Associations between Dietary Patterns and Metabolic Syndrome: Findings of the Korean National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessments
2.3. Definition of Metabolic Syndrome
2.4. Other Variables
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants According to Dietary Patterns
3.2. Percentages of Participants with Metabolic Syndrome According to Dietary Pattern
3.3. Associations between Metabolic Syndrome Components and Dietary Patterns
3.4. Percentage of Participants with MetS in Each Diet Group According to the Number of Metabolic Syndrome Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MetS | Metabolic syndrome |
HCHO | high-carbohydrate |
HF | high-fat |
HP | high-protein |
HDL-C | high-density lipoprotein cholesterol |
CVD | cardiovascular disease |
BMI | body mass index |
KNHANES | Korean National Health and Nutrition Examination Survey |
IRB | Institutional Review Board |
NCEP-ATP III | National Cholesterol Education Program Adult Treatment Panel III |
OR | odds ratio |
CI | confidence interval |
References
- Wilson, P.W.; D’Agostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112, 3066–3072. [Google Scholar] [CrossRef]
- Ford, E.S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: A summary of the evidence. Diabetes Care 2005, 28, 1769–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The Metabolic Syndrome and Cardiovascular Risk: A Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahed, G.; Aoun, L.; Zerdan, M.B.; Allam, S.; Zerdan, M.B.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Seuring, T.; Archangelidi, O.; Suhrcke, M. The Economic Costs of Type 2 Diabetes: A Global Systematic Review. Pharmacoeconomics 2015, 33, 811–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gheorghe, A.; Griffiths, U.; Murphy, A.; Legido-Quigley, H.; Lamptey, P.; Perel, P. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: A systematic review. BMC Public Health 2018, 18, 975. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wei, X.; Mao, L.; Wang, X.; Huang, J.; Yang, L.; Dong, W.; Ma, Y.; Ding, X.; Peng, Y. Prevalence and risk factors of diabetes mellitus: A community-based sectional survey. Ann. Palliat. Med. 2021, 10, 11939–11949. [Google Scholar] [CrossRef]
- Sangsefidi, Z.S.; Lorzadeh, E.; Nadjarzadeh, A.; Mirzaei, M.; Hosseinzadeh, M. The association between low-carbohydrate diet score and metabolic syndrome among Iranian adults. Public Health Nutr. 2021, 24, 6299–6308. [Google Scholar] [CrossRef]
- Lee, S.E.; Han, K.; Kang, Y.M.; Kim, S.-O.; Cho, Y.K.; Ko, K.S.; Park, J.-Y.; Lee, K.-U.; Koh, E.H. Trends in the prevalence of metabolic syndrome and its components in South Korea: Findings from the Korean National Health Insurance Service Database (2009–2013). PLoS ONE 2018, 13, e0194490. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M. Metabolic syndrome pandemic. Arter. Thromb. Vasc. Biol. 2008, 28, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Shin, H.; Song, J.H.; Kwak, S.H.; Kang, S.M.; Won Yoon, J.; Choi, S.H.; Cho, S.I.; Park, K.S.; Lee, H.K.; et al. Increasing prevalence of metabolic syndrome in Korea: The Korean National Health and Nutrition Examination Survey for 1998–2007. Diabetes Care 2011, 34, 1323–1328. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-H.; Lee, S.-H.; Shin, K.-S.; Son, D.-Y.; Kim, S.-H. The Change of Metabolic Syndrome Prevalence and Its Risk Factors in Korean Adults for Decade: Korea National Health and Nutrition Examination Survey for 2008–2017. Korean J. Fam. Pract. 2020, 10, 44–52. [Google Scholar] [CrossRef]
