Effect of Menaquinone-7 Supplementation on Arterial Stiffness in Chronic Hemodialysis Patients: A Multicenter Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Intervention and Control Group
2.4. Outcomes
2.5. HD Prescription and Standard Medication in Dialysis Units
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Primary Outcome
3.3. Secondary Outcomes
3.4. Subgroup Analyses
3.5. Adverse Events and Compliance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrero, J.J.; Thomas, F.; Nagy, K.; Arogundade, F.; Avesani, C.M.; Chan, M.; Chmielewski, M.; Cordeiro, A.C.; Espinosa-Cuevas, A.; Fiaccadori, E. Global prevalence of protein-energy wasting in kidney disease: A meta-analysis of contemporary observational studies from the international society of renal nutrition and metabolism. J. Ren. Nutr. 2018, 28, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Wathanavasin, W.; Banjongjit, A.; Avihingsanon, Y.; Praditpornsilpa, K.; Tungsanga, K.; Eiam-Ong, S.; Susantitaphong, P. Prevalence of Sarcopenia and Its Impact on Cardiovascular Events and Mortality among Dialysis Patients: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4077. [Google Scholar] [CrossRef]
- Sahathevan, S.; Khor, B.-H.; Ng, H.-M.; Abdul Gafor, A.H.; Mat Daud, Z.A.; Mafra, D.; Karupaiah, T. Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review. Nutrients 2020, 12, 3147. [Google Scholar] [CrossRef]
- Disthabanchong, S.; Srisuwarn, P. Mechanisms of Vascular Calcification in Kidney Disease. Adv. Chronic Kidney Dis. 2019, 26, 417–426. [Google Scholar] [CrossRef]
- Cozzolino, M.; Fusaro, M.; Ciceri, P.; Gasperoni, L.; Cianciolo, G. The Role of Vitamin K in Vascular Calcification. Adv. Chronic Kidney Dis. 2019, 26, 437–444. [Google Scholar] [CrossRef]
- Lioufas, N.; Hawley, C.M.; Cameron, J.D.; Toussaint, N.D. Chronic Kidney Disease and Pulse Wave Velocity: A Narrative Review. Int. J. Hypertens. 2019, 2019, 9189362. [Google Scholar] [CrossRef]
- Shin, S.J.; Kim, Y.K.; Chung, S.; Chung, H.W.; Ihm, S.H.; Park, C.W.; Kim, Y.O.; Song, H.C.; Kim, Y.S.; Choi, E.-J. The impact of the aortic pulse wave velocity on the cardiovascular outcomes of hemodialysis patients. J. Korean Med. Sci. 2009, 24 (Suppl. S1), S121–S128. [Google Scholar] [CrossRef]
- Guérin, A.P.; London, G.M.; Marchais, S.J.; Metivier, F. Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol. Dial. Transplant. 2000, 15, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Shea, M.K.; Booth, S.L. Vitamin K, Vascular Calcification, and Chronic Kidney Disease: Current Evidence and Unanswered Questions. Curr. Dev. Nutr. 2019, 3, nzz077. [Google Scholar] [CrossRef]
- McCabe, K.M.; Adams, M.A.; Holden, R.M. Vitamin K status in chronic kidney disease. Nutrients 2013, 5, 4390–4398. [Google Scholar] [CrossRef]
- Shea, M.K.; Booth, S.L. Concepts and Controversies in Evaluating Vitamin K Status in Population-Based Studies. Nutrients 2016, 8, 8. [Google Scholar] [CrossRef]
