Dietary Intake of Pregnant Women with and without Inflammatory Bowel Disease in the United States
Abstract
:1. Introduction
2. Methods
2.1. Dietary Assessment
2.2. Dietary Quality Assessment
2.3. Statistical Methods
3. Results
3.1. Participant Characteristics
3.2. Nutrient Intake and Dietary Quality for Pregnant Women with and without IBD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barker, D.J. The fetal and infant origins of ad ult disease. BMJ 1990, 301, 1111. [Google Scholar] [CrossRef]
- Calkins, K.; Devaskar, S.U. Fetal Origins of Adult Disease. Curr. Probl. Pediatr. Adolesc. Health Care 2011, 41, 158–176. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, H.X.; Yan, H.Y.; Wu, D.M.; Ping, J. Developmental origins of inflammatory and immune diseases. Mol. Hum. Reprod. 2016, 22, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Hu, J.; Seki, A.; Eisele, C.; Nair, N.; Huang, R.; Tarassishin, L.; Jharap, B.; Cote-Daigneault, J.; Mao, Q.; et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut 2020, 69, 42–51. [Google Scholar] [CrossRef] [PubMed]
- The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [CrossRef]
- Bengtson, M.B.; Solberg, I.C.; Aamodt, G.; Jahnsen, J.; Moum, B.; Vatn, M.H. Relationships between inflammatory bowel disease and perinatal factors: Both maternal and paternal disease are related to preterm birth of offspring. Inflamm. Bowel Dis. 2010, 16, 847–855. [Google Scholar] [CrossRef]
- Cornish, J.; Tan, E.; Teare, J.; Teoh, T.G.; Rai, R.; Clark, S.K.; Tekkis, P.P. A meta-analysis on the influence of inflammatory bowel disease on pregnancy. Gut 2007, 56, 830–837. [Google Scholar] [CrossRef]
- Fonager, K.; Sørensen, H.T.; Olsen, J.; Dahlerup, J.F.; Rasmussen, S.N. Pregnancy outcome for women with Crohn’s disease: A follow-up study based on linkage between national registries. Am. J. Gastroenterol. 1998, 93, 2426–2430. [Google Scholar] [CrossRef]
- Kim, M.A.; Kim, Y.H.; Chun, J.; Lee, H.S.; Park, S.J.; Cheon, J.H.; Kim, T.I.; Kim, W.H.; Park, J.J. The Influence of Disease Activity on Pregnancy Outcomes in Women with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J. Crohn’s Colitis 2021, 15, 719–732. [Google Scholar] [CrossRef]
- Myles, I.A.; Fontecilla, N.M.; Janelsins, B.M.; Vithayathil, P.J.; Segre, J.A.; Datta, S.K. Parental dietary fat intake alters offspring microbiome and immunity. J. Immunol. 2013, 191, 3200–3209. [Google Scholar] [CrossRef]
- Hu, J.; Agrawal, M.; Tarassishin, L.; Rendon, A.P.; Picker, M.; Hillenbrand, C.; Eisele, C.; Ching, J.Y.; Wong, Y.M.; Zhan, H.; et al. 609: Differential gut microbiota in pregnant women with and without inflammatory bowel disease and their offspring in hong kong and united states: The meconium study. Gastroenterology 2022, 162, S-154. [Google Scholar] [CrossRef]
- Peter, I.; Maldonado-Contreras, A.; Eisele, C.; Frisard, C.; Simpson, S.; Nair, N.; Rendon, A.; Hawkins, K.; Cawley, C.; Debebe, A.; et al. A dietary intervention to improve the microbiome composition of pregnant women with Crohn’s disease and their offspring: The MELODY (Modulating Early Life Microbiome through Dietary Intervention in Pregnancy) trial design. Contemp. Clin. Trials Commun. 2020, 18, 100573. [Google Scholar] [CrossRef] [PubMed]
- Abu-Saad, K.; Kaufman-Shriqui, V.; Freedman, L.S.; Belmaker, I.; Fraser, D. Preconceptional diet quality is associated with birth outcomes among low socioeconomic status minority women in a high-income country. Eur. J. Nutr. 2021, 60, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Saksena, S.; Goyal, S.; Raheja, G.; Singh, V.; Akhtar, M.; Nazir, T.M.; Alrefai, W.A.; Gill, R.K.; Dudeja, P.K. Upregulation of P-glycoprotein by probiotics in intestinal epithelial cells and in the dextran sulfate sodium model of colitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G1115–G1123. [Google Scholar] [CrossRef] [PubMed]