- Poyrazoglu, S.; Bas, F.; Darendeliler, F. Metabolic syndrome in young people. Curr. Opin Endocrinol. Diabetes Obes. 2014, 21, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S. The metabolic syndrome in children and adolescents? An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef] [Green Version]
- de Ferranti, S.D.; Gauvreau, K.; Ludwig, D.S.; Neufeld, E.J.; Newburger, J.W.; Rifai, N. Prevalence of the metabolic syndrome in American adolescents: Findings from the third national health and nutrition examination survey. Circulation 2004, 110, 2494–2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elder, S.J.; Lichtenstein, A.H.; Pittas, A.G.; Roberts, S.B.; Fuss, P.J.; Greenberg, A.S.; McCrory, M.A.; Bouchard, T.J., Jr.; Saltzman, E.; Neale, M.C. Genetic and environmental influences on factors associated with cardiovascular disease and the metabolic syndrome. J. Lipid Res. 2009, 50, 1917–1926. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bovolini, A.; Garcia, J.; Andrade, M.A.; Duarte, J.A. Metabolic Syndrome Pathophysiology and Pre-disposing Factors. Int. J. Sports Med. 2021, 42, 199–214. [Google Scholar] [PubMed]
- Park, H.; Kityo, A.; Kim, Y.; Lee, S.A. Macronutrient Intake in Adults Diagnosed with Metabolic Syndrome: Using the Health Examinee (HEXA) Cohort. Nutrients 2021, 13, 4457. [Google Scholar] [CrossRef]
- Cho, N.H.; Cho, A.K.; Kim, H.K.; Kim, J.B.; Lee, K.E.; Kim, S.S.; Kim, Y.-J.; Jang, H.C.; Baik, I. Carbohydrate Composition Associated with the 2-Year Incidence of Metabolic Syndrome in Korean Adults. Clin. Nutr. Res. 2017, 6, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Ahn, J.; Kim, N.-S.; Lee, B.-K. High carbohydrate diets are positively associated with the risk of metabolic syndrome irrespective to fatty acid composition in women: The KNHANES 2007–2014. Int. J. Food Sci. Nutr. 2016, 68, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Chung, M.Y.; Choi, H.K.; Park, J.H.; Hwang, J.T.; Joung, H. Animal Protein Intake Is Positively Associated with Metabolic Syndrome Risk Factors in Middle-Aged Korean Men. Nutrients 2020, 12, 3415. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.; Couture, P.; Lamarche, B. Diet Quality, Saturated Fat and Metabolic Syndrome. Nutrients 2020, 12, 3232. [Google Scholar] [CrossRef] [PubMed]
- Julibert, A.; Del Mar Bibiloni, M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Adams-Huet, B.; Garg, A. Effect of high-carbohydrate or high-cis-monounsaturated fat diets on blood pressure: A meta-analysis of intervention trials. Am. J. Clin. Nutr. 2007, 85, 1251–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.; Song, S.; Kim, J.; Chung, J.; Yoon, J.; Paik, H.-Y.; Song, Y. High carbohydrate intake was inversely associated with high-density lipoprotein cholesterol among Korean adults. Nutr. Res. 2012, 32, 100–106. [Google Scholar] [CrossRef]
- Kim, K.; Yun, S.H.; Choi, B.Y.; Kim, M.K. Cross-sectional relationship between dietary carbohydrate, glycaemic index, glycaemic load and risk of the metabolic syndrome in a Korean population. Br. J. Nutr. 2008, 100, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Willems, A.E.M.; Sura-de Jong, M.; van Beek, A.P.; Nederhof, E.; van Dijk, G. Effects of macronutrient intake in obesity: A meta-analysis of low-carbohydrate and low-fat diets on markers of the metabolic syndrome. Nutr. Rev. 2021, 79, 429–444. [Google Scholar] [CrossRef]
- Kwon, Y.-J.; Lee, H.-S.; Lee, J.-W. Association of carbohydrate and fat intake with metabolic syndrome. Clin. Nutr. 2017, 37, 746–751. [Google Scholar] [CrossRef]
- Korean Centers for Disease Control and Prevention. Korea National Health and Nutrition Examination Survey. Available online: https://knhanes.kdca.go.kr/ (accessed on 23 July 2022).