- Lees, J.S.; Chapman, F.A.; Witham, M.D.; Jardine, A.G.; Mark, P.B. Vitamin K status, supplementation and vascular disease: A systematic review and meta-analysis. Heart 2019, 105, 938–945. [Google Scholar] [CrossRef]
- Delanaye, P.; Krzesinski, J.-M.; Warling, X.; Moonen, M.; Smelten, N.; Médart, L.; Pottel, H.; Cavalier, E. Dephosphorylated-uncarboxylated Matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients. BMC Nephrol. 2014, 15, 145. [Google Scholar] [CrossRef]
- Thamratnopkoon, S.; Susantitaphong, P.; Tumkosit, M.; Katavetin, P.; Tiranathanagul, K.; Praditpornsilpa, K.; Eiam-Ong, S. Correlations of Plasma Desphosphorylated Uncarboxylated Matrix Gla Protein with Vascular Calcification and Vascular Stiffness in Chronic Kidney Disease. Nephron 2017, 135, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Westenfeld, R.; Krueger, T.; Schlieper, G.; Cranenburg, E.C.; Magdeleyns, E.J.; Heidenreich, S.; Holzmann, S.; Vermeer, C.; Jahnen-Dechent, W.; Ketteler, M.; et al. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: A randomized trial. Am. J. Kidney Dis. 2012, 59, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Caluwé, R.; Vandecasteele, S.; Van Vlem, B.; Vermeer, C.; De Vriese, A.S. Vitamin K2 supplementation in haemodialysis patients: A randomized dose-finding study. Nephrol. Dial. Transplant. 2014, 29, 1385–1390. [Google Scholar] [CrossRef]
- Aoun, M.; Makki, M.; Azar, H.; Matta, H.; Chelala, D.N. High Dephosphorylated-Uncarboxylated MGP in Hemodialysis patients: Risk factors and response to vitamin K2, A pre-post intervention clinical trial. BMC Nephrol. 2017, 18, 191. [Google Scholar] [CrossRef]
- Witham, M.D.; Lees, J.S.; White, M.; Band, M.; Bell, S.; Chantler, D.J.; Ford, I.; Fulton, R.L.; Kennedy, G.; Littleford, R.C.; et al. Vitamin K Supplementation to Improve Vascular Stiffness in CKD: The K4Kidneys Randomized Controlled Trial. J. Am. Soc. Nephrol. 2020, 31, 2434–2445. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.G.; Hariri, E.; Daaboul, Y.; Korjian, S.; El Alam, A.; Protogerou, A.D.; Kilany, H.; Karam, A.; Stephan, A.; Bahous, S.A. Vitamin K2 supplementation and arterial stiffness among renal transplant recipients-a single-arm, single-center clinical trial. J. Am. Soc. Hypertens. 2017, 11, 589–597. [Google Scholar] [CrossRef]
- Lees, J.S.; Rankin, A.J.; Gillis, K.A.; Zhu, L.Y.; Mangion, K.; Rutherford, E.; Roditi, G.H.; Witham, M.D.; Chantler, D.; Panarelli, M.; et al. The ViKTORIES trial: A randomized, double-blind, placebo-controlled trial of vitamin K supplementation to improve vascular health in kidney transplant recipients. Am. J. Transpl. 2021, 21, 3356–3368. [Google Scholar] [CrossRef]