- Balestrieri, P.; Ribolsi, M.; Guarino, M.P.L.; Emerenziani, S.; Altomare, A.; Cicala, M. Nutritional Aspects in Inflammatory Bowel Diseases. Nutrients 2020, 12, 372. [Google Scholar] [CrossRef]
- MacMaster, M.J.; Damianopoulou, S.; Thomson, C.; Talwar, D.; Stefanowicz, F.; Catchpole, A.; Gerasimidis, K.; Gaya, D.R. A prospective analysis of micronutrient status in quiescent inflammatory bowel disease. Clin. Nutr. 2021, 40, 327–331. [Google Scholar] [CrossRef]
- Myklebust-Hansen, T.; Aamodt, G.; Haugen, M.; Brantsæter, A.L.; Vatn, M.H.; Bengtson, M.B. Dietary Patterns in women with Inflammatory Bowel Disease and Risk of Adverse Pregnancy Outcomes: Results from The Norwegian Mother and Child Cohort Study (MoBa). Inflamm. Bowel Dis. 2017, 24, 12–24. [Google Scholar] [CrossRef]
- Bengtson, M.-B.; Haugen, M.; Brantsæter, A.L.; Aamodt, G.; Vatn, M.H. Intake of dairy protein during pregnancy in IBD and risk of SGA in a Norwegian population-based mother and child cohort. BMC Gastroenterol. 2020, 20, 28. [Google Scholar] [CrossRef]
- Mirpuri, J. Evidence for maternal diet-mediated effects on the offspring microbiome and immunity: Implications for public health initiatives. Pediatr. Res. 2021, 89, 301–306. [Google Scholar] [CrossRef]
- Kim, E.S.; Tarassishin, L.; Eisele, C.; Barre, A.; Nair, N.; Rendon, A.; Hawkins, K.; Debebe, A.; White, S.; Thjømøe, A.; et al. Longitudinal Changes in Fecal Calprotectin Levels Among Pregnant Women with and without Inflammatory Bowel Disease and Their Babies. Gastroenterology 2021, 160, 1118–1130.e1113. [Google Scholar] [CrossRef]
- Alsharairi, N.A. The Therapeutic Role of Short-Chain Fatty Acids Mediated Very Low-Calorie Ketogenic Diet-Gut Microbiota Relationships in Paediatric Inflammatory Bowel Diseases. Nutrients 2022, 14, 4113. [Google Scholar] [PubMed]
- Svolos, V.; Gkikas, K.; Gerasimidis, K. Diet and gut microbiota manipulation for the management of Crohn’s disease and ulcerative colitis. Proc. Nutr. Soc. 2021, 80, 409–423. [Google Scholar] [CrossRef]
- Maldonado-Contreras, A. Food as Treatment of Inflammatory Bowel Diseases. Infect. Immun. 2022, 90, e0058321. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Sandler, R.S.; Brotherton, C.; Brensinger, C.; Li, H.; Kappelman, M.D.; Daniel, S.G.; Bittinger, K.; Albenberg, L.; Valentine, J.F.; et al. A Randomized Trial Comparing the Specific Carbohydrate Diet to a Mediterranean Diet in Adults with Crohn’s Disease. Gastroenterology 2021, 161, 837–852.e9. [Google Scholar] [CrossRef] [PubMed]
- Popa, S.L.; Pop, C.; Dumitrascu, D.L. Diet Advice for Crohn’s Disease: FODMAP and Beyond. Nutrients 2020, 12, 3751. [Google Scholar] [CrossRef]
- Pregnancy and Breastfeeding|MyPlate. Available online: https://www.myplate.gov/life-stages/pregnancy-and-breastfeeding (accessed on 20 March 2023).
- Nutrition During Pregnancy. Available online: https://www.acog.org/en/womens-health/faqs/nutrition-during-pregnancy (accessed on 29 March 2023).
- Whitaker, K.M.; Wilcox, S.; Liu, J.; Blair, S.N.; Pate, R.R. Provider Advice and Women’s Intentions to Meet Weight Gain, Physical Activity, and Nutrition Guidelines During Pregnancy. Matern. Child Health J. 2016, 20, 2309–2317. [Google Scholar] [CrossRef]
- Mahadevan, U.; Robinson, C.; Bernasko, N.; Boland, B.; Chambers, C.; Dubinsky, M.; Friedman, S.; Kane, S.; Manthey, J.; Sauberan, J.; et al. Inflammatory Bowel Disease in Pregnancy Clinical Care Pathway: A Report From the American Gastroenterological Association IBD Parenthood Project Working Group. Gastroenterology 2019, 156, 1508–1524. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; U.S. Department of Agriculture and U.S. Department of Health and Human Services: Washington, DC, USA, 2020.