- Paik, H.Y. Dietary Reference Intakes for Koreans (KDRIs). Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. 2), 416–419. [Google Scholar]
- Ministry of Health & Welfare. Dietary Reference Intakes for Koreans 2020; The Korean Nutrition Society: Sejong, Republic of Korea, 2020. [Google Scholar]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.-S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef]
- The Korea Disease Control and Prevention Agency. Alcohol Drinking. Available online: https://health.kdca.go.kr/healthinfo/biz/health/gnrlzHealthInfo/gnrlzHealthInfo/gnrlzHealthInfoView.do?cntnts_sn=5297 (accessed on 19 July 2022).
- Liu, Y.-S.; Wu, Q.-J.; Xia, Y.; Zhang, J.-Y.; Jiang, Y.-T.; Chang, Q.; Zhao, Y.-H. Carbohydrate intake and risk of metabolic syndrome: A dose–response meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1288–1298. [Google Scholar] [CrossRef]
- Shastun, S.; Chauhan, A.K.; Singh, R.B.; Singh, M.; Singh, R.P.; Itharat, A.; Halabi, G. Can functional food security decrease the epidemic of obesity and metabolic syndrome? A viewpoint. World Heart J. 2016, 8, 273–280. [Google Scholar]
- Hu, F.B.; van Dam, R.M.; Liu, S. Diet and risk of Type II diabetes: The role of types of fat and carbohydrate. Diabetologia 2001, 44, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Melanson, E.L.; Astrup, A.; Donahoo, W.T. The Relationship between Dietary Fat and Fatty Acid Intake and Body Weight, Diabetes, and the Metabolic Syndrome. Ann. Nutr. Metab. 2009, 55, 229–243. [Google Scholar] [CrossRef]
- Song, S.; Lee, J.E.; Song, W.O.; Paik, H.Y.; Song, Y. Carbohydrate intake and refined-grain consumption are associated with metabolic syndrome in the Korean adult population. J. Acad. Nutr. Diet. 2014, 114, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Nabuco, H.C.; Tomeleri, C.M.; Sugihara Junior, P.S.; Dos Reis Fernandes, R.; Cavalcante, E.F.; Antunes, M.; Burini, R.C.; Venturini, D.; Barbosa, D.S.; Silva, A.M.; et al. Lower protein and higher carbohydrate intake are related with altering metabolic syndrome components in elderly women: A cross-sectional study. Exp. Gerontol. 2018, 103, 132–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.A.; Choi, J.H. Association between Carbohydrate Intake and the Prevalence of Metabolic Syndrome in Korean Women. Nutrients 2021, 13, 3098. [Google Scholar] [CrossRef]