- Kurnatowska, I.; Grzelak, P.; Masajtis-Zagajewska, A.; Kaczmarska, M.; Stefańczyk, L.; Vermeer, C.; Maresz, K.; Nowicki, M. Effect of vitamin K2 on progression of atherosclerosis and vascular calcification in nondialyzed patients with chronic kidney disease stages 3–5. Pol. Arch. Med. Wewn. 2015, 125, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Schlieper, G.; Westenfeld, R.; Krüger, T.; Cranenburg, E.C.; Magdeleyns, E.J.; Brandenburg, V.M.; Djuric, Z.; Damjanovic, T.; Ketteler, M.; Vermeer, C.; et al. Circulating nonphosphorylated carboxylated matrix gla protein predicts survival in ESRD. J. Am. Soc. Nephrol. 2011, 22, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Voong, K.; Harrington, D.; Goldsmith, D. Vitamin K status in chronic kidney disease: A report of a study and a mini-review. Int. Urol. Nephrol. 2013, 45, 1339–1344. [Google Scholar] [CrossRef] [PubMed]
- Sardana, M.; Vasim, I.; Varakantam, S.; Kewan, U.; Tariq, A.; Koppula, M.R.; Syed, A.A.; Beraun, M.; Drummen, N.E.A.; Vermeer, C.; et al. Inactive Matrix Gla-Protein and Arterial Stiffness in Type 2 Diabetes Mellitus. Am. J. Hypertens. 2017, 30, 196–201. [Google Scholar] [CrossRef]
- Pivin, E.; Ponte, B.; Pruijm, M.; Ackermann, D.; Guessous, I.; Ehret, G.; Liu, Y.P.; Drummen, N.E.; Knapen, M.H.; Pechere-Bertschi, A.; et al. Inactive Matrix Gla-Protein Is Associated With Arterial Stiffness in an Adult Population-Based Study. Hypertension 2015, 66, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Gundberg, C.M.; Lian, J.B.; Booth, S.L. Vitamin K-dependent carboxylation of osteocalcin: Friend or foe? Adv. Nutr. 2012, 3, 149–157. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.p.; Duan, L.; Li, S. Effect of vitamin K2 on type 2 diabetes mellitus: A review. Diabetes Res. Clin. Pract. 2018, 136, 39–51. [Google Scholar] [CrossRef]
- Rehman, K.; Akash, M.S.H.; Liaqat, A.; Kamal, S.; Qadir, M.I.; Rasul, A. Role of Interleukin-6 in Development of Insulin Resistance and Type 2 Diabetes Mellitus. Crit. Rev. Eukaryot. Gene Expr. 2017, 27, 229–236. [Google Scholar] [CrossRef]
- Naiyarakseree, N.; Phannajit, J.; Naiyarakseree, W.; Thongsricome, T.; Mahatanan, N.; Asavapujanamanee, P.; Lekhyananda, S.; Vanichakarn, S.; Avihingsanon, Y.; Praditpornsilpa, K.; et al. Wcn23-0493 prevalence of arterial stiffness and associated factors in thai hemodialysis patients: A cross-sectional multicenter study. Kidney Int. Rep. 2023, 8, S144–S145. [Google Scholar] [CrossRef]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef] [PubMed]
- Ng, X.N.; Tsai, J.P.; Wang, C.H.; Hsu, B.G. Carotid-Femoral Pulse Wave Velocity Could Be a Marker to Predict Cardiovascular and All-Cause Mortality of Hemodialysis Patients. J. Clin. Med. 2023, 12, 2509. [Google Scholar] [CrossRef]
Baseline Characteristics | Control Group (n = 46) | MK-7 Group (n = 50) | p-Value |
---|---|---|---|
Age (years) | 60.0 ± 11.8 | 59.7 ± 11.3 | 0.88 |
Male (n/%) | 26 (57%) | 26 (52%) | 0.66 |
Dry weight (kg) | 59.1 ± 13.2 | 57.1 ± 11.4 | 0.43 |
Blood pressure (mmHg) | |||
Systolic BP | 155.5 ± 21.1 | 148.0 ± 20.2 | 0.07 |