- Mercado, A.; Marquez, B.; Abrams, B.; Phipps, M.G.; Wing, R.R.; Phelan, S. Where Do Women Get Advice About Weight, Eating, and Physical Activity During Pregnancy? J. Women’s Health 2017, 26, 951–956. [Google Scholar] [CrossRef]
- Sauder, K.A.; Couzens, G.L.; Bailey, R.L.; Hockett, C.W.; Switkowski, K.M.; Lyall, K.; Kerver, J.M.; Dabelea, D.; Maldonado, L.E.; O’Connor, T.G.; et al. Selecting a dietary supplement with appropriate dosing for 6 key nutrients in pregnancy. Am. J. Clin. Nutr. 2023, 117, 823–829. [Google Scholar] [CrossRef]
- Olendzki, B.; Procter-Gray, E.; Magee, M.F.; Youssef, G.; Kane, K.; Churchill, L.; Ockene, J.; Li, W. Racial Differences in Misclassification of Healthy Eating Based on Food Frequency Questionnaire and 24-H Dietary Recalls. J. Nutr. Health Aging 2017, 21, 787–798. [Google Scholar] [CrossRef]
- Ma, Y.; Olendzki, B.C.; Pagoto, S.L.; Hurley, T.G.; Magner, R.P.; Ockene, I.S.; Schneider, K.L.; Merriam, P.A.; Hébert, J.R. Number of 24-hour diet recalls needed to estimate energy intake. Ann. Epidemiol. 2009, 19, 553–559. [Google Scholar] [CrossRef]
- Bogle, M.; Stuff, J.; Davis, L.; Forrester, I.; Strickland, E.; Casey, P.H.; Ryan, D.; Champagne, C.; McGee, B.; Mellad, K.; et al. Validity of a Telephone-Administered 24-Hour Dietary Recall in Telephone and Non-Telephone Households in the Rural Lower Mississippi Delta Region. J. Am. Diet. Assoc. 2001, 101, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Gersovitz, M.; Madden, J.P.; Smiciklas-Wright, H. Validity of the 24-hr. dietary recall and seven-day record for group comparisons. J. Am. Diet. Assoc. 1978, 73, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Schatzkin, A.; Kipnis, V.; Carroll, R.J.; Midthune, D.; Subar, A.F.; Bingham, S.; Schoeller, D.A.; Troiano, R.P.; Freedman, L.S. A comparison of a food frequency questionnaire with a 24-hour recall for use in an epidemiological cohort study: Results from the biomarker-based Observing Protein and Energy Nutrition (OPEN) study. Int. J. Epidemiol. 2003, 32, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Casey, P.H.; Goolsby, S.L.P.; Lensing, S.Y.; Perloff, B.P.; Bogle, M.L. The Use of Telephone Interview Methodology to Obtain 24-hour Dietary Recalls. J. Am. Diet. Assoc. 1999, 99, 1406–1411. [Google Scholar] [CrossRef]
- Varraso, R.; Chiuve, S.E.; Fung, T.T.; Barr, R.G.; Hu, F.B.; Willett, W.C.; Camargo, C.A. Alternate Healthy Eating Index 2010 and risk of chronic obstructive pulmonary disease among US women and men: Prospective study. BMJ 2015, 350, h286. [Google Scholar] [CrossRef]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.A.; Willett, W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [CrossRef]
- Bernstein, C.N.; Burchill, C.; Targownik, L.E.; Singh, H.; Roos, L.L. Events within the First Year of Life, but Not the Neonatal Period, Affect Risk for Later Development of Inflammatory Bowel Diseases. Gastroenterology 2019, 156, 2190–2197.e2110. [Google Scholar] [CrossRef]
- Mijatovic-Vukas, J.; Capling, L.; Cheng, S.; Stamatakis, E.; Louie, J.; Cheung, N.W.; Markovic, T.; Ross, G.; Senior, A.; Brand-Miller, J.C.; et al. Associations of Diet and Physical Activity with Risk for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 698. [Google Scholar] [CrossRef]
- Olendzki, B.; Bucci, V.; Cawley, C.; Maserati, R.; McManus, M.; Olednzki, E.; Madziar, C.; Chiang, D.; Ward, D.V.; Pellish, R.; et al. Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study. Gut Microbes 2022, 14, 2046244. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef]