- Ha, K.; Kim, K.; Chun, O.K.; Joung, H.; Song, Y. Differential association of dietary carbohydrate in-take with metabolic syndrome in the US and Korean adults: Data from the 2007–2012 NHANES and KNHANES. Eur. J. Clin. Nutr. 2018, 72, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Unwin, D.J.; Tobin, S.D.; Murray, S.W.; Delon, C.; Brady, A.J. Substantial and Sustained Improvements in Blood Pressure, Weight and Lipid Profiles from a Carbohydrate Restricted Diet: An Observational Study of Insulin Resistant Patients in Primary Care. Int. J. Environ. Res. Public Health 2019, 16, 2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, J.-M.; Noworolski, S.M.; Wen, M.J.; Dyachenko, A.; Prior, J.L.; Weinberg, M.E.; Herraiz, L.A.; Tai, V.W.; Bergeron, N.; Bersot, T.P.; et al. Effect of a High-Fructose Weight-Maintaining Diet on Lipogenesis and Liver Fat. J. Clin. Endocrinol. Metab. 2015, 100, 2434–2442. [Google Scholar] [CrossRef] [Green Version]
- Myette-Côté, É.; Durrer, C.; Neudorf, H.; Bammert, T.D.; Botezelli, J.D.; Johnson, J.D.; DeSouza, C.A.; Little, J.P. The effect of a short-term low-carbohydrate, high-fat diet with or without postmeal walks on glycemic control and inflammation in type 2 diabetes: A randomized trial. Am. J. Physiol. Integr. Comp. Physiol. 2018, 315, R1210–R1219. [Google Scholar] [CrossRef] [Green Version]
- Clifton, P. Metabolic Syndrome—Role of Dietary Fat Type and Quantity. Nutrients 2019, 11, 1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Wali, J.A.; Jarzebska, N.; Raubenheimer, D.; Simpson, S.J.; Rodionov, R.N.; O’Sullivan, J.F. Cardio-Metabolic Effects of High-Fat Diets and Their Underlying Mechanisms—A Narrative Review. Nutrients 2020, 12, 1505. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.; Lee, S.; Lee, J.; Kim, J. Diets high in glycemic index and glycemic load are associated with an increased risk of metabolic syndrome among Korean women. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1154–1164. [Google Scholar] [CrossRef]
- Rivellese, A.A.; Maffettone, A.; Vessby, B.; Uusitupa, M.; Hermansen, K.; Berglund, L.; Louheranta, A.; Meyer, B.J.; Riccardi, G. Effects of dietary saturated, monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and post-prandial lipid metabolism in healthy subjects. Atherosclerosis 2003, 167, 149–158. [Google Scholar] [CrossRef]
- Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.; Witkow, S.; Greenberg, I.; Golan, R.; Fraser, D.; Bolotin, A.; Vardi, H.; et al. weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 2008, 359, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M. Comparison of Monounsaturated Fatty Acids and Carbohydrates for Lowering Plasma Cholesterol. N. Engl. J. Med. 1986, 314, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Pearson, T.A.; Wan, Y.; Hargrove, R.L.; Moriarty, K.; Fishell, V.; Etherton, T.D. High–monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 1999, 70, 1009–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, A.; Martínez-González, M.A. Olive oil consumption and reduced incidence of hypertension: The SUN study. Lipids 2004, 39, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