Diastolic BP | 86.2 ± 13.3 | 81.5 ± 12.7 | 0.07 |
Cause of ESKD (n/%) | 0.99 | ||
Diabetic nephropathy | 14 (30%) | 17 (34%) | |
Hypertension | 2 (4%) | 3 (6%) | |
Glomerulonephritis | 12 (26%) | 12 (24%) | |
Others | 3 (7%) | 3 (6%) | |
Unknown cause | 15 (33%) | 15 (30%) | |
HD vintage (years) | 10.2 (3.9–19.2) | 6.5 (2.5–17.3) | 0.3 |
Previous kidney transplant (n/%) | 6 (13%) | 1 (2%) | 0.03 |
Underlying diseases (n/%) | |||
Diabetes mellitus | 14 (30%) | 16 (32%) | 0.87 |
Hypertension | 43 (93%) | 46 (92%) | 0.78 |
Coronary artery disease | 2 (4%) | 2 (4%) | 0.93 |
Current smoking (n/%) | 3 (7%) | 0 (0%) | 0.06 |
Antihypertensive drugs no. (n/%) | 0.88 | ||
None | 6 (13%) | 5 (10%) | |
1–4 | 36 (78%) | 41 (82%) | |
>4 | 4 (9%) | 4 (8%) | |
Antiplatelet drug use (n/%) | 12 (26%) | 14 (28%) | 0.83 |
Lipid lowering drug use (n/%) | 32 (70%) | 37 (74%) | 0.63 |
Phosphate binder no. (n/%) | 0.29 | ||
none | 6 (13%) | 5 (10%) | |
1 | 27 (59%) | 34 (68%) | |
2 | 10 (22%) | 11 (22%) | |
3 | 3 (7%) | 0 (0%) | |
Oral calcium use (n/%) | 36 (78%) | 37 (74%) | 0.63 |
Aluminum hydroxide use (n/%) | 5 (11%) | 5 (10%) | 0.89 |
Lanthanum carbonate use (n/%) | 9 (20%) | 7 (14%) | 0.46 |
Sevelamer use (n/%) | 6 (13%) | 7 (14%) | 0.89 |
Vitamin D3 use (n/%) | 23 (50%) | 25 (50%) | 1.00 |
Calcimimetic drug * use (n/%) | 4 (9%) | 3 (6%) | 0.61 |
HD frequency (n/%) | 0.08 | ||
2 times/week | 8 (17%) | 3 (6%) | |
3 times/week | 38 (83%) | 47 (94%) | |
Dialysate calcium (mEq/L) | 0.41 | ||
2 | 2 (4%) | 0 (0%) | |
2.5 | 25 (54%) | 31 (62%) | |
3 | 9 (20%) | 7 (14%) | |
3.5 | 10 (22%) | 12 (24%) | |
Residual urine (mL/day) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.77 |
HD adequacy (kT/V) | 1.9 (1.8–2.1) | 2.0 (1.8–2.3) | 0.26 |
Hemoglobin (mg/dL) | 10.2 ± 1.7 | 10.5 ± 1.3 | 0.39 |
Baseline cfPWV (m/s) | 12.1 (11.0–13.4) | 12.2 (11.0–14.3) | 0.64 |
Pre-dialysis BUN (mg/dL) | 55.5 ± 13.7 | 59.0 ± 16.5 | 0.27 |
Serum creatinine (mg/dL) | 10.2 ± 2.6 | 9.3 ± 2.3 | 0.06 |
Serum calcium (mg/dL) | 9.3 ± 0.8 | 11.2 ± 14.5 | 0.37 |
Serum phosphate (mg/dL) | 4.3 ± 1.3 | 4.2 ± 1.4 | 0.71 |
Serum albumin (mg/dL) | 4.3 ± 0.8 | 4.1 ± 0.4 | 0.14 |
FBS (mg/dL) | 97.9 ± 24.8 | 115.0 ± 63.2 | 0.09 |
HbA1C (%) | 5.4 ± 0.8 | 5.9 ± 1.3 | 0.05 |
Total cholesterol (mg/dL) | 160.5 ± 30.4 | 167.4 ± 36.4 | 0.39 |
Triglyceride (mg/dL) | 108.4 ± 57.3 | 117.1 ± 74.5 | 0.58 |
LDL-C (mg/dL) | 98.6 ± 39.9 | 93.2 ± 35.5 | 0.50 |
HDL-C (mg/dL) | 52.1 ± 15.9 | 56.6 ± 19.6 | 0.33 |
iPTH (pg/mL) | 416.6 ± 493.3 | 473.0 ± 456.7 | 0.58 |
Control Group | MK-7 Group | p-Value | |
---|---|---|---|
Percentage change of cfPWV in 24 weeks (%) | |||
All patients (ITT population) | N = 44 | N = 45 | 0.24 |
−6.7 (−18.8–7.8) | −6.0 (−19.6–2.3) | ||
Participants with complete 24-week follow-up | N = 43 | N = 43 | 0.24 |
−6.8 (−19.0, 7.3) | −6.0 (−20.2, 2.3) | ||
Diabetes subgroup | |||
DM | N = 14 | N = 16 | 0.008 |