- Shan, Z.; Li, Y.; Baden, M.Y.; Bhupathiraju, S.N.; Wang, D.D.; Sun, Q.; Rexrode, K.M.; Rimm, E.B.; Qi, L.; Willett, W.C.; et al. Association Between Healthy Eating Patterns and Risk of Cardiovascular Disease. JAMA Intern. Med. 2020, 180, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Weisshof, R.; Chermesh, I. Micronutrient deficiencies in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.; Ross, V.; Mahadevan, U. Micronutrient Deficiencies in Inflammatory Bowel Disease: From A to Zinc. Inflamm. Bowel Dis. 2012, 18, 1961–1981. [Google Scholar] [CrossRef] [PubMed]
- Magavi, P.R.; Beeken, L.A.; Matro, R.; Ally, M.; Ferrari, M.J.; Konijeti, G.G. Incorporating Nutrition-Based Strategies into IBD Treatment. Curr. Gastroenterol. Rep. 2022, 24, 183–190. [Google Scholar] [CrossRef]
- Massironi, S.; Viganò, C.; Palermo, A.; Pirola, L.; Mulinacci, G.; Allocca, M.; Peyrin-Biroulet, L.; Danese, S. Inflammation and malnutrition in inflammatory bowel disease. Lancet Gastroenterol. Hepatol. 2023, 8, 579–590. [Google Scholar] [CrossRef]
- Li, X.; Hu, Y.; Shi, X.; Zhu, X.; Liu, F. Prevalence and relevant factors of micronutrient deficiencies in hospitalized patients with inflammatory bowel disease. Nutrition 2022, 99–100, 111671. [Google Scholar] [CrossRef]
- Kilby, K.; Mathias, H.; Boisvenue, L.; Heisler, C.; Jones, J.L. Micronutrient Absorption and Related Outcomes in People with Inflammatory Bowel Disease: A Review. Nutrients 2019, 11, 1388. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, D.; Mao, X.; Xia, Y.; Baker, P.N.; Zhang, H. Maternal Dietary Patterns and Pregnancy Outcome. Nutrients 2016, 8, 351. [Google Scholar] [CrossRef]
- Aparicio, E.; Jardí, C.; Bedmar, C.; Pallejà, M.; Basora, J.; Arija, V.; ECLIPSES Study Group. Nutrient Intake during Pregnancy and Post-Partum: ECLIPSES Study. Nutrients 2020, 12, 1325. [Google Scholar] [CrossRef]
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.; Stephanou, A.; Rayman, M.P. Dietary factors that affect the risk of pre-eclampsia. BMJ Nutr. Prev. Health 2022, 5, 118–133. [Google Scholar] [CrossRef]
- Pretorius, R.A.; Palmer, D.J. High-Fiber Diet during Pregnancy Characterized by More Fruit and Vegetable Consumption. Nutrients 2020, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Bengtson, M.B.; Aamodt, G.; Mahadevan, U.; Vatn, M.H. Inadequate Gestational Weight Gain, the Hidden Link Between Maternal IBD and Adverse Pregnancy Outcomes: Results from the Norwegian Mother and Child Cohort Study. Inflamm. Bowel Dis. 2017, 23, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega 2022, 7, 20441–20456. [Google Scholar] [CrossRef]
- Petre, A. 21 Vegetarian Foods That Are Loaded with Iron. Available online: https://www.healthline.com/nutrition/iron-rich-plant-foods (accessed on 16 March 2023).
- Gernand, A.D.; Schulze, K.J.; Stewart, C.P.; West, K.P., Jr.; Christian, P. Micronutrient deficiencies in pregnancy worldwide: Health effects and prevention. Nat. Rev. Endocrinol. 2016, 12, 274–289. [Google Scholar] [CrossRef]
- Loveikyte, R.; Boer, M.; van der Meulen, C.N.; ter Steege, R.W.F.; Tack, G.; Kuyvenhoven, J.; Jharap, B.; Vu, M.K.; Vogelaar, L.; West, R.L.; et al. Anemia and Iron Deficiency in Outpatients with Inflammatory Bowel Disease: Ubiquitous Yet Suboptimally Managed. J. Clin. Med. 2022, 11, 6843. [Google Scholar] [CrossRef]
- Sharaf, A.A.; Nguyen, G.C. Predictors of Cesarean Delivery in Pregnant Women with Inflammatory Bowel Disease. J. Can. Assoc. Gastroenterol. 2018, 1, 76–81. [Google Scholar] [CrossRef]
- Leung, K.K.; Tandon, P.; Govardhanam, V.; Maxwell, C.; Huang, V. The Risk of Adverse Neonatal Outcomes with Maternal Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. Inflamm. Bowel Dis. 2020, 27, 550–562. [Google Scholar] [CrossRef]
