKaszuba, Magdalena, Olga Klocek, Michał Spieszny, and Aleksandra Filip-Stachnik. 2023. "The Effect of Caffeinated Chewing Gum on Volleyball-Specific Skills and Physical Performance in Volleyball Players" Nutrients 15, no. 1: 91. https://doi.org/10.3390/nu15010091
APA StyleKaszuba, M., Klocek, O., Spieszny, M., & Filip-Stachnik, A. (2023). The Effect of Caffeinated Chewing Gum on Volleyball-Specific Skills and Physical Performance in Volleyball Players. Nutrients, 15(1), 91. https://doi.org/10.3390/nu15010091