3.8 (−5.8, 11.6) | −10.0 (−15.9, −0.8) | ||
Non-DM | N = 32 | N = 34 | 0.75 |
8.2 (0.0,17.2) | −5.1 (−16.1, −0.6) | ||
Subgroup divided by baseline serum calcium | |||
Baseline Ca > 10 mg/dL | N = 36 | N = 39 | 0.73 |
0.0 (−17.2, 12.7) | −4.5 (−20.2, 2.6) | ||
Baseline Ca ≤ 10 mg/dL | N = 10 | N = 11 | 0.14 |
−18.8 (−22.7, −12.1) | −8.4 (−16.4, −5.8) | ||
Subgroup divided by frequency of HD | |||
HD frequency 2 times/week | N = 8 | N = 3 | 0.71 |
13.4 (0.0, 17.2) | −18.6 (−20.2, −17.0) | ||
HD frequency 3 times/week | N = 38 | N = 47 | 0.024 |
−10.0 (−21.7, 2.8) | −5.8 (−19.6, 2.3) | ||
Patients with progression of arterial stiffness at week 24 *, n (%) | |||
All patients | N = 46 | N = 50 | 0.37 |
17 (39.5%) | 13 (30.2%) | ||
Diabetes subgroup | |||
DM | N = 14 | N = 16 | 0.01 |
8 (72.7%) | 3 (21.4%) | ||
Non-DM | N = 32 | N = 34 | 0.59 |
9 (28.1%) | 10 (34.5%) | ||
Subgroup divided by baseline serum calcium | |||
Baseline Ca ≤ 10 mg/dL | N = 36 | N = 39 | 0.27 |
16 (48.5%) | 12 (35.3%) | ||
Baseline Ca > 10 mg/dL | N = 10 | N = 11 | 0.94 |
1 (10%) | 1 (11.1%) | ||
Subgroup divided by frequency of HD | |||
HD frequency 2 times/week | N = 8 | N = 3 | 0.07 |
5 (71.4%) | 0 (0.0%) | ||
HD frequency 3 times/week | N = 38 | N = 47 | 0.88 |
12 (33.3%) | 13 (31.7%) |
Control Group (n = 46) | MK-7 Group (n = 50) | p-Value | |
---|---|---|---|
Gastrointestinal side effects (nausea and abdominal discomfort) | 0 | 3 (6%) | 0.24 |
New onset atrial fibrillation | 0 | 1 (2%) | 0.9 |
AVF thrombosis | 1 (2.2%) | 1 (2%) | 0.9 |
COVID-19 infection | 0 | 2 (4%) | 0.49 |
Diagnosed cancer during study | 1 (2.2%) | 0 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naiyarakseree, N.; Phannajit, J.; Naiyarakseree, W.; Mahatanan, N.; Asavapujanamanee, P.; Lekhyananda, S.; Vanichakarn, S.; Avihingsanon, Y.; Praditpornsilpa, K.; Eiam-Ong, S.; et al. Effect of Menaquinone-7 Supplementation on Arterial Stiffness in Chronic Hemodialysis Patients: A Multicenter Randomized Controlled Trial. Nutrients 2023, 15, 2422. https://doi.org/10.3390/nu15112422
Naiyarakseree N, Phannajit J, Naiyarakseree W, Mahatanan N, Asavapujanamanee P, Lekhyananda S, Vanichakarn S, Avihingsanon Y, Praditpornsilpa K, Eiam-Ong S, et al. Effect of Menaquinone-7 Supplementation on Arterial Stiffness in Chronic Hemodialysis Patients: A Multicenter Randomized Controlled Trial. Nutrients. 2023; 15(11):2422. https://doi.org/10.3390/nu15112422
Chicago/Turabian StyleNaiyarakseree, Nuanjanthip, Jeerath Phannajit, Wichai Naiyarakseree, Nanta Mahatanan, Pagaporn Asavapujanamanee, Sookruetai Lekhyananda, Supat Vanichakarn, Yingyos Avihingsanon, Kearkiat Praditpornsilpa, Somchai Eiam-Ong, and et al. 2023. "Effect of Menaquinone-7 Supplementation on Arterial Stiffness in Chronic Hemodialysis Patients: A Multicenter Randomized Controlled Trial" Nutrients 15, no. 11: 2422. https://doi.org/10.3390/nu15112422