- Mahadevan, U.; Sandborn, W.J.; Li, D.K.; Hakimian, S.; Kane, S.; Corley, D.A. Pregnancy outcomes in women with inflammatory bowel disease: A large community-based study from Northern California. Gastroenterology 2007, 133, 1106–1112. [Google Scholar] [CrossRef]
- Bailey, R.L.; Pac, S.G.; Fulgoni, V.L., III; Reidy, K.C.; Catalano, P.M. Estimation of Total Usual Dietary Intakes of Pregnant Women in the United States. JAMA Netw. Open 2019, 2, e195967. [Google Scholar] [CrossRef]
- Nørgård, B.; Hundborg, H.H.; Jacobsen, B.A.; Nielsen, G.L.; Fonager, K. Disease activity in pregnant women with Crohn’s disease and birth outcomes: A regional Danish cohort study. Am. J. Gastroenterol. 2007, 102, 1947–1954. [Google Scholar] [CrossRef] [PubMed]
- Kornfeld, D.; Cnattingius, S.; Ekbom, A. Pregnancy outcomes in women with inflammatory bowel disease--a population-based cohort study. Am. J. Obs. Gynecol. 1997, 177, 942–946. [Google Scholar] [CrossRef]
- O’Toole, A.; Nwanne, O.; Tomlinson, T. Inflammatory Bowel Disease Increases Risk of Adverse Pregnancy Outcomes: A Meta-Analysis. Dig. Dis. Sci. 2015, 60, 2750–2761. [Google Scholar] [CrossRef]
- Tandon, P.; Diong, C.; Chong, R.Y.; Nguyen, G.C. Regional Variation in Pregnancy Outcomes amongst Women in Inflammatory Bowel Disease: A Population-Based Cohort Study. Can. J. Gastroenterol. Hepatol. 2021, 2021, 3037128. [Google Scholar] [CrossRef] [PubMed]
- Reijonen, J.K.; Tihtonen, K.M.H.; Luukkaala, T.H.; Uotila, J.T. Association of dietary fiber, liquid intake and lifestyle characteristics with gastrointestinal symptoms and pregnancy outcome. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2022, 16, 100168. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, T.L.; Mande, A.; Barbour, L.A. Nutrition therapy within and beyond gestational diabetes. Diabetes Res. Clin. Pract. 2018, 145, 39–50. [Google Scholar] [CrossRef]
- Zupo, R.; Sila, A.; Castellana, F.; Bringiotti, R.; Curlo, M.; De Pergola, G.; De Nucci, S.; Giannelli, G.; Mastronardi, M.; Sardone, R. Prevalence of Zinc Deficiency in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4052. [Google Scholar] [CrossRef]
- Marshall, N.E.; Abrams, B.; Barbour, L.A.; Catalano, P.; Christian, P.; Friedman, J.E.; Hay, W.W., Jr.; Hernandez, T.L.; Krebs, N.F.; Oken, E.; et al. The importance of nutrition in pregnancy and lactation: Lifelong consequences. Am. J. Obs. Gynecol. 2022, 226, 607–632. [Google Scholar] [CrossRef]
- Levine, A.; Rhodes, J.M.; Lindsay, J.O.; Abreu, M.T.; Kamm, M.A.; Gibson, P.R.; Gasche, C.; Silverberg, M.S.; Mahadevan, U.; Boneh, R.S.; et al. Dietary Guidance From the International Organization for the Study of Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2020, 18, 1381–1392. [Google Scholar] [CrossRef]
- Vieujean, S.; De Vos, M.; D’Amico, F.; Paridaens, K.; Daftary, G.; Dudkowiak, R.; Peyrin-Biroulet, L.; Danese, S. Inflammatory bowel disease meets fertility: A physician and patient survey. Dig. Liver Dis. 2023. [Google Scholar] [CrossRef]
- Piirainen, T.; Isolauri, E.; Lagstrom, H.; Laitinen, K. Impact of dietary counselling on nutrient intake during pregnancy: A prospective cohort study. Br. J. Nutr. 2006, 96, 1095–1104. [Google Scholar] [CrossRef]
- Kominiarek, M.A.; Rajan, P. Nutrition Recommendations in Pregnancy and Lactation. Med. Clin. N. Am. 2016, 100, 1199–1215. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.T.; Phelan, S.T. Nutrition during pregnancy. Obs. Gynecol. Clin. N. Am. 2008, 35, 369–383. [Google Scholar] [CrossRef]