Total | Men | Women | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Normal Diet | HCHO Diet | HF Diet | HP Diet | p-Value | Normal Diet | HCHO Diet | HF Diet | HP Diet | p-Value | ||
N | 9069 | 980 | 2083 | 408 | 306 | - | 1208 | 3156 | 618 | 310 | - |
Age (y) | 51.01 ± 0.31 | 46.38 ± 0.60 | 55.77 ± 0.50 | 39.98 ± 0.70 | 43.14 ± 0.95 | <0.001 | 47.60 ± 0.56 | 57.36 ± 0.41 | 42.54 ± 0.69 | 46.24 ± 1.04 | <0.001 |
Current smoking (%) | 17.47 | 33.59 | 27.44 | 35.61 | 33.22 | 0.003 | 4.17 | 4.39 | 5.88 | 10.03 | 0.005 |
Heavy drinking (%) | 8.27 | 13.54 | 10.83 | 17.91 | 17.64 | 0.001 | 4.04 | 2.67 | 4.65 | 7.61 | 0.001 |
Aerobic activity adherence (%) | 42.85 | 47.38 | 41.31 | 54.56 | 54.7 | <0.001 | 42.11 | 36.68 | 43.49 | 47.39 | 0.001 |
Household income (low, %) | 25.13 | 21.78 | 29.08 | 20.75 | 22 | <0.001 | 23.24 | 27.16 | 22.66 | 19.02 | 0.071 |
Energy intake (kcal/d) | 1807.12 ± 10.18 | 2152.70 ± 23.85 | 1882.86 ± 17.77 | 2567.41 ± 47.99 | 2037.81 ± 47.97 | <0.001 | 1612.73 ± 18.40 | 1478.18 ± 12.29 | 1861.66 ± 30.95 | 1475.10 ± 35.68 | <0.001 |
Carbohydrate intake (g/d) | 286.27 ± 1.45 | 326.16 ± 3.61 | 339.01 ± 3.04 | 288.04 ± 5.63 | 265.60 ± 6.46 | <0.001 | 244.95 ± 2.81 | 271.31 ± 2.18 | 222.33 ± 4.09 | 194.37 ± 4.57 | <0.001 |
Fat intake (g/d) | 41.69 ± 0.47 | 55.07 ± 0.77 | 29.29 ± 0.47 | 103.75 ± 2.23 | 46.18 ± 1.42 | <0.001 | 42.58 ± 0.57 | 22.58 ± 0.31 | 75.28 ± 1.32 | 35.51 ± 1.07 | <0.001 |
Protein intake (g/d) | 65.42 ± 0.48 | 79.94 ± 0.92 | 60.77 ± 0.65 | 93.03 ± 1.82 | 119.81 ± 2.87 | <0.001 | 59.74 ± 0.70 | 46.54 ± 0.47 | 67.42 ± 1.26 | 78.03 ± 2.19 | <0.001 |
Fiber intake (g/d) | 24.76 ± 0.19 | 26.84 ± 0.46 | 27.65 ± 0.36 | 24.59 ± 0.63 | 25.17 ± 0.85 | 0.546 | 21.68 ± 0.36 | 24.14 ± 0.32 | 21.02 ± 0.59 | 20.46 ± 0.64 | 0.023 |
Energy from | |||||||||||
Carbohydrate (%) | 64.67 ± 0.18 | 60.67 ± 0.10 | 72.44 ± 0.15 | 45.77 ± 0.47 | 52.66 ± 0.48 | <0.001 | 60.80 ± 0.09 | 73.75 ± 0.14 | 47.94 ± 0.34 | 53.01 ± 0.49 | <0.001 |
Fat (%) | 19.76 ± 0.14 | 22.88 ± 0.13 | 13.64 ± 0.13 | 36.13 ± 0.30 | 20.16 ± 0.34 | <0.001 | 23.60 ± 0.12 | 13.43 ± 0.12 | 36.37 ± 0.25 | 21.57 ± 0.33 | <0.001 |
Protein (%) | 14.42 ± 0.06 | 14.94 ± 0.10 | 12.86 ± 0.07 | 14.51 ± 0.14 | 23.64 ± 0.24 | <0.001 | 14.93 ± 0.08 | 12.55 ± 0.06 | 14.55 ± 0.13 | 23.80 ± 0.28 | <0.001 |
Comorbidity (%) | |||||||||||