- Ramakrishnan, U.; Imhoff-Kunsch, B.; Martorell, R. Maternal nutrition interventions to improve maternal, newborn, and child health outcomes. Nestle Nutr. Inst. Workshop Ser. 2014, 78, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Kashkooli, S.B.; Andrews, J.M.; Roberts, M.B.; Selinger, C.P.; Leong, R.W. Inflammatory bowel disease-specific pregnancy knowledge of gastroenterologists against general practitioners and obstetricians. United Eur. Gastroenterol. J. 2015, 3, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Girard, A.W.; Olude, O. Nutrition education and counselling provided during pregnancy: Effects on maternal, neonatal and child health outcomes. Paediatr. Perinat Epidemiol. 2012, 26 (Suppl. 1), 191–204. [Google Scholar] [CrossRef]
IBD n = 88 | Healthy Controls n = 82 | Total | p-Value | |
---|---|---|---|---|
n (%) | n (%) | n (%) | ||
Age—mean (SD) | 33.7 (4.4) | 34.4 (4.4) | 34.0 (4.4) | 0.32 |
Race | 0.26 | |||
White | 82 (94.3%) | 70 (87.5%) | 152 (91.0%) | |
Black | 2 (2.3%) | 1 (1.3%) | 3 (1.8%) | |
Asian | 1 (1.1%) | 4 (5%) | 5 (3.0%) | |
Other | 2 (2.3%) | 5 (6.3%) | 7 (4.2%) | |
Hispanic or Latino descent | 0.29 | |||
No | 81 (93.1%) | 70 (87.5%) | 151 (90.4%) | |
Yes | 6 (6.9%) | 10 (12.5%) | 16 (9.6%) | |
Jewish | <0.001 * | |||
No | 71 (88.8%) | 49 (56.3%) | 120 (71.9%) | |
Yes | 9 (11.3%) | 38 (43.7%) | 47 (28.1%) | |
Marital status | 0.85 | |||
Married | 73 (91.3%) | 82 (94.3%) | 155 (92.8%) | |
Single | 3 (3.8%) | 2 (2.3%) | 5 (3.0%) | |
Living with partner | 3 (3.8%) | 3 (3.4%) | 6 (3.6%) | |
Other | 1 (1.3%) | 0 (0.0%) | 1 (0.6%) | |
Education | 0.38 | |||
High school graduate | 0 (0.0%) | 4 (4.6%) | 4 (2.4%) | |
Some college | 5 (6.3%) | 2 (2.3%) | 7 (4.2%) | |
Associate’s degree | 3 (3.8%) | 4 (4.6%) | 7 (4.2%) | |
Bachelor’s degree | 24 (30.4%) | 27 (31.0%) | 51 (30.7%) | |
Graduate or professional degree | 46 (58.2%) | 49 (56.3%) | 95 (57.2%) | |
Other | 1 (1.3%) | 1 (1.1%) | 2 (1.2%) | |
Work status | 0.87 | |||
Employed full-time | 55 (68.8%) | 63 (72.4%) | 118 (70.7%) | |
Employed part-time | 9 (11.3%) | 10 (11.5%) | 19 (11.4%) | |
Homemaker (not looking for a job) | 10 (12.5%) | 6 (6.9%) | 16 (9.6%) | |
Disabled (unable to work) | 1 (1.3%) | 2 (2.3%) | 3 (1.8%) | |
Unemployed | 3 (3.8%) | 4 (4.6%) | 7 (4.2%) | |
Student | 2 (2.5%) | 2 (2.3%) | 4 (2.4%) | |
Type of work | 0.02 * | |||
Skill or craft | 3 (7.5%) | 6 (16.7%) | 9 (11.8%) | |
Scientific technical work | 11 (27.5%) | 1 (2.8%) | 12 (15.8%) | |
Service work | 10 (25%) | 10 (27.8%) | 20 (26.3%) | |
Health professional | 16 (40%) | 19 (52.8%) | 35 (46.1%) | |
Total annual household income | 0.77 | |||
less than USD 20,000 | 2 (2.8%) | 0 (0.0%) | 2 (1.5%) | |
USD 20,000–USD 39,000 | 2 (2.8%) | 1 (1.7%) | 3 (2.3%) | |
USD 40,000–USD 59,000 | 4 (5.6%) | 1 (1.7%) | 5 (3.8%) | |
USD 60,000–USD 79,000 | 5 (7.0%) | 5 (8.5%) | 10 (7.7%) | |
USD 80,000–USD 99,000 | 9 (12.7%) | 8 (13.6%) | 17 (13.1%) | |
USD 100,000 or more | 49 (69.0%) | 44 (74.6%) | 93 (71.5%) | |
Smoking status | 0.45 | |||
Non-smoker | 70 (87.5%) | 79 (91.9%) | 149 (89.8%) | |
Ex-smoker | 10 (12.5%) | 7 (8.1%) | 17 (10.2%) | |
Intake of prenatal vitamins | 0.58 | |||
No | 8 (10.3%) | 6 (7.1%) | 14 (8.6%) | |
Yes | 70 (89.7%) | 79 (92.9%) | 149 (91.4%) | |
IBD medication | ||||
Aminosalicylates | 21 (23.8%) | NA | ||
Anti-TNF | 28 (31.8%) | NA | ||
Immunomodulators | 4 (4.5%) | NA | ||
Oral corticosteroids | 6 (6.8%) | NA | ||
Ustekinumab | 16 (18.1%) | NA | ||
Vedolizumab | 9 (10.2) | NA |
IBD (n = 88) | Healthy Controls (n = 82) | ||||
---|---|---|---|---|---|
Nutrients | Mean | SD | Mean | SD | p-Value |
Energy (kcal) | 1994.6 | 461.1 | 2077.8 | 524.9 | 0.27 |
% Calories from Fat | 37.8 | 6.8 | 36.3 | 6.9 | 0.16 |
% Calories from Carbohydrate | 46.1 | 8.2 | 46.9 | 8.3 | 0.52 |
% Calories from Protein | 16 | 3.5 | 16.56 | 4.6 | 0.36 |
% Calories from Alcohol | 0.04 | 0.06 | 0.2 | 0.5 | 0.77 |
% Calories from SFA | 12.5 | 3.3 | 12.8 | 3.2 | 0.57 |
% Calories from MUFA | 14.0 | 3.6 | 12.8 | 3.1 | 0.03 * |
% Calories from PUFA | 8.0 | 2.2 | 7.5 | 2.0 | 0.14 |
Polyunsaturated to Saturated Fat Ratio | 0.7 | 0.3 | 0.7 | 0.3 | 0.11 |
Animal Protein (g) | 47.3 | 19.11 | 54.4 | 23.6 | 0.03 * |
Vegetable Protein (g) | 31.2 | 12.7 | 30.5 | 8.6 | 0.70 |
Total Dietary Fiber (g) | 22.7 | 10.3 | 24.2 | 7.7 | 0.31 |
Soluble Dietary Fiber (g) | 6.6 | 2.9 | 6.9 | 2.2 | 0.54 |
Insoluble Dietary Fiber (g) | 16.0 | 8.0 | 17.2 | 6.1 | 0.27 |
Total Sugars (g) | 97.3 | 37.8 | 102.0 | 42.7 | 0.44 |
Added Sugars (by Total Sugars) (g) | 51.5 | 29.8 | 49.8 | 31.0 | 0.72 |
Glycemic Index (glucose reference) | 58.4 | 4.6 | 57.9 | 4.1 | 0.45 |
Glycemic Load (glucose reference) | 126.2 | 44.4 | 131.3 | 45.7 | 0.46 |
Total Grains (oz equivalents) | 7.0 | 3.2 | 7.6 | 3.1 | 0.29 |
Whole Grains (oz equivalents) | 1.6 | 1.3 | 2.1 | 1.6 | 0.03 * |
Refined Grains (oz equivalents) | 5.4 | 2.9 | 5.4 | 2.9 | 0.97 |
Lactose (g) | 9.2 | 7.4 | 13.6 | 11.2 | 0.01 |
Sucrose (g) | 44.5 | 21.4 | 45.1 | 23.7 | 0.87 |
Starch (g) | 100.2 | 40.8 | 106.5 | 37.5 | 0.30 |
Total Folate (mcg) | 431.0 | 153.7 | 460.4 | 143.0 | 0.20 |
Dietary Folate Equivalents (mcg) | 537.0 | 217.2 | 583.5 | 218.6 | 0.17 |
Choline (mg) | 359.7 | 145.5 | 354.0 | 128.5 | 0.79 |
Vitamin B-12 (cobalamin) (mcg) | 4.1 | 2.3 | 4.3 | 2.0 | 0.66 |
Calcium (mg) | 1033.9 | 354.3 | 1153.4 | 474.6 | 0.06 |
Magnesium (mg) | 335.3 | 120.0 | 338.7 | 94.3 | 0.84 |
Iron (mg) | 14.6 | 5.5 | 16.0 | 5.6 | 0.10 |
Zinc (mg) | 10.5 | 3.8 | 11.8 | 3.8 | 0.02* |
Copper (mg) | 1.5 | 0.7 | 1.5 | 0.5 | 0.73 |
Selenium (mcg) | 111.9 | 33.8 | 117.4 | 40.8 | 0.34 |
Sodium (mcg) | 2984.9 | 715.2 | 3226.5 | 1112.9 | 0.09 |
Potassium (mg) | 2568.4 | 915.6 | 2808.1 | 803.5 | 0.07 |
Omega-3 Fatty Acids (g) | 1.78 | 1.23 | 1.8 | 0.87 | 0.73 |
PUFA 18:3 n-3 (alpha-linolenic acid [ALA]) (g) | 1.8 | 1.78 | 1.8 | 0.87 | 0.39 |
PUFA 20:5 (eicosapentaenoic acid (EPA)) (g) | 0.1 | 0.06 | 0.03 | 0.03 | 0.03 * |
PUFA 22:6 (docosahexaenoic acid [DHA)) (g) | 0.1 | 0.14 | 0.1 | 0.07 | 0.01 * |
Water (g) | 3126.9 | 987.1 | 3076.4 | 873.0 | 0.73 |
IBD (n = 88) | Healthy Controls (n = 82) | |||||
---|---|---|---|---|---|---|
Guideline 1 | Goal | (%) | SD | (%) | SD | p-Value * |
Meets guideline for protein | 71 g/day | 66.0 | 0.5 | 66.0 | 0.5 | 0.99 |
Meets the guideline for total fat | 20% to 35% calories | 38.0 | 0.5 | 45.0 | 0.5 | 0.31 |
Meets the guideline for saturated fat | <7% of daily calories | 1.0 | 0.1 | 1.0 | 0.1 | 0.96 |
Meets the guideline for EPA/DHA | 1750 mg/3 days avg, or 583.33/day | 15.0 | 0.4 | 5.0 | 0.2 | 0.03 * |
Meets the guideline for carbohydrates | 45 to 65% of caloric intake | 58.0 | 0.5 | 65.0 | 0.5 | 0.37 |
Meets guideline for vitamin A | 770 mcg/day from food | 26.0 | 0.4 | 22.0 | 0.4 | 0.52 |
Meets the guideline for vitamin E | 15 mg/day | 26.0 | 0.4 | 20.0 | 0.4 | 0.31 |
Meets the guideline for vitamin C | 85 mg/day | 50.0 | 0.5 | 57.0 | 0.5 | 0.34 |
Meets the guideline for vitamin K | 90 mcg/day | 70.0 | 0.5 | 71.0 | 0.5 | 0.97 |
Meets the guideline for folate | 600 mcg/day | 13.0 | 0.3 | 15.0 | 0.4 | 0.68 |
Meets the guideline for iron | 27 mg/day | 3.0 | 0.2 | 2.0 | 0.2 | 0.71 |
Meets the guideline for calcium | 1000 mg/day | 48.0 | 0.5 | 60.0 | 0.5 | 0.12 |
Meets the guideline for choline | 450 mg/day | 23.0 | 0.4 | 21.0 | 0.4 | 0.75 |
Meets the guideline for caffeine | <200 mg/day | 94.0 | 0.2 | 96.0 | 0.2 | 0.53 |
Meets the guideline for thiamine | 1.4 mg/day | 63.0 | 0.5 | 80.0 | 0.4 | 0.01 * |