Diabetes | 14.13 | 14.73 | 18.89 | 8.75 | 11.25 | <0.001 | 8.39 | 16.79 | 6.5 | 8.9 | <0.001 |
Hypertension | 30.61 | 29.23 | 37.14 | 20.93 | 21.51 | <0.001 | 20.89 | 39.21 | 14.26 | 21.46 | <0.001 |
Dyslipidemia | 15.97 | 12.67 | 16.21 | 7.19 | 12.27 | <0.001 | 13.28 | 22.97 | 9.6 | 14.97 | <0.001 |
Waist circumference (cm) | 83.41 ± 0.14 | 86.85 ± 0.35 | 87.37 ± 0.25 | 86.65 ± 0.49 | 86.93 ± 0.62 | 0.162 | 78.77 ± 0.36 | 81.43 ± 0.23 | 76.62 ± 0.50 | 79.13 ± 0.64 | 0.002 |
Body mass index (kg/m2) | 23.88 ± 0.05 | 24.50 ± 0.14 | 24.29 ± 0.09 | 24.50 ± 0.19 | 24.81 ± 0.23 | 0.230 | 23.10 ± 0.15 | 23.69 ± 0.08 | 22.52 ± 0.19 | 23.35 ± 0.23 | 0.028 |
SBP (mmHg) | 118.79 ± 0.25 | 119.41 ± 0.50 | 121.89 ± 0.40 | 116.70 ± 0.73 | 117.84 ± 0.86 | 0.260 | 114.38 ± 0.51 | 121.26 ± 0.45 | 110.86 ± 0.69 | 112.81 ± 0.97 | <0.001 |
DBP (mmHg) | 75.48 ± 0.15 | 78.35 ± 0.37 | 76.49 ± 0.28 | 77.63 ± 0.54 | 78.25 ± 0.59 | 0.286 | 73.48 ± 0.31 | 74.17 ± 0.22 | 72.33 ± 0.45 | 74.09 ± 0.61 | 0.122 |
Fasting glucose (mg/dL) | 101.22 ± 0.30 | 103.05 ± 0.98 | 105.78 ± 0.67 | 98.29 ± 1.10 | 99.36 ± 1.02 | 0.701 | 96.15 ± 0.56 | 102.16 ± 0.55 | 94.35 ± 0.73 | 95.96 ± 0.91 | 0.491 |
Total cholesterol (mg/dL) | 190.66 ± 0.50 | 190.32 ± 1.35 | 186.42 ± 1.01 | 192.89 ± 1.89 | 190.96 ± 2.46 | 0.425 | 193.22 ± 1.18 | 192.00 ± 0.81 | 192.23 ± 1.51 | 192.77 ± 2.36 | 0.603 |
LDL-cholesterol (mg/dL) | 116.12 ± 1.15 | 120.52 ± 3.08 | 112.05 ± 1.92 | 116.17 ± 4.21 | 120.82 ± 5.07 | 0.222 | 125.20 ± 3.78 | 115.36 ± 2.24 | 120.97 ± 5.97 | 105.01 ± 6.68 | 0.004 |
HDL-cholesterol (mg/dL) | 51.16 ± 0.16 | 47.67 ± 0.41 | 46.45 ± 0.31 | 48.05 ± 0.54 | 48.64 ± 0.77 | 0.441 | 56.32 ± 0.44 | 53.28 ± 0.26 | 58.05 ± 0.64 | 55.70 ± 0.88 | 0.324 |
Triglycerides (mg/dL) | 131.55 ± 1.42 | 148.73 ± 4.27 | 154.93 ± 3.50 | 150.11 ± 7.10 | 140.95 ± 6.00 | 0.921 | 104.74 ± 1.91 | 120.86 ± 1.84 | 98.01 ± 2.35 | 112.14 ± 6.77 | 0.014 |
Unadjusted | p Value | Model 1 | p Value | Model 2 | p Value | Model 3 | p Value | |
---|---|---|---|---|---|---|---|---|
Men | ||||||||
Increased waist circumference | ||||||||
Normal diet | 1 | - | 1 | - | 1 | - | 1 | - |
HCHO diet | 0.988 (0.827–1.181) | 0.895 | 0.862 (0.715–1.039) | 0.119 | 0.740 (0.542–1.010) | 0.058 | 0.813 (0.606–1.089) | 0.165 |
HF diet | 0.850 (0.649–1.113) | 0.237 | 0.944 (0.720–1.237) | 0.675 | 0.872 (0.551–1.380) | 0.558 | 0.880 (0.565–1.370) | 0.570 |
HP diet | 0.890 (0.644–1.232) | 0.483 | 0.945 (0.683–1.308) | 0.735 | 0.675 (0.389–1.173) | 0.163 | 0.751 (0.432–1.305) | 0.308 |
Elevated blood pressure | ||||||||
Normal diet | 1 | - | 1 | - | 1 | - | 1 | - |
HCHO diet | 1.303 (1.101–1.543) | 0.002 | 0.893 (0.740–1.077) | 0.236 | 0.855 (0.697–1.048) | 0.132 | 0.845 (0.693–1.031) | 0.096 |
HF diet | 0.632 (0.486–0.823) | 0.001 | 0.833 (0.630–1.103) | 0.201 | 0.822 (0.602–1.122) | 0.216 | 0.863 (0.631–1.180) | 0.354 |
HP diet | 0.807 (0.592–1.100) | 0.174 | 0.947 (0.680–1.318) | 0.745 | 0.854 (0.597–1.221) | 0.387 | 0.845 (0.587–1.217) | 0.364 |
Elevated fasting glucose | ||||||||
Normal diet | 1 | - | 1 | - | 1 | - | 1 | - |
HCHO diet | 1.338 (1.114–1.607) | 0.002 | 0.956 (0.785–1.165) | 0.658 | 0.978 (0.789–1.212) | 0.836 | 0.982 (0.791–1.219) | 0.868 |
HF diet | 0.579 (0.433–0.774) | <0.001 | 0.737 (0.549–0.991) | 0.044 | 0.686 (0.498–0.945) | 0.021 | 0.671 (0.488–0.922) | 0.014 |
HP diet | 0.752 (0.555–1.020) | 0.067 | 0.863 (0.632–1.180) | 0.356 | 0.800 (0.571–1.122) | 0.196 | 0.727 (0.518–1.020) | 0.065 |
Elevated triglycerides | ||||||||
Normal diet | 1 | - | 1 | - | 1 | - | 1 | - |
HCHO diet | 1.055 (0.888–1.252) | 0.542 | 0.937 (0.785–1.117) | 0.465 | 0.976 (0.802–1.186) | 0.804 | 1.009 (0.831–1.226) | 0.925 |
HF diet | 0.856 (0.656–1.118) | 0.253 | 0.938 (0.721–1.220) | 0.632 | 0.914 (0.689–1.210) | 0.528 | 0.912 (0.679–1.224) | 0.537 |
HP diet | 0.871 (0.637–1.192) | 0.388 | 0.918 (0.672–1.253) | 0.588 | 0.887 (0.632–1.247) | 0.490 | 0.886 (0.641–1.225) | 0.464 |
Reduced HDL-cholesterol | ||||||||
Normal diet | 1 | - | 1 | - | 1 | - | 1 | - |
HCHO diet | 1.380 (1.136–1.677) | 0.001 | 1.100 (0.899–1.345) | 0.354 | 1.042 (0.841–1.291) | 0.708 | 1.110 (0.896–1.376) | 0.339 |
HF diet | 0.841 (0.630–1.121) | 0.237 | 1.015 (0.758–1.359) | 0.921 | 1.068 (0.781–1.460) | 0.679 | 1.121 (0.821–1.530) | 0.471 |
HP diet | 1.089 (0.797–1.487) | 0.594 | 1.221 (0.892–1.673) | 0.213 | 1.257 (0.897–1.762) | 0.183 | 1.362 (0.982–1.888) | 0.064 |
Women | ||||||||
Increased waist circumference | ||||||||
Normal diet | 1 | - | 1 | - | 1 | - | 1 | - |
HCHO diet | 1.614 (1.351–1.927) | <0.001 | 1.117 (0.925–1.349) | 0.249 | 0.928 (0.682–1.261) | 0.631 | 1.018 (0.752–1.378) | 0.909 |
HF diet | 0.761 (0.572–1.013) | 0.061 | 0.946 (0.702–1.275) | 0.715 | 0.973 (0.585–1.618) | 0.915 | 1.037 (0.640–1.681) | 0.882 |
HP diet | 1.021 (0.737–1.413) | 0.902 | 1.131 (0.817–1.564) | 0.457 | 0.968 (0.570–1.644) | 0.904 | 1.034 (0.596–1.797) | 0.904 |
Elevated blood pressure | ||||||||
Normal diet | 1 | - | 1 | - | 1 | - | 1 | - |
HCHO diet | 2.213 (1.873–2.615) | <0.001 | 1.245 (1.030–1.505) | 0.024 | 1.233 (1.007–1.510) | 0.043 | 1.257 (1.021–1.548) | 0.032 |
HF diet | 0.674 (0.521–0.870) | 0.003 | 0.978 (0.713–1.340) | 0.888 | 1.040 (0.737–1.466) | 0.824 | 1.073 (0.749–1.535) | 0.701 |