Meets the guideline for niacin | 18 mg/day | 70.0 | 0.5 | 79.0 | 0.4 | 0.19 |
Meets the recommendation for B6 | 1.9 mg/day | 38.0 | 0.5 | 56.0 | 0.5 | 0.02 * |
Meets the recommendation for B12 | 2.6 mcg/day | 72.0 | 0.5 | 83.0 | 0.4 | 0.08 |
Meets the recommendation for zinc | 11 mg/day | 39.0 | 0.5 | 54.0 | 0.5 | 0.05 * |
Meets the guideline for magnesium | 360 mg/day | 38.0 | 0.5 | 35.0 | 0.5 | 0.77 |
Meets the guideline for copper | 1000 mcg/day | 84.0 | 0.4 | 89.0 | 0.3 | 0.35 |
Meets the guideline for total fiber | >28 g/day | 33.0 | 0.5 | 44.0 | 0.5 | 0.14 |
Meets the recommendation for water | 3000 g/day, or 101.44 oz | 49.0 | 0.5 | 48.0 | 0.5 | 0.87 |
Meets the recommendation of taking a prenatal vitamin (n = 85 IBD, n = 78 controls) | Yes | 93.0 | 0.3 | 90.0 | 0.3 | 0.47 |
Alternative Healthy Eating Index/HEI Items | Mean | SD | Mean | SD | ||
AHEI-10 score (0 = 110) | 0–110 | 67.9 | 12.3 | 66.5 | 12.0 | 0.45 |
Total fruit servings in cup equivalents | 3 | 1.1 | 1.2 | 1.1 | 1.0 | 0.88 |
Total vegetable servings in cup equivalents | 5 | 1.8 | 1.2 | 2 | 1.0 | 0.26 |
IBD (n = 68) | Healthy Controls (n = 65) | |||||
---|---|---|---|---|---|---|
Variable | Number of Servings for Optimal Score | Mean Servings | SD | Mean | SD | p-Value |
Prebiotic score 1 | ≥3 | 6.3 | 5.4 | 4.7 | 10.2 | <0.0001 * |
Probiotics score 2 | ≥2 | 1.6 | 1.8 | 1.6 | 3.4 | 0.80 |
Adverse foods score 3 | 0 | 7.1 | 4.5 | 15.7 | 38.0 | <0.0001 * |
Vegetable score | 5 | 3.6 | 3.2 | 4.5 | 13.0 | 0.6 |
Fruit score | 3 | 2.1 | 1.9 | 2.2 | 2.2 | 0.92 |
Nuts, seeds, and oils score | 2 | 2.0 | 2.2 | 1.8 | 2.6 | 0.89 |
Lean protein score 4 | 4 | 2.4 | 2.0 | 3.4 | 12.5 | 0.04 * |
Fiber/grains score 5 | 3 | 6.3 | 6.3 | 2.8 | 5.2 | <0.0001 * |
Probiotic dairy score 2 | 3 | 1.1 | 1.2 | 1.2 | 1.4 | 0.27 |
Non-caloric fluids score | 6.7 | 3.5 | 7.2 | 3.6 | 0.45 | |
Beneficial beverages score 6 | 6 | 1.8 | 3.7 | 6.6 | 6.8 | <0.0001 * |
Condiments score | 0.3 | 0.4 | 0.7 | 2.9 | 0.63 | |
Alcohol score | 0 | 0 | 0.4 | 3.0 | 0.47 | |
Foods with unknown effects 7 | 0.3 | 0.5 | 1.1 | 4.8 | 0.04 | |
IBD FFQ Beneficial Nutrient Score 8 | 26 | 15.6 | 5.0 | 14.0 | 4.6 | 0.04 |
IBD AID total raw score 9 | 16.4 | 12.9 | 4.6 | 24.3 | <0.0001 * | |
IBD AID total standard score 10 | 16.9 | 12.3 | 8.4 | 7.1 | <0.0001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olendzki, B.C.; Hsiao, B.-S.; Weinstein, K.; Chen, R.; Frisard, C.; Madziar, C.; Picker, M.; Pauplis, C.; Maldonado-Contreras, A.; Peter, I. Dietary Intake of Pregnant Women with and without Inflammatory Bowel Disease in the United States. Nutrients 2023, 15, 2464. https://doi.org/10.3390/nu15112464
Olendzki BC, Hsiao B-S, Weinstein K, Chen R, Frisard C, Madziar C, Picker M, Pauplis C, Maldonado-Contreras A, Peter I. Dietary Intake of Pregnant Women with and without Inflammatory Bowel Disease in the United States. Nutrients. 2023; 15(11):2464. https://doi.org/10.3390/nu15112464
Chicago/Turabian StyleOlendzki, Barbara C., Bi-Sek Hsiao, Kaitlyn Weinstein, Rosemary Chen, Christine Frisard, Camilla Madziar, Mellissa Picker, Connor Pauplis, Ana Maldonado-Contreras, and Inga Peter. 2023. "Dietary Intake of Pregnant Women with and without Inflammatory Bowel Disease in the United States" Nutrients 15, no. 11: 2464. https://doi.org/10.3390/nu15112464
APA StyleOlendzki, B. C., Hsiao, B.-S., Weinstein, K., Chen, R., Frisard, C., Madziar, C., Picker, M., Pauplis, C., Maldonado-Contreras, A., & Peter, I. (2023). Dietary Intake of Pregnant Women with and without Inflammatory Bowel Disease in the United States. Nutrients, 15(11), 2464. https://doi.org/10.3390/nu15112464