HP diet | 1.027 (0.740–1.426) | 0.872 | 1.293 (0.889–1.882) | 0.179 | 1.267 (0.863–1.861) | 0.227 | 1.274 (0.868–1.871) | 0.216 |
Elevated fasting glucose | ||||||||
Normal diet | 1 | - | 1 | - | 1 | - | 1 | - |
HCHO diet | 1.822 (1.523–2.179) | <0.001 | 1.210 (1.001–1.464) | 0.049 | 1.143 (0.938–1.393) | 0.186 | 1.092 (0.885–1.347) | 0.411 |
HF diet | 0.754 (0.577–0.986) | 0.039 | 0.969 (0.732–1.283) | 0.827 | 1.015 (0.752–1.370) | 0.922 | 0.980 (0.729–1.318) | 0.895 |
HP diet | 1.027 (0.743–1.419) | 0.873 | 1.161 (0.840–1.606) | 0.366 | 1.042 (0.736–1.476) | 0.815 | 1.020 (0.725–1.437) | 0.908 |
Elevated triglycerides | ||||||||
Normal diet | 1 | - | 1 | - | 1 | - | 1 | - |
HCHO diet | 1.902 (1.609–2.248) | <0.001 | 1.317 (1.101–1.577) | 0.003 | 1.339 (1.098–1.632) | 0.004 | 1.329 (1.091–1.619) | 0.005 |
HF diet | 0.871 (0.664–1.143) | 0.319 | 1.108 (0.829–1.480) | 0.487 | 1.141 (0.832–1.566) | 0.413 | 1.054 (0.770–1.442) | 0.743 |
HP diet | 1.223 (0.888–1.686) | 0.217 | 1.388 (1.009–1.910) | 0.044 | 1.317 (0.941–1.843) | 0.108 | 1.222 (0.858–1.741) | 0.266 |
Reduced HDL-cholesterol | ||||||||
Normal diet | 1 | - | 1 | - | 1 | - | 1 | - |
HCHO diet | 1.678 (1.432–1.966) | <0.001 | 1.191 (1.003–1.415) | 0.046 | 1.183 (0.990–1.415) | 0.064 | 1.170 (0.972–1.409) | 0.097 |
HF diet | 0.721 (0.568–0.917) | 0.008 | 0.876 (0.681–1.128) | 0.304 | 0.871 (0.666–1.138) | 0.311 | 0.877 (0.670–1.147) | 0.336 |
HP diet | 1.178 (0.859–1.615) | 0.308 | 1.311 (0.944–1.822) | 0.106 | 1.272 (0.913–1.771) | 0.155 | 1.214 (0.863–1.707) | 0.265 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-A.; Song, S.-W.; Kim, S.-H.; Kim, H.-N. Associations between Dietary Patterns and Metabolic Syndrome: Findings of the Korean National Health and Nutrition Examination Survey. Nutrients 2023, 15, 2676. https://doi.org/10.3390/nu15122676
Lee Y-A, Song S-W, Kim S-H, Kim H-N. Associations between Dietary Patterns and Metabolic Syndrome: Findings of the Korean National Health and Nutrition Examination Survey. Nutrients. 2023; 15(12):2676. https://doi.org/10.3390/nu15122676
Chicago/Turabian StyleLee, Yun-Ah, Sang-Wook Song, Se-Hong Kim, and Ha-Na Kim. 2023. "Associations between Dietary Patterns and Metabolic Syndrome: Findings of the Korean National Health and Nutrition Examination Survey" Nutrients 15, no. 12: 2676. https://doi.org/10.3390/nu15122676
APA StyleLee, Y. -A., Song, S. -W., Kim, S. -H., & Kim, H. -N. (2023). Associations between Dietary Patterns and Metabolic Syndrome: Findings of the Korean National Health and Nutrition Examination Survey. Nutrients, 15(12), 2676. https://doi.org/10.3390/nu15122676